Revisiting Dipole-Induced Fluorinated-Anion Decomposition Reaction for Promoting a LiF-Rich Interphase in Lithium-Metal Batteries
Corresponding Author: Xinwei Cui
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 111
Abstract
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI−) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators. It is found that the adsorbed Li ions connect electron-donating sGDY@MXene to TFSI−, facilitating interfacial charge transfer for TFSI− decomposition. However, this does not capture the entire picture. The sGDY@MXene also renders the adsorbed Li ions with high mobility, enabling them to reach optimal reaction sites and expedite their coordination processes with O on O=S=O and F on the broken –CF3−, facilitating bond cleavage. In contrast, immobilized Li ions on the more lithiophilic pristine MXene retard these cleavage processes. Consequently, the decomposition reaction is accelerated on sGDY@MXene. This work highlights the dedicate balance between lithiophilicity and Li-ion mobility in effectively promoting a LiF-rich SEI for the long-term stability of LMBs.
Highlights:
1 Single-layer graphdiyne on MXene (sGDY@MXene) heterostructure was fabricated and integrated into polypropylene separators, directing a LiF-rich solid electrolyte interphase and long-term stability of lithium-metal anode.
2 Instead of direct electron transfer from surface polar groups to fluorinated anions, the adsorbed Li ions on sGDY@MXene act as dynamic bridges collaboratively connecting the electron-donating heterostructure to the anion and its derivatives, facilitating interface charge transfer.
3 Dedicate balance between lithiophilicity and high Li-ion mobility is the key to promote the dipole-induced fluorinated-anion decomposition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2
- E. Peled, S. Menkin, Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017). https://doi.org/10.1149/2.1441707jes
- C. Deng, B. Yang, Y. Liang, Y. Zhao, B. Gui et al., Bipolar polymeric protective layer for dendrite-free and corrosion-resistant lithium metal anode in ethylene carbonate electrolyte. Angew. Chem. Int. Ed. 63, e202400619 (2024). https://doi.org/10.1002/anie.202400619
- L. Wang, A. Menakath, F. Han, Y. Wang, P.Y. Zavalij et al., Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019). https://doi.org/10.1038/s41557-019-0304-z
- Z. Luo, Y. Cao, G. Xu, W. Sun, X. Xiao et al., Recent advances in robust and ultra-thin Li metal anode. Carb. Neutral. 3, 647–672 (2024). https://doi.org/10.1002/cnl2.147
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k
- X.-Q. Xu, X.-B. Cheng, F.-N. Jiang, S.-J. Yang, D. Ren et al., Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2, 435–444 (2022). https://doi.org/10.1002/sus2.74
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 (2022). https://doi.org/10.1002/anie.202204776
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- J. Sun, S. Zhang, J. Li, B. Xie, J. Ma et al., Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 35, e2209404 (2023). https://doi.org/10.1002/adma.202209404
- H.-J. Liang, H.-H. Liu, J.-Z. Guo, X.-X. Zhao, Z.-Y. Gu et al., Self-purification and silicon-rich interphase achieves high-temperature (70 °C) sodium-ion batteries with nonflammable electrolyte. Energy Storage Mater. 66, 103230 (2024). https://doi.org/10.1016/j.ensm.2024.103230
- Y.-L. Heng, Z.-Y. Gu, J.-Z. Guo, X.-T. Yang, X.-X. Zhao et al., Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials. Energy Mater. 2, 200017 (2022). https://doi.org/10.20517/energymater.2022.18
- X. Zhao, Z. Gu, J. Guo, X. Wang, H. Liang et al., Constructing bidirectional fluorine-rich electrode/electrolyte interphase via solvent redistribution toward long-term sodium battery. Energy Environ. Mater. 6, e12474 (2023). https://doi.org/10.1002/eem2.12474
- T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
- Y. Chen, M. Li, Y. Liu, Y. Jie, W. Li et al., Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023). https://doi.org/10.1038/s41467-023-38387-8
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022). https://doi.org/10.1126/science.abn1818
- H. Wang, H. Cheng, D. Li, F. Li, Y. Wei et al., Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv. Energy Mater. 13, 2204425 (2023). https://doi.org/10.1002/aenm.202204425
