Air-Stable Ultrabright Inverted Organic Light-Emitting Devices with Metal Ion-Chelated Polymer Injection Layer
Corresponding Author: Chun‑Sing Lee
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 14
Abstract
Here, this work presents an air-stable ultrabright inverted organic light-emitting device (OLED) by using zinc ion-chelated polyethylenimine (PEI) as electron injection layer. The zinc chelation is demonstrated to increase the conductivity of the PEI by three orders of magnitude and passivate the polar amine groups. With these physicochemical properties, the inverted OLED shows a record-high external quantum efficiency of 10.0% at a high brightness of 45,610 cd m−2 and can deliver a maximum brightness of 121,865 cd m−2. Besides, the inverted OLED is also demonstrated to possess an excellent air stability (humidity, 35%) with a half-brightness operating time of 541 h @ 1000 cd m−2 without any protection nor encapsulation.
Highlights:
1 By using a zinc ion-chelated polyethylenimine as electron injection layer, an inverted organic light-emitting device (OLED) was successfully prepared with an external quantum efficiency over 10% at a brightness of 45,610 cd m−2.
2 The chelation between zinc ion and amine groups not only passivates polar amine groups, but also fuses separated electronic orbitals.
3 The inverted OLED show an excellent air stability with an operating time of 541 h @ 1,000 cd m−2 without any protection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7(3), 17168–17168 (2018). https://doi.org/10.1038/lsa.2017.168
- T. Zhan, K. Yin, J. Xiong, Z. He, S.-T. Wu, Augmented reality and virtual reality displays: perspectives and challenges. Iscience 23(8), 101397 (2020). https://doi.org/10.1016/j.isci.2020.101397
- Y. Huang, E.-L. Hsiang, M.-Y. Deng, S.-T. Wu, Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9(1), 1–16 (2020). https://doi.org/10.1038/s41377-020-0341-9
- H.-M. Kim, J.G. Um, S. Lee, D.Y. Jeong, Y. Jung et al., High brightness active matrix micro-LEDs with LTPS TFT backplane. SID Symp. Dig. Tech. Pap. 49(1), 880–883 (2018). https://doi.org/10.1002/sdtp.12238
- Y. Sun, S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photonics 2(8), 483–487 (2008). https://doi.org/10.1038/nphoton.2008.132
- S. Liu, H. Yu, Q. Zhang, F. Qin, X. Zhang et al., Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT: PSS electrode by enhancing carrier balance. J. Mater. Chem. C 7(18), 5426–5432 (2019). https://doi.org/10.1039/C9TC00648F
- C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani et al., Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 15(3), 203–207 (2021). https://doi.org/10.1038/s41566-020-00745-z
- J.U. Kim, I.S. Park, C.-Y. Chan, M. Tanaka, Y. Tsuchiya et al., Nanosecond-time-scale delayed fluorescence molecule for deep-blue oleds with small efficiency rolloff. Nat. Commun. 11(1), 1–8 (2020). https://doi.org/10.1038/s41467-020-15558-5
- S. Höfle, A. Schienle, M. Bruns, U. Lemmer, A. Colsmann, Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine interlayers. Adv. Mater. 26(17), 2750–2754 (2014). https://doi.org/10.1002/adma.201304666
- X.-D. Zhao, Y.-Q. Li, H.-Y. Xiang, Y.-B. Zhang, J.-D. Chen et al., Efficient color-stable inverted white organic light-emitting diodes with outcoupling-enhanced ZnO layer. ACS Appl. Mater. Interfaces 9(3), 2767–2775 (2017). https://doi.org/10.1021/acsami.6b14778
