Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review
Corresponding Author: Yongbing Tang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 121
Abstract
There has been increasing demand for high-energy density and long-cycle life rechargeable batteries to satisfy the ever-growing requirements for next-generation energy storage systems. Among all available candidates, dual-ion batteries (DIBs) have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage, excellent safety, and environmental friendliness. However, the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive. To fully employ the advantages of DIBs, the overall optimization of anode materials, cathode materials, and compatible electrolyte systems is urgently needed. Here, we review the development history and the reaction mechanisms involved in DIBs. Afterward, the optimization strategies toward DIB materials and electrolytes are highlighted. In addition, their energy-related applications are also provided. Lastly, the research challenges and possible development directions of DIBs are outlined.
Highlights:
1 The development history and the reaction mechanisms involved in dual-ion batteries (DIBs) are reviewed.
2 The optimization strategies toward DIB electrodes and electrolytes and their energy-related applications are highlighted.
3 The research challenges and possible development directions of DIBs are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Liu, J. Liu, L. Li, L. Yu, J. Diao et al., Origin of structural degradation in Li-rich layered oxide cathode. Nature 606(7913), 305–312 (2022). https://doi.org/10.1038/s41586-022-04689-y
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- K. Lemoine, A. Hemon-Ribaud, M. Leblanc, J. Lhoste, J.-M. Tarascon et al., Fluorinated materials as positive electrodes for Li- and Na-Ion batteries. Chem. Rev. 122(18), 14405 (2022). https://doi.org/10.1021/acs.chemrev.2c00247
- Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
- Y. Zeng, P. Gordiichuk, T. Ichihara, G. Zhang, E. Sandoz-Rosado et al., Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602(7895), 91–95 (2022). https://doi.org/10.1038/s41586-021-04296-3
- H. Lv, Q. Pan, Y. Song, X.-X. Liu, T. Liu, A Review on Nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12(1), 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
- C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan et al., Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34(25), 2101474 (2022). https://doi.org/10.1002/adma.202101474
- Y. Shan, Y. Li, H. Pang, Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 30(23), 2001298 (2020). https://doi.org/10.1002/adfm.202001298
- H. Wu, Q. Liu, S. Guo, Composites of Graphene and LiFePO4 as cathode materials for lithium-ion battery: a mini-review. Nano-Micro Lett. 6(4), 316–326 (2014). https://doi.org/10.1007/s40820-014-0004-6
- R. Fang, K. Chen, L. Yin, Z. Sun, F. Li et al., The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31(9), 1800863 (2019). https://doi.org/10.1002/adma.201800863
- H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
- M. Li, T. Liu, X. Bi, Z. Chen, K. Amine et al., Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49(6), 1688–1705 (2020). https://doi.org/10.1039/c8cs00426a
- H. Liu, W.-H. Lai, Q. Yang, Y. Lei, C. Wu et al., Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries. Nano-Micro Lett. 13(1), 121 (2021). https://doi.org/10.1007/s40820-021-00648-w
- S. Chae, S.-H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59(1), 110–135 (2020). https://doi.org/10.1002/anie.201902085
- A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15(1), 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
- H. Xia, W. Zhang, S. Cao, X. Chen, A figure of merit for fast-charging Li-ion battery materials. ACS Nano 16(6), 8525–8530 (2022). https://doi.org/10.1021/acsnano.2c03922
- D. Ma, Z. Cao, A. Hu, Si-based anode materials for li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu et al., A review: enhanced anodes of Li/Na-Ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
