Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries
Corresponding Author: Hao Bin Wu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 176
Abstract
A robust solid-electrolyte interphase (SEI) enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency. However, the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling. Herein, we demonstrate nanocapsules made from metal–organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte. The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3. Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling. As a result, lifespan of thin Li anode in 50 μm, which experiences drastic volume change and repeated SEI formation during cycling, has been notably improved. By pairing with an industry-level thick LiCoO2 cathode, practical Li-metal full cell demonstrates a remarkable capacity retention of 90% after 240 cycles, in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.
Highlights:
1 Nanocapsules made from metal–organic frameworks were designed for sustained release of additive (LiNO3) to passivate Li anode in commercial carbonate-based electrolyte.
2 The nanocapsules with continuous supply of LiNO3 formed a nitride-rich solid electrolyte interphase layer on Li anode and persistently remedied the interphase during prolonged cycling.
3 The practical Li-metal full cell delivered a prolonged lifespan with 90% capacity retention after 240 cycles which has been hardly achieved in commercial electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin, Y.H. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 7(2), 513–537 (2014). https://doi.org/10.1039/c3ee40795k
- D. Wang, W. Zhang, W.T. Zheng, X.Q. Cui, T. Rojo, Q. Zhang, Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
- J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- Y.P. Guo, H.Q. Li, T.Y. Zhai, Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29(29), 1700007 (2017). https://doi.org/10.1021/acsmaterialslett.0c00152
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- J.X. Zheng, M.S. Kim, Z.Y. Tu, S. Choudhury, T. Tang, L.A. Archer, Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/c9cs00883g
- X. Cao, X.D. Ren, L.F. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4(9), 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
- Y.D. Liu, Q. Liu, L. Xin, Y.Z. Liu, F. Yang, E.A. Stach, J. Xie, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2(7), 17083 (2017). https://doi.org/10.1038/nenergy.2017.83
- T. Li, X.Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11), 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
- Z.A. Ghazi, Z.H. Sun, C.G. Sun, F.L. Qi, B.G. An, F. Li, H.M. Cheng, Key aspects of lithium metal anodes for lithium metal batteries. Small 15(32), 1900687 (2019). https://doi.org/10.1002/smll.201900687
- C.C. Fang, J.X. Li, M.H. Zhang, Y.H. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572(7770), 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
- X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1605989 (2017). https://doi.org/10.1002/adfm.201605989
- L. Yu, S.R. Chen, H. Lee, L.C. Zhang, M.H. Engelhard et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3(9), 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
- J. Guo, Z.Y. Wen, M.F. Wu, J. Jin, Y. Liu, Vinylene carbonate-lino3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015). https://doi.org/10.1016/j.elecom.2014.12.008
- H. Zhang, G.G. Eshetu, X. Judez, C.M. Li, L.M. Rodriguez-Martinez, M. Armand, Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
- K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500003w
- M.D. Tikekar, S. Choudhury, Z.Y. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.114
- W.Y. Li, H.B. Yao, K. Yan, G.Y. Zheng, Z. Liang, Y.M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
- D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley, J. Affinito, On the surface chemical aspects of very high energy density, rechargeable Li-Sulfur batteries. J. Electrochem. Soc. 156(8), A694–A702 (2009). https://doi.org/10.1149/1.3148721
- V. Giordani, D. Tozier, J. Uddin, H.J. Tan, B.M. Gallant et al., Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nat. Chem. 11(12), 1133–1138 (2019). https://doi.org/10.1038/s41557-019-0342-6
- Y.Y. Liu, D.C. Lin, Y.Z. Li, G.X. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
- C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57(43), 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