- W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63, e202320149 (2024). https://doi.org/10.1002/anie.202320149
- S. Chang, J. Fang, K. Liu, Z. Shen, L. Zhu et al., Molecular-layer-deposited zincone films induce the formation of LiF-rich interphase for lithium metal anodes. Adv. Energy Mater. 13, 2204002 (2023). https://doi.org/10.1002/aenm.202204002
- B. Xu, L. Ma, W. Wang, H. Zhu, Y. Zhang et al., Orderly arranged dipoles regulate anion-derived solid-electrolyte interphase for stable lithium metal chemistry. Adv. Mater. 36, e2311938 (2024). https://doi.org/10.1002/adma.202311938
- H.-J. Liang, H.-H. Liu, X.-X. Zhao, H.-Y. Lü, Z.-Y. Gu et al., Interphase engineering by tunable redox of (p-d) π-bond additive toward extended lifespan of sodium-ion batteries. Energy Storage Mater. 71, 103633 (2024). https://doi.org/10.1016/j.ensm.2024.103633
- Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian et al., MXene-based current collectors for advanced rechargeable batteries. Adv. Mater. 36, e2306015 (2024). https://doi.org/10.1002/adma.202306015
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- Z. Liu, Y. Tian, S. Li, L. Wang, B. Han et al., Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes. Adv. Funct. Mater. 33, 2301994 (2023). https://doi.org/10.1002/adfm.202301994
- Z. Cao, Q. Zhu, S. Wang, D. Zhang, H. Chen et al., Perpendicular MXene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv. Funct. Mater. 30, 1908075 (2020). https://doi.org/10.1002/adfm.201908075
- X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
- S. Ha, D. Kim, H.-K. Lim, C.M. Koo, S.J. Kim et al., Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv. Funct. Mater. 31, 2170238 (2021). https://doi.org/10.1002/adfm.202170238
- X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang et al., Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4, eaat6378 (2018). https://doi.org/10.1126/sciadv.aat6378
- Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang et al., Synthesis and properties of 2D carbon—graphdiyne. Acc. Chem. Res. 50, 2470–2478 (2017). https://doi.org/10.1021/acs.accounts.7b00205
- X. Li, X. Cui, L. Zhang, J. Du, Review of graphdiyne-based nanostructures and their applications. ACS Appl. Nano Mater. 6, 20493–20522 (2023). https://doi.org/10.1021/acsanm.3c03038
- W. Feng, C. Pan, H. Wang, B. Zhang, W. Luo et al., Molecular carbon skeleton with self−regulating ion−transport channels for long−life potassium ion batteries. Energy Storage Mater. 63, 102975 (2023). https://doi.org/10.1016/j.ensm.2023.102975
- P. Yan, L. Ji, X. Liu, Q. Guan, J. Guo et al., 2D amorphous-MoO3-x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 86, 106139 (2021). https://doi.org/10.1016/j.nanoen.2021.106139
- H. Wang, Y. Chao, J. Li, Q. Qi, J. Lu et al., What is the real origin of single-walled carbon nanotubes for the performance enhancement of Si-based anodes? J. Am. Chem. Soc. 146, 17041–17053 (2024). https://doi.org/10.1021/jacs.4c01677
- G. Li, Y. Li, H. Liu, Y. Guo, Y. Li et al., Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010). https://doi.org/10.1039/b922733d
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 31, 1695–1697 (1985). https://doi.org/10.1103/physreva.31.1695
- S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334
- W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- K. Nasrin, V. Sudharshan, K. Subramani, M. Sathish, Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: a review. Adv. Funct. Mater. 32, 2110267 (2022). https://doi.org/10.1002/adfm.202110267
- J. Pang, B. Chang, H. Liu, W. Zhou, Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 7, 78–96 (2022). https://doi.org/10.1021/acsenergylett.1c02132
- J. Zhang, J. Tian, J. Fan, J. Yu, W. Ho, Graphdiyne: a brilliant hole accumulator for stable and efficient planar perovskite solar cells. Small 16, e1907290 (2020). https://doi.org/10.1002/smll.201907290
- J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang et al., Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 137, 7596–7599 (2015). https://doi.org/10.1021/jacs.5b04057
- Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32, 2204306 (2022). https://doi.org/10.1002/adfm.202204306