- H. Li, W. Zhang, K. Sun, J. Guo, K. Yuan et al., Manganese-based materials for rechargeable batteries beyond lithium-ion. Adv. Energy Mater. 11(25), 2100867 (2021). https://doi.org/10.1002/aenm.202100867
- W. Ma, L.-W. Luo, P. Dong, P. Zheng, X. Huang et al., Toward high-performance dihydrophenazine-based conjugated microporous polymer cathodes for dual-ion batteries through donor-acceptor structural design. Adv. Funct. Mater. 31(45), 2105027 (2021). https://doi.org/10.1002/adfm.202105027
- Y. Huang, Z. Liang, H. Wang, A dual-ion battery has two sides: the effect of ion-pairs. Chem. Commun. 56(69), 10070–10073 (2020). https://doi.org/10.1039/d0cc03951a
- W. Rüdorff, U. Hofmann, Über Graphitsalze. Z. Anorg. Allg. Chem. 238(1), 1–50 (1938). https://doi.org/10.1002/zaac.19382380102
- F.P. McCullough, C.A. Levine, R.V. Snelgrove, Secondary battery, US Patent: US4830938, (1989)
- R.T. Carlin, C. Hugh, D. Long, J. Fuller, P.C. Trulove, dual intercalating molten electrolyte batteries. J. Electrochem. Soc. 141(7), L73–L76 (1994). https://doi.org/10.1149/1.2055041
- Q. Guo, K.-I. Kim, S. Li, A.M. Scida, P. Yu et al., Reversible insertion of I-Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6(2), 459–467 (2021). https://doi.org/10.1021/acsenergylett.0c02575
- I.A. Rodriguez-Perez, L. Zhang, J.M. Wrogemann, D.M. Driscoll, M.L. Sushko et al., Enabling natural graphite in high-voltage aqueous graphite||Zn metal dual-ion batteries. Adv. Energy Mater. 10(41), 2001256 (2020). https://doi.org/10.1002/aenm.202001256
- G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual- ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58(29), 9902–9906 (2019). https://doi.org/10.1002/anie.201901040
- H. Yu, C. Deng, H. Yan, M. Xia, X. Zhang et al., Cu3(PO4)2: novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13(1), 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
- C. Cui, Z. Wei, J. Xu, Y. Zhang, S. Liu et al., Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Mater. 15, 22–30 (2018). https://doi.org/10.1016/j.ensm.2018.03.011
- Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici et al., Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
- T. Placke, P. Bieker, S.F. Lux, O. Fromm, H.-W. Meyer et al., Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z. Phys. Chem. 226(5–6), 391–407 (2012). https://doi.org/10.1524/zpch.2012.0222
- X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588
- C.Y. Yang, J. Chen, X. Ji, T.P. Pollard, X.J. Lu et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569(7755), 245 (2019). https://doi.org/10.1038/s41586-019-1175-6
- M. Yu, Y. Sui, S.K. Sandstrom, C.-Y. Wu, H. Yang et al., Reversible copper cathode for nonaqueous dual-ion batteries. Angew. Chem. Int. Ed. 61(47), e202212191 (2022). https://doi.org/10.1002/anie.202212191
- Q. Xu, R. Ding, W. Shi, D. Ying, Y. Huang et al., Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J. Mater. Chem. A 7(14), 8315–8326 (2019). https://doi.org/10.1039/c9ta00493a
- H. Wu, Z. Ye, J. Zhu, S. Luo, L. Li et al., High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 14(44), 49774–49784 (2022). https://doi.org/10.1021/acsami.2c14206
- C. Wei, D. Gong, D. Xie, Y. Tang, The free-standing alloy strategy to improve the electrochemical performance of potassium-based dual-ion batteries. ACS Energy Lett. 6(12), 4336–4344 (2021). https://doi.org/10.1021/acsenergylett.1c02092
- H. Wu, L. Li, W. Yuan, Nano-cubic alpha-Fe2O3 anode for Li+/Na+ based dual-ion full battery. Chem. Eng. J. 442, 136259 (2022). https://doi.org/10.1016/j.cej.2022.136259
- W. Ma, L.-W. Luo, X. Huang, P. Dong, Y. Chen et al., Dihydrophenazine-based conjugated microporous polymer cathodes with enhanced electronic and ionic conductivities for high-performance aluminum dual-ion batteries. Adv. Energy Mater. 13(3), 2203253 (2023). https://doi.org/10.1002/aenm.202203253
- H. Lei, H. Wang, B. Cheng, F. Zhang, X. Liu et al., Anion-vacancy modified WSSe nanosheets on 3D cross-networked porous carbon skeleton for non-aqueous sodium-based dual-ion storage. Small (2022). https://doi.org/10.1002/smll.202206340