- B.R. Lee, E.D. Jung, J.S. Park, Y.S. Nam, S.H. Min et al., Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncomms5840
- W.J. Dong, J.Y. Park, J. Ham, G.H. Jung, I. Lee et al., Dual effect of ITO-interlayer on inverted top-illuminated polymer solar cells: wetting of polyelectrolyte and tuning of cavity. Adv. Funct. Mater. 26(30), 5437–5446 (2016). https://doi.org/10.1002/adfm.201601764
- H. Fukagawa, T. Sasaki, T. Tsuzuki, Y. Nakajima, T. Takei et al., Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Adv. Mater. 30(28), 1706768 (2018). https://doi.org/10.1002/adma.201706768
- B.H. Lee, I.H. Jung, H.Y. Woo, H.K. Shim, G. Kim et al., Multi-charged conjugated polyelectrolytes as a versatile work function modifier for organic electronic devices. Adv. Funct. Mater. 24(8), 1100–1108 (2014). https://doi.org/10.1002/adfm.201301810
- B.R. Lee, S. Lee, J.H. Park, E.D. Jung, J.C. Yu et al., Amine-based interfacial molecules for inverted polymer-based optoelectronic devices. Adv. Mater. 27(23), 3553–3559 (2015). https://doi.org/10.1002/adma.201500663
- Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano et al., A universal method to produce low-work function electrodes for organic electronics. Science 336(6079), 327–332 (2012). https://doi.org/10.1126/science.1218829
- F. Qin, W. Wang, L. Sun, X. Jiang, L. Hu et al., Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun. 11(1), 4508 (2020). https://doi.org/10.1038/s41467-020-18373-0
- M. Wang, L. Zhou, M. Yu, C. Liu, S. Chu et al., Amphiphilic conjugated molecules with multifunctional properties as efficient blue emitters and cathode interlayers for inkjet printed organic light-emitting diodes. J. Mater. Chem. C 5(28), 7075–7083 (2017). https://doi.org/10.1039/C7TC01632H
- Y. Gong, J. Zhang, B. Du, M. Wang, W.Y. Lai et al., Design, synthesis, and postvapor treatment of neutral fulleropyrrolidine electron-collecting interlayers for high-efficiency inverted polymer solar cells. ACS Appl. Electron. Mater. 1(6), 854–861 (2019). https://doi.org/10.1021/acsaelm.9b00016
- W.D. Xu, W.Y. Lai, Q. Hu, X.Y. Teng, X.W. Zhang et al., A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics. Polym. Chem. 5(8), 2942–2950 (2014). https://doi.org/10.1039/C3PY01477K
- Z. Miao, X. Wang, R. Ma, W. Zhu, Y. Li et al., Dopamine semiquinone radical doped PEDOT: PSS: Enhanced conductivity, work function and performance in organic solar cells. Adv. Energy Mater. 10(25), 2000743 (2020). https://doi.org/10.1002/aenm.202000743
- D. Song, S. Zhao, H. Aziz, Modification of exciton lifetime by the metal cathode in phosphorescent oleds, and implications on device efficiency and efficiency roll-off behavior. Adv. Funct. Mater. 21(12), 2311–2317 (2011). https://doi.org/10.1002/adfm.201002585
- Y. Chen, S. Chu, R. Li, Y. Qin, Y. Xu et al., Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers. Org. Electron. 66, 1–6 (2019). https://doi.org/10.1016/j.orgel.2018.12.008
- W. Xu, X. Zhang, Q. Hu, L. Zhao, X. Teng et al., Fluorene-based cathode interlayer polymers for high performance solution processed organic optoelectronic devices. Org. Electron. 15(6), 1244–1253 (2014). https://doi.org/10.1016/j.orgel.2014.03.029
- H. Fukagawa, K. Morii, M. Hasegawa, Y. Arimoto, T. Kamada et al., Highly efficient and air-stable inverted organic light-emitting diode composed of inert materials. Appl. Phys. Express. 7(8), 082104 (2014). https://doi.org/10.7567/APEX.7.082104