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- J. Li, Y. Yi, X. Zuo, B. Hu, Z. Xiao et al., Graphdiyne/graphene/graphdiyne sandwiched carbonaceous anode for potassium-ion batteries. ACS Nano 16, 3163–3172 (2022). https://doi.org/10.1021/acsnano.1c10857
- S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong et al., Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 120, 10605–10613 (2016). https://doi.org/10.1021/acs.jpcc.5b12388
- X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015). https://doi.org/10.1021/ja512820k
- Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014). https://doi.org/10.1021/ja501520b
- Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
- C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen et al., Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem. Int. Ed. 60, 10871–10879 (2021). https://doi.org/10.1002/anie.202101976
- H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
- M. Gobet, S. Greenbaum, G. Sahu, C. Liang, Structural evolution and Li dynamics in nanophase Li3PS4 by solid-state and pulsed-field gradient NMR. Chem. Mater. 26, 3558–3564 (2014). https://doi.org/10.1021/cm5012058
- L. Wu, Y. Wang, X. Guo, P. Ding, Z. Lin et al., Interface science in polymer-based composite solid electrolytes in lithium metal batteries. SusMat 2, 264–292 (2022). https://doi.org/10.1002/sus2.67
- G. Niu, Y. Wang, Z. Yang, S. Cao, H. Liu et al., Graphdiyne and its derivatives as efficient charge reservoirs and transporters in semiconductor devices. Adv. Mater. 35, e2212159 (2023). https://doi.org/10.1002/adma.202212159
- P. Zhai, L. Liu, Y. Wei, J. Zuo, Z. Yang et al., Self-healing nucleation seeds induced long-term dendrite-free lithium metal anode. Nano Lett. 21, 7715–7723 (2021). https://doi.org/10.1021/acs.nanolett.1c02521
- Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu et al., Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ. Mater. 6, e12345 (2023). https://doi.org/10.1002/eem2.12345
- Q. Zhao, R. Zhou, C. Wang, J. Kang, Q. Zhang et al., Anion immobilization enabled by cation-selective separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2112711 (2022). https://doi.org/10.1002/adfm.202112711
- G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2207969 (2022). https://doi.org/10.1002/adfm.202207969
- K.H. Han, J.Y. Seok, I.H. Kim, K. Woo, J.H. Kim et al., A 2D ultrathin nanopatterned interlayer to suppress lithium dendrite growth in high-energy lithium-metal anodes. Adv. Mater. 34, e2203992 (2022). https://doi.org/10.1002/adma.202203992
- W. Wang, A.C.Y. Yuen, Y. Yuan, C. Liao, A. Li et al., Nano architectured halloysite nanotubes enable advanced composite separator for safe lithium metal batteries. Chem. Eng. J. 451, 138496 (2023). https://doi.org/10.1016/j.cej.2022.138496
References
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2
E. Peled, S. Menkin, Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703 (2017). https://doi.org/10.1149/2.1441707jes
C. Deng, B. Yang, Y. Liang, Y. Zhao, B. Gui et al., Bipolar polymeric protective layer for dendrite-free and corrosion-resistant lithium metal anode in ethylene carbonate electrolyte. Angew. Chem. Int. Ed. 63, e202400619 (2024). https://doi.org/10.1002/anie.202400619
L. Wang, A. Menakath, F. Han, Y. Wang, P.Y. Zavalij et al., Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019). https://doi.org/10.1038/s41557-019-0304-z
Z. Luo, Y. Cao, G. Xu, W. Sun, X. Xiao et al., Recent advances in robust and ultra-thin Li metal anode. Carb. Neutral. 3, 647–672 (2024). https://doi.org/10.1002/cnl2.147
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k
X.-Q. Xu, X.-B. Cheng, F.-N. Jiang, S.-J. Yang, D. Ren et al., Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2, 435–444 (2022). https://doi.org/10.1002/sus2.74
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021). https://doi.org/10.1002/aenm.202100046
J. Xie, S.-Y. Sun, X. Chen, L.-P. Hou, B.-Q. Li et al., Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. 61, e202204776 (2022). https://doi.org/10.1002/anie.202204776
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
J. Sun, S. Zhang, J. Li, B. Xie, J. Ma et al., Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 35, e2209404 (2023). https://doi.org/10.1002/adma.202209404