- H. Wu, T. Hu, S. Chang, L. Li, W. Yuan, Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl. Mater. Interfaces 13(37), 44254–44265 (2021). https://doi.org/10.1021/acsami.1c10836
- Y. Fang, W. Zheng, T. Hu, L. Li, W. Yuan, N-doped carbon-coated mixed-phase SnS-SnS2 anode with carbon nanofibers skeleton for improving dual-ion battery in concentrated electrolyte. Energy Technol. 10(12), 2200917 (2022). https://doi.org/10.1002/ente.202200917
- M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8(19), 1703320 (2018). https://doi.org/10.1002/aenm.201703320
- Y. Xu, J. Ruan, Y. Pang, H. Sun, C. Liang et al., Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 13(1), 14 (2020). https://doi.org/10.1007/s40820-020-00524-z
- Y. Sui, C. Liu, R.C. Masse, Z.G. Neale, M. Atif et al., Dual-ion batteries: the emerging alternative rechargeable batteries. Energy Storage Mater. 25, 1–32 (2020). https://doi.org/10.1016/j.ensm.2019.11.003
- J. Li, J. Fleetwood, W.B. Hawley, W. Kays, From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 122(1), 903–956 (2022). https://doi.org/10.1021/acs.chemrev.1c00565
- M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). https://doi.org/10.1021/cr500207g
- F. Ming, H. Liang, G. Huang, Z. Bayhan, H.N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 33(1), 2004039 (2021). https://doi.org/10.1002/adma.202004039
- Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11(2), 2000982 (2021). https://doi.org/10.1002/aenm.202000982
- B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
- C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32(17), 1908470 (2020). https://doi.org/10.1002/adma.201908470
- K.-H. Kwak, H.J. Suh, A. Kim, S. Park, J. Song et al., Reversible dual-ion battery via mesoporous Cu2O cathode in SO2-in-salt non-flammable electrolyte. Nano Energy 66, 104138 (2019). https://doi.org/10.1016/j.nanoen.2019.104138
- Q. Guo, K.-I. Kim, H. Jiang, L. Zhang, C. Zhang et al., A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 30(38), 2002825 (2020). https://doi.org/10.1002/adfm.202002825
- Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li et al., All carbon dual ion batteries. ACS Appl. Mater. Interfaces 10(42), 35978–35983 (2018). https://doi.org/10.1021/acsami.8b11824
- M.E. Speer, M. Kolek, J.J. Jassoy, J. Heine, M. Winter et al., Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51(83), 15261–15264 (2015). https://doi.org/10.1039/c5cc04932f
- Z. Sun, K. Zhu, P. Liu, X. Chen, H. Li et al., Fluorination treatment of conjugated protonated polyanilines for high-performance sodium dual-ion batteries. Angew. Chem. Int. Ed. 61(42), e202211866 (2022). https://doi.org/10.1002/anie.202211866
- D. Wu, F. Wang, H. Yang, Y. Xu, Y. Zhuang et al., Realizing rapid electrochemical kinetics of Mg2+ in Ti-Nb oxides through a Li+ intercalation activated strategy toward extremely fast charge/discharge dual-ion batteries. Energy Storage Mater. 52, 94–103 (2022). https://doi.org/10.1016/j.ensm.2022.07.042
- Y. Zhang, Y. An, B. Yin, J. Jiang, S. Dong et al., A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7(18), 11314–11320 (2019). https://doi.org/10.1039/c9ta00254e
- K. Zhu, T. Wu, S. Sun, W. van den Bergh, M. Stefik et al., Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 29, 60–70 (2020). https://doi.org/10.1016/j.ensm.2020.03.030
- Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan et al., Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 13(1), 663 (2022). https://doi.org/10.1038/s41467-022-28176-0
- J.M. Wrogemann, L. Haneke, T. Ramireddy, J.E. Frerichs, I. Sultana et al., Advanced dual-ion batteries with high-capacity negative electrodes incorporating black phosphorus. Adv. Sci. 9(20), 2201116 (2022). https://doi.org/10.1002/advs.202201116
- S. Zhang, M. Wang, Z. Zhou, Y. Tang, Multifunctional electrode design consisting of 3D porous separator modulated with patterned anode for high-performance dual-ion batteries. Adv. Funct. Mater. 27(39), 1703035 (2017). https://doi.org/10.1002/adfm.201703035
- C. Song, Y. Li, H. Li, T. He, Q. Guan et al., A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode. Nano Energy 60, 285–293 (2019). https://doi.org/10.1016/j.nanoen.2019.03.062