- H. Fukagawa, M. Hasegawa, K. Morii, K. Suzuki, T. Sasaki et al., Universal strategy for efficient electron injection into organic semiconductors utilizing hydrogen bonds. Adv. Mater. 31(43), 1904201 (2019). https://doi.org/10.1002/adma.201904201
- Y. Matsuo, H. Okada, Y. Kondo, I. Jeon, H. Wang et al., Anthracene-based organic small-molecule electron-injecting material for inverted organic light-emitting diodes. ACS Appl. Mater. Interfaces 10(14), 11810–11817 (2018). https://doi.org/10.1021/acsami.8b00603
- S. Ohisa, M. Suzuki, T. Chiba, J. Kido, Doping of tetraalkylammonium salts in polyethylenimine ethoxylated for efficient electron injection layers in solution-processed organic light-emitting devices. ACS Appl. Mater. Interfaces 11(28), 25351–25357 (2019). https://doi.org/10.1021/acsami.9b06895
- T. Chiba, Y.-J. Pu, T. Ide, S. Ohisa, H. Fukuda et al., Addition of lithium 8-quinolate into polyethylenimine electron-injection layer in oleds: Not only reducing driving voltage but also improving device lifetime. ACS Appl. Mater. Interfaces 9(21), 18113–18119 (2017). https://doi.org/10.1021/acsami.7b02658
- J. Kim, H.-M. Kim, J. Jang, Low work function 2.81 eV Rb2CO3-doped polyethylenimine ethoxylated for inverted organic light-emitting diodes. ACS Appl. Mater. Interfaces 10(22), 18993–19001 (2018). https://doi.org/10.1021/acsami.8b04760
- T.C. Yeh, Q. Zhu, D.B. Buchholz, A.B. Martinson, R.P.H. Chang et al., Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification. Appl. Surf. Sci. 330, 405–410 (2015). https://doi.org/10.1016/j.apsusc.2015.01.026
- C. Zang, S. Liu, M. Xu, R. Wang, C. Cao et al., Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10(1), 116 (2021). https://doi.org/10.1038/s41377-021-00559-w
- Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen et al., High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9(4), 259–266 (2015). https://doi.org/10.1038/nphoton.2015.36
- S. Liu, X. Zhang, S. Wang, H. Feng, J. Zhang et al., Hybrid organic light-emitting device based on ultrasonic spray-coating molybdenum trioxide transport layer with low turn-on voltage, improved efficiency & stability. Org. Electron. 52, 264–271 (2018). https://doi.org/10.1016/j.orgel.2017.10.041
- P. van de Weijer, K. Lu, R.R. Janssen, S.H. de Winter, H.B. Akkerman, Mechanism of the operational effect of black spot growth in OLEDs. Org. Electron. 37, 155–162 (2016). https://doi.org/10.1016/j.orgel.2016.05.037
References
H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7(3), 17168–17168 (2018). https://doi.org/10.1038/lsa.2017.168
T. Zhan, K. Yin, J. Xiong, Z. He, S.-T. Wu, Augmented reality and virtual reality displays: perspectives and challenges. Iscience 23(8), 101397 (2020). https://doi.org/10.1016/j.isci.2020.101397
Y. Huang, E.-L. Hsiang, M.-Y. Deng, S.-T. Wu, Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9(1), 1–16 (2020). https://doi.org/10.1038/s41377-020-0341-9
H.-M. Kim, J.G. Um, S. Lee, D.Y. Jeong, Y. Jung et al., High brightness active matrix micro-LEDs with LTPS TFT backplane. SID Symp. Dig. Tech. Pap. 49(1), 880–883 (2018). https://doi.org/10.1002/sdtp.12238
Y. Sun, S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photonics 2(8), 483–487 (2008). https://doi.org/10.1038/nphoton.2008.132
S. Liu, H. Yu, Q. Zhang, F. Qin, X. Zhang et al., Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT: PSS electrode by enhancing carrier balance. J. Mater. Chem. C 7(18), 5426–5432 (2019). https://doi.org/10.1039/C9TC00648F