- Q.W. Shi, Y.R. Zhong, M. Wu, H.Z. Wang, H.L. Wang, High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. 115(22), 5676–5680 (2018). https://doi.org/10.1073/pnas.1803634115
- Y.M. Liu, X.Y. Qin, D. Zhou, H.Y. Xia, S.Q. Zhang et al., A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3− in carbonate electrolyte. Energy Storage Mater. 24, 229–236 (2020). https://doi.org/10.1016/j.ensm.2019.08.016
- Z.L. Hu, S. Zhang, S.M. Dong, W.J. Li, H. Li et al., Poly(ethyl alpha-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of li metal anodes. Chem. Mater. 29(11), 4682–4689 (2017). https://doi.org/10.1021/acs.chemmater.7b00091
- M.X. Wu, Y.W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29(23), 1606134 (2017). https://doi.org/10.1002/adma.201606134
- Y.J. Sun, L.W. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12(1), 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
- L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G.R. Shen et al., Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks. Adv. Mater. 30(23), 1707416 (2018). https://doi.org/10.1002/adma.201707476
- Y.Y. Mao, G.R. Li, Y. Guo, Z.P. Li, C.D. Liang, X.S. Peng, Z. Lin, Foldable interpenetrated metal–organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 8, 14628 (2017). https://doi.org/10.1038/ncomms14628
- S.L. Zhang, B.Y. Guan, H.B. Wu, X.W. David Lou, Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10, 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
- S.Y. Bai, X.Z. Liu, K. Zhu, S.C. Wu, H.S. Zhou, Metal–organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
- J.C. Jiang, F. Gandara, Y.B. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, Superacidity in sulfated metal–organic framework-808. J. Am. Chem. Soc. 136(37), 12844–12847 (2014). https://doi.org/10.1021/ja507119n
- B.D. Adams, J.M. Zheng, X.D. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- H. Furukawa, F. Gandara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136(11), 4369–4381 (2014). https://doi.org/10.1021/ja500330a
- A.C. Edwards, P.S. Hooda, Y. Cook, Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int. J. Environ. Anal. Chem. 80(1), 49–59 (2001). https://doi.org/10.1080/03067310108044385
- V. Tomisic, V. Simeon, Ion association in aqueous solutions of strong electrolytes: a UV–Vis spectrometric and factor-analytical study. Phys. Chem. Chem. Phys. 1(2), 299–302 (1999). https://doi.org/10.1039/a806961a
- L. Shen, H.B. Wu, F. Liu, C. Zhang, S.X. Ma, Z.Y. Le, Y.F. Lu, Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horiz. 4(3), 705–711 (2019). https://doi.org/10.1039/c8nh00342d
- L. Shen, H.B. Wu, F. Liu, J.Q. Shen, R.W. Mo et al., Particulate anion sorbents as electrolyte additives for lithium batteries. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202003055
- R. Xu, C. Yan, Y. Xiao, M. Zhao, H. Yuan, J.Q. Huang, The reduction of interfacial transfer barrier of li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater. 28, 401–406 (2020). https://doi.org/10.1016/j.ensm.2019.12.020
References
W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin, Y.H. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 7(2), 513–537 (2014). https://doi.org/10.1039/c3ee40795k
D. Wang, W. Zhang, W.T. Zheng, X.Q. Cui, T. Rojo, Q. Zhang, Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
Y.P. Guo, H.Q. Li, T.Y. Zhai, Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 29(29), 1700007 (2017). https://doi.org/10.1021/acsmaterialslett.0c00152
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
J.X. Zheng, M.S. Kim, Z.Y. Tu, S. Choudhury, T. Tang, L.A. Archer, Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/c9cs00883g
X. Cao, X.D. Ren, L.F. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4(9), 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
Y.D. Liu, Q. Liu, L. Xin, Y.Z. Liu, F. Yang, E.A. Stach, J. Xie, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2(7), 17083 (2017). https://doi.org/10.1038/nenergy.2017.83
T. Li, X.Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11), 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
Z.A. Ghazi, Z.H. Sun, C.G. Sun, F.L. Qi, B.G. An, F. Li, H.M. Cheng, Key aspects of lithium metal anodes for lithium metal batteries. Small 15(32), 1900687 (2019). https://doi.org/10.1002/smll.201900687
C.C. Fang, J.X. Li, M.H. Zhang, Y.H. Zhang, F. Yang et al., Quantifying inactive lithium in lithium metal batteries. Nature 572(7770), 511–515 (2019). https://doi.org/10.1038/s41586-019-1481-z