- X.X. Liu, C. Chen, D.J. Blackwood, N.W. Li, Q. He et al., Self-supported transition metal-based nanoarrays for efficient energy storage. Chem. Rec. 22(10), 202100294 (2022). https://doi.org/10.1002/tcr.202100294
- A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30(24), 2001440 (2020). https://doi.org/10.1002/adfm.202001440
- H.-G. Wang, Q. Li, Q. Wu, Z. Si, X. Lv et al., Conjugated microporous polymers with bipolar and double redox-active centers for high-performance dual-ion, organic symmetric battery. Adv. Energy Mater. 11(20), 2100381 (2021). https://doi.org/10.1002/aenm.202100381
- B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31(31), 2101066 (2021). https://doi.org/10.1002/adfm.202101066
- Y. Liu, W. Deng, Z. Meng, W.-Y. Wong, A tetrakis(terpyridine) ligand-based cobalt(ii) complex nanosheet as a stable dual-ion battery cathode material. Small 16(17), 1905204 (2020). https://doi.org/10.1002/smll.201905204
- X. Tong, F. Zhang, G. Chen, X. Liu, L. Gu et al., Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater. 8(6), 1701967 (2018). https://doi.org/10.1002/aenm.201701967
- T.T. Salunkhe, A.N. Kadam, W.G. Kidanu, S.-W. Lee, T.L. Nguyen et al., A diffusion encouraged core-shell heterostructured Co3Sn2@SnO2 anode towards emerging dual ion batteries with high energy density. J. Mater. Chem. A 9(26), 14991–15002 (2021). https://doi.org/10.1039/d1ta03496k
- L. Fan, Q. Liu, Z. Xu, B. Lu, An organic cathode for potassium dual-ion full battery. ACS Energy Lett. 2(7), 1614–1620 (2017). https://doi.org/10.1021/acsenergylett.7b00378
- Q. Li, K. Ma, C. Hong, Z. Yang, C. Qi et al., High-voltage K/Zn dual-ion battery with 100,000-cycles life using zero-strain ZnHCF cathode. Energy Storage Mater. 42, 715–722 (2021). https://doi.org/10.1016/j.ensm.2021.08.017
- K.-I. Kim, L. Tang, P. Mirabedini, A. Yokoi, J.M. Muratli et al., [LiCl2]- Superhalide: a new charge carrier for graphite cathode of dual-ion batteries. Adv. Funct. Mater. 32(23), 2112709 (2022). https://doi.org/10.1002/adfm.202112709
- C. Li, H. Yang, J. Xie, K. Wang, J. Li et al., Ferrocene-based mixed-valence metal-organic framework as an efficient and stable cathode for lithium-ion-based dual-ion battery. ACS Appl. Mater. Interfaces 12(29), 32719–32725 (2020). https://doi.org/10.1021/acsami.0c07729
- I.A. Rodriguez-Perez, X. Ji, Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2(8), 1762–1770 (2017). https://doi.org/10.1021/acsenergylett.7b00321
- C. Chen, N.W. Li, X.Y. Zhang, C.H. Zhang, J. Qiu et al., Interlayer-expanded titanate hierarchical hollow spheres embedded in carbon nanofibers for enhanced Na storage. Small 18(16), 2107890 (2022). https://doi.org/10.1002/smll.202107890
- L.S. Stolz, S.H. Hochstädt, S.R. Röser, M.R.H. Hansen, M.W. Winter et al., Single-ion versus dual-ion conducting electrolytes: the relevance of concentration polarization in solid-state batteries. ACS Appl. Mater. Interfaces 14(9), 11559–11566 (2022). https://doi.org/10.1021/acsami.2c00084
- M. Zhang, Y. Pei, W. Liu, R. Liang, Y.-P. Deng et al., Rational design of interlayer binding towards highly reversible anion intercalation cathode for dual ion batteries. Nano Energy 81, 105643 (2021). https://doi.org/10.1016/j.nanoen.2020.105643
- C. Chen, N.-W. Li, B. Wang, S. Yuan, L. Yu, Advanced pillared designs for two-dimensional materials in electrochemical energy storage. Nanoscale Adv. 2(12), 5496 (2020). https://doi.org/10.1039/d0na00593b
- C. Li, B. Lao, Z. Lia, H. Yin, Z. Yang et al., Dual-ion battery with MoS2 cathode. Energy Storage Mater. 32, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.07.033
- N. Xu, X. Ma, M. Wang, T. Qian, J. Liang et al., Stationary full Li-ion batteries with interlayer-expanded V6O13 cathodes and lithiated graphite anodes. Electrochim. Acta 203(10), 171–177 (2016). https://doi.org/10.1016/j.electacta.2016.04.044
- M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong et al., Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9(37), 1901663 (2019). https://doi.org/10.1002/aenm.201901663