C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani et al., Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 15(3), 203–207 (2021). https://doi.org/10.1038/s41566-020-00745-z
J.U. Kim, I.S. Park, C.-Y. Chan, M. Tanaka, Y. Tsuchiya et al., Nanosecond-time-scale delayed fluorescence molecule for deep-blue oleds with small efficiency rolloff. Nat. Commun. 11(1), 1–8 (2020). https://doi.org/10.1038/s41467-020-15558-5
S. Höfle, A. Schienle, M. Bruns, U. Lemmer, A. Colsmann, Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine interlayers. Adv. Mater. 26(17), 2750–2754 (2014). https://doi.org/10.1002/adma.201304666
X.-D. Zhao, Y.-Q. Li, H.-Y. Xiang, Y.-B. Zhang, J.-D. Chen et al., Efficient color-stable inverted white organic light-emitting diodes with outcoupling-enhanced ZnO layer. ACS Appl. Mater. Interfaces 9(3), 2767–2775 (2017). https://doi.org/10.1021/acsami.6b14778
B.R. Lee, E.D. Jung, J.S. Park, Y.S. Nam, S.H. Min et al., Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncomms5840
W.J. Dong, J.Y. Park, J. Ham, G.H. Jung, I. Lee et al., Dual effect of ITO-interlayer on inverted top-illuminated polymer solar cells: wetting of polyelectrolyte and tuning of cavity. Adv. Funct. Mater. 26(30), 5437–5446 (2016). https://doi.org/10.1002/adfm.201601764
H. Fukagawa, T. Sasaki, T. Tsuzuki, Y. Nakajima, T. Takei et al., Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Adv. Mater. 30(28), 1706768 (2018). https://doi.org/10.1002/adma.201706768
B.H. Lee, I.H. Jung, H.Y. Woo, H.K. Shim, G. Kim et al., Multi-charged conjugated polyelectrolytes as a versatile work function modifier for organic electronic devices. Adv. Funct. Mater. 24(8), 1100–1108 (2014). https://doi.org/10.1002/adfm.201301810
B.R. Lee, S. Lee, J.H. Park, E.D. Jung, J.C. Yu et al., Amine-based interfacial molecules for inverted polymer-based optoelectronic devices. Adv. Mater. 27(23), 3553–3559 (2015). https://doi.org/10.1002/adma.201500663
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano et al., A universal method to produce low-work function electrodes for organic electronics. Science 336(6079), 327–332 (2012). https://doi.org/10.1126/science.1218829
F. Qin, W. Wang, L. Sun, X. Jiang, L. Hu et al., Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat. Commun. 11(1), 4508 (2020). https://doi.org/10.1038/s41467-020-18373-0
M. Wang, L. Zhou, M. Yu, C. Liu, S. Chu et al., Amphiphilic conjugated molecules with multifunctional properties as efficient blue emitters and cathode interlayers for inkjet printed organic light-emitting diodes. J. Mater. Chem. C 5(28), 7075–7083 (2017). https://doi.org/10.1039/C7TC01632H
Y. Gong, J. Zhang, B. Du, M. Wang, W.Y. Lai et al., Design, synthesis, and postvapor treatment of neutral fulleropyrrolidine electron-collecting interlayers for high-efficiency inverted polymer solar cells. ACS Appl. Electron. Mater. 1(6), 854–861 (2019). https://doi.org/10.1021/acsaelm.9b00016
W.D. Xu, W.Y. Lai, Q. Hu, X.Y. Teng, X.W. Zhang et al., A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics. Polym. Chem. 5(8), 2942–2950 (2014). https://doi.org/10.1039/C3PY01477K
Z. Miao, X. Wang, R. Ma, W. Zhu, Y. Li et al., Dopamine semiquinone radical doped PEDOT: PSS: Enhanced conductivity, work function and performance in organic solar cells. Adv. Energy Mater. 10(25), 2000743 (2020). https://doi.org/10.1002/aenm.202000743