H.-J. Liang, H.-H. Liu, J.-Z. Guo, X.-X. Zhao, Z.-Y. Gu et al., Self-purification and silicon-rich interphase achieves high-temperature (70 °C) sodium-ion batteries with nonflammable electrolyte. Energy Storage Mater. 66, 103230 (2024). https://doi.org/10.1016/j.ensm.2024.103230
Y.-L. Heng, Z.-Y. Gu, J.-Z. Guo, X.-T. Yang, X.-X. Zhao et al., Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials. Energy Mater. 2, 200017 (2022). https://doi.org/10.20517/energymater.2022.18
X. Zhao, Z. Gu, J. Guo, X. Wang, H. Liang et al., Constructing bidirectional fluorine-rich electrode/electrolyte interphase via solvent redistribution toward long-term sodium battery. Energy Environ. Mater. 6, e12474 (2023). https://doi.org/10.1002/eem2.12474
T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
Y. Chen, M. Li, Y. Liu, Y. Jie, W. Li et al., Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat. Commun. 14, 2655 (2023). https://doi.org/10.1038/s41467-023-38387-8
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022). https://doi.org/10.1126/science.abn1818
H. Wang, H. Cheng, D. Li, F. Li, Y. Wei et al., Lithiated copper polyphthalocyanine with extended π-conjugation induces LiF-rich solid electrolyte interphase toward long-life solid-state lithium-metal batteries. Adv. Energy Mater. 13, 2204425 (2023). https://doi.org/10.1002/aenm.202204425
W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63, e202320149 (2024). https://doi.org/10.1002/anie.202320149
S. Chang, J. Fang, K. Liu, Z. Shen, L. Zhu et al., Molecular-layer-deposited zincone films induce the formation of LiF-rich interphase for lithium metal anodes. Adv. Energy Mater. 13, 2204002 (2023). https://doi.org/10.1002/aenm.202204002
B. Xu, L. Ma, W. Wang, H. Zhu, Y. Zhang et al., Orderly arranged dipoles regulate anion-derived solid-electrolyte interphase for stable lithium metal chemistry. Adv. Mater. 36, e2311938 (2024). https://doi.org/10.1002/adma.202311938
H.-J. Liang, H.-H. Liu, X.-X. Zhao, H.-Y. Lü, Z.-Y. Gu et al., Interphase engineering by tunable redox of (p-d) π-bond additive toward extended lifespan of sodium-ion batteries. Energy Storage Mater. 71, 103633 (2024). https://doi.org/10.1016/j.ensm.2024.103633
Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian et al., MXene-based current collectors for advanced rechargeable batteries. Adv. Mater. 36, e2306015 (2024). https://doi.org/10.1002/adma.202306015
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
Z. Liu, Y. Tian, S. Li, L. Wang, B. Han et al., Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes. Adv. Funct. Mater. 33, 2301994 (2023). https://doi.org/10.1002/adfm.202301994
Z. Cao, Q. Zhu, S. Wang, D. Zhang, H. Chen et al., Perpendicular MXene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv. Funct. Mater. 30, 1908075 (2020). https://doi.org/10.1002/adfm.201908075
X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
S. Ha, D. Kim, H.-K. Lim, C.M. Koo, S.J. Kim et al., Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv. Funct. Mater. 31, 2170238 (2021). https://doi.org/10.1002/adfm.202170238
X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang et al., Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4, eaat6378 (2018). https://doi.org/10.1126/sciadv.aat6378
Z. Jia, Y. Li, Z. Zuo, H. Liu, C. Huang et al., Synthesis and properties of 2D carbon—graphdiyne. Acc. Chem. Res. 50, 2470–2478 (2017). https://doi.org/10.1021/acs.accounts.7b00205
X. Li, X. Cui, L. Zhang, J. Du, Review of graphdiyne-based nanostructures and their applications. ACS Appl. Nano Mater. 6, 20493–20522 (2023). https://doi.org/10.1021/acsanm.3c03038
W. Feng, C. Pan, H. Wang, B. Zhang, W. Luo et al., Molecular carbon skeleton with self−regulating ion−transport channels for long−life potassium ion batteries. Energy Storage Mater. 63, 102975 (2023). https://doi.org/10.1016/j.ensm.2023.102975
P. Yan, L. Ji, X. Liu, Q. Guan, J. Guo et al., 2D amorphous-MoO3-x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 86, 106139 (2021). https://doi.org/10.1016/j.nanoen.2021.106139
H. Wang, Y. Chao, J. Li, Q. Qi, J. Lu et al., What is the real origin of single-walled carbon nanotubes for the performance enhancement of Si-based anodes? J. Am. Chem. Soc. 146, 17041–17053 (2024). https://doi.org/10.1021/jacs.4c01677