- H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17(25), 2100902 (2021). https://doi.org/10.1002/smll.202100902
- Z. Zhang, X. Hu, Y. Zhou, S. Wang, L. Yao et al., Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry. J. Mater. Chem. A 6(18), 8244–8250 (2018). https://doi.org/10.1039/c8ta01525b
- W.-H. Li, Q.-L. Ning, X.-T. Xi, B.-H. Hou, J.-Z. Guo et al., Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries. Adv. Mater. 31(4), 1804766 (2019). https://doi.org/10.1002/adma.201804766
- S. Li, J.-H. Lee, S.M. Hwang, J.-B. Yoo, H. Kim et al., Natural activation of CuO to CuCl2 as a cathode material for dual-ion lithium metal batteries. Energy Storage Mater. 41, 466–474 (2021). https://doi.org/10.1016/j.ensm.2021.06.022
- F.C. Han, Y.X. Chen, J.Z. Zhang, J. Cai, X.H. Xia et al., Realizing ultralong-term cyclicability of 5 volt-cathode-material graphite flakes by uniformly comodified TiO2/carbon layer inducing stable cathode-electrolyte interphase. ACS Appl. Mater. Interfaces 13(8), 10101–10109 (2021). https://doi.org/10.1021/acsami.0c23070
- W.H. Li, Y.M. Li, J.L. Yang, X.L. Wu, An integrated design of electrodes for flexible dual-ion batteries. Chemsuschem 16(4), e202201252 (2022). https://doi.org/10.1002/cssc.202201252
- W.H. Li, Y.M. Li, X.F. Liu, Z.Y. Gu, H.J. Liang et al., All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201038
- A. Clarisza, H.K. Bezabh, S.-K. Jiang, C.-J. Huang, B.W. Olbasa et al., Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl. Mater. Interfaces 14(32), 36644–36655 (2022). https://doi.org/10.1021/acsami.2c09040
- T. Hosaka, A. Noda, K. Kubota, K. Chiguchi, Y. Matsuda et al., Superconcentrated NaFSA-KFSA aqueous electrolytes for 2 V-class dual-ion batteries. ACS Appl. Mater. Interfaces 14(20), 23507–23517 (2022). https://doi.org/10.1021/acsami.2c04289
- H. Jiang, X. Han, X. Du, Z. Chen, C. Lu et al., A PF6–permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery. Adv. Mater. 34(9), 2108665 (2022). https://doi.org/10.1002/adma.202108665
- A. Kim, H. Jung, J. Song, J. Lee, G. Jeong et al., Self-formulated Na-based dual-ion battery using nonflammable SO2-based inorganic liquid electrolyte. Small 17(9), 1902144 (2021). https://doi.org/10.1002/smll.201902144
- P. Qin, M. Wang, N. Li, H. Zhu, X. Ding et al., Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 29(17), 1606805 (2017). https://doi.org/10.1002/adma.201606805
- Y. Wang, Y. Zhang, S. Dong, W. Zhou, P.-K. Lee et al., An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries. Adv. Energy Mater. 12(19), 2103360 (2022). https://doi.org/10.1002/aenm.202103360
- Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode-electrolyte interface. Adv. Funct. Mater. 31(29), 2102360 (2021). https://doi.org/10.1002/adfm.202102360
- G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8(25), 1801219 (2018). https://doi.org/10.1002/aenm.201801219
- X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin et al., Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6(4), 902–918 (2020). https://doi.org/10.1016/j.chempr.2020.01.008
- A. Kotronia, H.D. Asfaw, C.-W. Tai, M. Hahlin, D. Brandell et al., Nature of the Cathode-electrolyte interface in highly concentrated electrolytes used in graphite dual-ion batteries. ACS Appl. Mater. Interfaces 13(3), 3867–3880 (2021). https://doi.org/10.1021/acsami.0c18586
- H. Li, T. Kurihara, D. Yang, M. Watanabe, T. Ishihara, A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Storage Mater. 38, 454–461 (2021). https://doi.org/10.1016/j.ensm.2021.03.029
- Z. Li, J. Liu, B. Niu, J. Li, F. Kang, A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte. Small 14(28), 1800745 (2018). https://doi.org/10.1002/smll.201800745
- X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141(15), 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
- L. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li et al., Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew. Chem. Int. Ed. 59(41), 17924–17930 (2020). https://doi.org/10.1002/anie.202006595