X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1605989 (2017). https://doi.org/10.1002/adfm.201605989
L. Yu, S.R. Chen, H. Lee, L.C. Zhang, M.H. Engelhard et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3(9), 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
J. Guo, Z.Y. Wen, M.F. Wu, J. Jin, Y. Liu, Vinylene carbonate-lino3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015). https://doi.org/10.1016/j.elecom.2014.12.008
H. Zhang, G.G. Eshetu, X. Judez, C.M. Li, L.M. Rodriguez-Martinez, M. Armand, Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014). https://doi.org/10.1021/cr500003w
M.D. Tikekar, S. Choudhury, Z.Y. Tu, L.A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.114
W.Y. Li, H.B. Yao, K. Yan, G.Y. Zheng, Z. Liang, Y.M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley, J. Affinito, On the surface chemical aspects of very high energy density, rechargeable Li-Sulfur batteries. J. Electrochem. Soc. 156(8), A694–A702 (2009). https://doi.org/10.1149/1.3148721
V. Giordani, D. Tozier, J. Uddin, H.J. Tan, B.M. Gallant et al., Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nat. Chem. 11(12), 1133–1138 (2019). https://doi.org/10.1038/s41557-019-0342-6
Y.Y. Liu, D.C. Lin, Y.Z. Li, G.X. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57(43), 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
Q.W. Shi, Y.R. Zhong, M. Wu, H.Z. Wang, H.L. Wang, High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. 115(22), 5676–5680 (2018). https://doi.org/10.1073/pnas.1803634115
Y.M. Liu, X.Y. Qin, D. Zhou, H.Y. Xia, S.Q. Zhang et al., A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3− in carbonate electrolyte. Energy Storage Mater. 24, 229–236 (2020). https://doi.org/10.1016/j.ensm.2019.08.016
Z.L. Hu, S. Zhang, S.M. Dong, W.J. Li, H. Li et al., Poly(ethyl alpha-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of li metal anodes. Chem. Mater. 29(11), 4682–4689 (2017). https://doi.org/10.1021/acs.chemmater.7b00091
M.X. Wu, Y.W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29(23), 1606134 (2017). https://doi.org/10.1002/adma.201606134
Y.J. Sun, L.W. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12(1), 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
L. Shen, H.B. Wu, F. Liu, J.L. Brosmer, G.R. Shen et al., Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks. Adv. Mater. 30(23), 1707416 (2018). https://doi.org/10.1002/adma.201707476
Y.Y. Mao, G.R. Li, Y. Guo, Z.P. Li, C.D. Liang, X.S. Peng, Z. Lin, Foldable interpenetrated metal–organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 8, 14628 (2017). https://doi.org/10.1038/ncomms14628
S.L. Zhang, B.Y. Guan, H.B. Wu, X.W. David Lou, Metal–organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10, 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
S.Y. Bai, X.Z. Liu, K. Zhu, S.C. Wu, H.S. Zhou, Metal–organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
J.C. Jiang, F. Gandara, Y.B. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, Superacidity in sulfated metal–organic framework-808. J. Am. Chem. Soc. 136(37), 12844–12847 (2014). https://doi.org/10.1021/ja507119n
B.D. Adams, J.M. Zheng, X.D. Ren, W. Xu, J.G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2018). https://doi.org/10.1002/aenm.201702097
H. Furukawa, F. Gandara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136(11), 4369–4381 (2014). https://doi.org/10.1021/ja500330a
A.C. Edwards, P.S. Hooda, Y. Cook, Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int. J. Environ. Anal. Chem. 80(1), 49–59 (2001). https://doi.org/10.1080/03067310108044385
V. Tomisic, V. Simeon, Ion association in aqueous solutions of strong electrolytes: a UV–Vis spectrometric and factor-analytical study. Phys. Chem. Chem. Phys. 1(2), 299–302 (1999). https://doi.org/10.1039/a806961a
L. Shen, H.B. Wu, F. Liu, C. Zhang, S.X. Ma, Z.Y. Le, Y.F. Lu, Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horiz. 4(3), 705–711 (2019). https://doi.org/10.1039/c8nh00342d
L. Shen, H.B. Wu, F. Liu, J.Q. Shen, R.W. Mo et al., Particulate anion sorbents as electrolyte additives for lithium batteries. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202003055
R. Xu, C. Yan, Y. Xiao, M. Zhao, H. Yuan, J.Q. Huang, The reduction of interfacial transfer barrier of li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater. 28, 401–406 (2020). https://doi.org/10.1016/j.ensm.2019.12.020