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li et al., Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010). https://doi.org/10.1039/b922733d
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 31, 1695–1697 (1985). https://doi.org/10.1103/physreva.31.1695
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334
W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
K. Nasrin, V. Sudharshan, K. Subramani, M. Sathish, Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: a review. Adv. Funct. Mater. 32, 2110267 (2022). https://doi.org/10.1002/adfm.202110267
J. Pang, B. Chang, H. Liu, W. Zhou, Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 7, 78–96 (2022). https://doi.org/10.1021/acsenergylett.1c02132
J. Zhang, J. Tian, J. Fan, J. Yu, W. Ho, Graphdiyne: a brilliant hole accumulator for stable and efficient planar perovskite solar cells. Small 16, e1907290 (2020). https://doi.org/10.1002/smll.201907290
J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang et al., Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 137, 7596–7599 (2015). https://doi.org/10.1021/jacs.5b04057
Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx MXene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32, 2204306 (2022). https://doi.org/10.1002/adfm.202204306
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
J. Li, Y. Yi, X. Zuo, B. Hu, Z. Xiao et al., Graphdiyne/graphene/graphdiyne sandwiched carbonaceous anode for potassium-ion batteries. ACS Nano 16, 3163–3172 (2022). https://doi.org/10.1021/acsnano.1c10857
S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong et al., Raman spectra and corresponding strain effects in graphyne and graphdiyne. J. Phys. Chem. C 120, 10605–10613 (2016). https://doi.org/10.1021/acs.jpcc.5b12388
X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu et al., Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015). https://doi.org/10.1021/ja512820k
Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014). https://doi.org/10.1021/ja501520b
Y.-X. Yao, X. Chen, C. Yan, X.-Q. Zhang, W.-L. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen et al., Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes. Angew. Chem. Int. Ed. 60, 10871–10879 (2021). https://doi.org/10.1002/anie.202101976
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 140, 896–899 (2018). https://doi.org/10.1021/jacs.7b12292
M. Gobet, S. Greenbaum, G. Sahu, C. Liang, Structural evolution and Li dynamics in nanophase Li3PS4 by solid-state and pulsed-field gradient NMR. Chem. Mater. 26, 3558–3564 (2014). https://doi.org/10.1021/cm5012058
L. Wu, Y. Wang, X. Guo, P. Ding, Z. Lin et al., Interface science in polymer-based composite solid electrolytes in lithium metal batteries. SusMat 2, 264–292 (2022). https://doi.org/10.1002/sus2.67
G. Niu, Y. Wang, Z. Yang, S. Cao, H. Liu et al., Graphdiyne and its derivatives as efficient charge reservoirs and transporters in semiconductor devices. Adv. Mater. 35, e2212159 (2023). https://doi.org/10.1002/adma.202212159
P. Zhai, L. Liu, Y. Wei, J. Zuo, Z. Yang et al., Self-healing nucleation seeds induced long-term dendrite-free lithium metal anode. Nano Lett. 21, 7715–7723 (2021). https://doi.org/10.1021/acs.nanolett.1c02521
Q. An, H.-E. Wang, G. Zhao, S. Wang, L. Xu et al., Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ. Mater. 6, e12345 (2023). https://doi.org/10.1002/eem2.12345
Q. Zhao, R. Zhou, C. Wang, J. Kang, Q. Zhang et al., Anion immobilization enabled by cation-selective separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2112711 (2022). https://doi.org/10.1002/adfm.202112711
G. Lin, K. Jia, Z. Bai, C. Liu, S. Liu et al., Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 32, 2207969 (2022). https://doi.org/10.1002/adfm.202207969
K.H. Han, J.Y. Seok, I.H. Kim, K. Woo, J.H. Kim et al., A 2D ultrathin nanopatterned interlayer to suppress lithium dendrite growth in high-energy lithium-metal anodes. Adv. Mater. 34, e2203992 (2022). https://doi.org/10.1002/adma.202203992
W. Wang, A.C.Y. Yuen, Y. Yuan, C. Liao, A. Li et al., Nano architectured halloysite nanotubes enable advanced composite separator for safe lithium metal batteries. Chem. Eng. J. 451, 138496 (2023). https://doi.org/10.1016/j.cej.2022.138496