D. Song, S. Zhao, H. Aziz, Modification of exciton lifetime by the metal cathode in phosphorescent oleds, and implications on device efficiency and efficiency roll-off behavior. Adv. Funct. Mater. 21(12), 2311–2317 (2011). https://doi.org/10.1002/adfm.201002585
Y. Chen, S. Chu, R. Li, Y. Qin, Y. Xu et al., Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers. Org. Electron. 66, 1–6 (2019). https://doi.org/10.1016/j.orgel.2018.12.008
W. Xu, X. Zhang, Q. Hu, L. Zhao, X. Teng et al., Fluorene-based cathode interlayer polymers for high performance solution processed organic optoelectronic devices. Org. Electron. 15(6), 1244–1253 (2014). https://doi.org/10.1016/j.orgel.2014.03.029
H. Fukagawa, K. Morii, M. Hasegawa, Y. Arimoto, T. Kamada et al., Highly efficient and air-stable inverted organic light-emitting diode composed of inert materials. Appl. Phys. Express. 7(8), 082104 (2014). https://doi.org/10.7567/APEX.7.082104
H. Fukagawa, M. Hasegawa, K. Morii, K. Suzuki, T. Sasaki et al., Universal strategy for efficient electron injection into organic semiconductors utilizing hydrogen bonds. Adv. Mater. 31(43), 1904201 (2019). https://doi.org/10.1002/adma.201904201
Y. Matsuo, H. Okada, Y. Kondo, I. Jeon, H. Wang et al., Anthracene-based organic small-molecule electron-injecting material for inverted organic light-emitting diodes. ACS Appl. Mater. Interfaces 10(14), 11810–11817 (2018). https://doi.org/10.1021/acsami.8b00603
S. Ohisa, M. Suzuki, T. Chiba, J. Kido, Doping of tetraalkylammonium salts in polyethylenimine ethoxylated for efficient electron injection layers in solution-processed organic light-emitting devices. ACS Appl. Mater. Interfaces 11(28), 25351–25357 (2019). https://doi.org/10.1021/acsami.9b06895
T. Chiba, Y.-J. Pu, T. Ide, S. Ohisa, H. Fukuda et al., Addition of lithium 8-quinolate into polyethylenimine electron-injection layer in oleds: Not only reducing driving voltage but also improving device lifetime. ACS Appl. Mater. Interfaces 9(21), 18113–18119 (2017). https://doi.org/10.1021/acsami.7b02658
J. Kim, H.-M. Kim, J. Jang, Low work function 2.81 eV Rb2CO3-doped polyethylenimine ethoxylated for inverted organic light-emitting diodes. ACS Appl. Mater. Interfaces 10(22), 18993–19001 (2018). https://doi.org/10.1021/acsami.8b04760
T.C. Yeh, Q. Zhu, D.B. Buchholz, A.B. Martinson, R.P.H. Chang et al., Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification. Appl. Surf. Sci. 330, 405–410 (2015). https://doi.org/10.1016/j.apsusc.2015.01.026
C. Zang, S. Liu, M. Xu, R. Wang, C. Cao et al., Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light Sci. Appl. 10(1), 116 (2021). https://doi.org/10.1038/s41377-021-00559-w
Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen et al., High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9(4), 259–266 (2015). https://doi.org/10.1038/nphoton.2015.36
S. Liu, X. Zhang, S. Wang, H. Feng, J. Zhang et al., Hybrid organic light-emitting device based on ultrasonic spray-coating molybdenum trioxide transport layer with low turn-on voltage, improved efficiency & stability. Org. Electron. 52, 264–271 (2018). https://doi.org/10.1016/j.orgel.2017.10.041
P. van de Weijer, K. Lu, R.R. Janssen, S.H. de Winter, H.B. Akkerman, Mechanism of the operational effect of black spot growth in OLEDs. Org. Electron. 37, 155–162 (2016). https://doi.org/10.1016/j.orgel.2016.05.037