- X. Han, H. Zhang, T. Liu, X. Du, G. Xu et al., An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 V dual-ion batteries. J. Mater. Chem. A 8(3), 1451–1456 (2020). https://doi.org/10.1039/c9ta12359h
- Z. Xiong, P. Guo, Y. Yang, S. Yuan, N. Shang et al., A high-performance dual-ion battery-supercapacitor hybrid device based on LiCl in ion liquid dual-salt electrolyte. Adv. Energy Mater. 12(7), 2103226 (2022). https://doi.org/10.1002/aenm.202103226
- Z.A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn-graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/d1ta10122f
- Y. Zhang, J. Gui, T. Li, Z. Chen, S.-A. Cao et al., A novel Mg/Na hybrid battery based on Na2VTi(PO4)3 cathode: enlightening the Na-intercalation cathodes by a metallic Mg anode and a dual-ion Mg2+/Na+ electrolyte. Chem. Eng. J. 399, 125689 (2020). https://doi.org/10.1016/j.cej.2020.125689
- X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential approximate to 6.0 V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11(25), 2100151 (2021). https://doi.org/10.1002/aenm.202100151
- X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Advances and prospects of dual-ion batteries. Adv. Energy Mater. 11(46), 2102498 (2021). https://doi.org/10.1002/aenm.202102498
- Z. Cheng, L. Guo, Q. Dong, C. Wang, Q. Yao et al., Highly durable and ultrafast cycling of dual-ion batteries via in situ construction of cathode-electrolyte interphase. Adv. Energy Mater. 12(44), 2202253 (2022). https://doi.org/10.1002/aenm.202202253
- S. Ferrari, M. Falco, A.B. Munoz-Garcia, M. Bonomo, S. Brutti et al., Solid-state post Li metal ion batteries: a sustainable forthcoming reality? Adv. Energy Mater. 11(43), 2100785 (2021). https://doi.org/10.1002/aenm.202100785
- E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang et al., Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535
- S.-K. Jung, I. Hwang, D. Chang, K.-Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
- H. Li, N.L. Okamoto, T. Hatakeyama, Y. Kumagai, F. Oba et al., Fast diffusion of multivalent ions facilitated by concerted interactions in dual-ion battery systems. Adv. Energy Mater. 8(27), 1801475 (2018). https://doi.org/10.1002/aenm.201801475
- K.V. Kravchyk, M.V. Kovalenko, Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities. Adv. Energy Mater. 9(35), 1901749 (2019). https://doi.org/10.1002/aenm.201901749
- J. Gu, Z. Yuan, H. Wang, J. Shen, J. Ning et al., Local protonation of polyaniline induced by nitrogen-doped carbon skeleton towards ultra-stable Zn-organic batteries with a dual-ion insertion/extraction mechanism. Chem. Eng. J. 448, 137711 (2022). https://doi.org/10.1016/j.cej.2022.137711
- X. Han, G. Xu, Z. Zhang, X. Du, P. Han et al., An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 9(16), 1804022 (2019). https://doi.org/10.1002/aenm.201804022
- Y. Xu, J. Feng, H. Ma, J. Zhu, X. Zhang et al., Superior volumetric capability dual-ion batteries enabled by a microsize niobium tungsten oxide anode. Adv. Funct. Mater. 32(25), 2112223 (2022). https://doi.org/10.1002/adfm.202112223
- T. Yan, R. Ding, D. Ying, Y. Huang, Y. Huang et al., An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J. Mater. Chem. A 7(40), 22884–22888 (2019). https://doi.org/10.1039/c9ta09233a
- M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7(7), 1601963 (2017). https://doi.org/10.1002/aenm.201601963
- X. Ding, F. Zhang, B. Ji, Y. Liu, J. Li et al., Potassium dual-ion hybrid batteries with ultrahigh rate performance and excellent cycling stability. ACS Appl. Mater. Interfaces 10(49), 42294–42300 (2018). https://doi.org/10.1021/acsami.8b15193
- K.-I. Kim, Q. Guo, L. Tang, L. Zhu, C. Pan et al., Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries. Angew. Chem. Int. Ed. 59(45), 19924–19928 (2020). https://doi.org/10.1002/anie.202009172
- Y. Zhu, J. Yin, A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31(50), 2107523 (2021). https://doi.org/10.1002/adfm.202107523
- H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33(34), 2101857 (2021). https://doi.org/10.1002/adma.202101857
- J. Tu, C. Chang, M. Wang, W. Guan, S. Jiao, Stable and low-voltage-hysteresis zinc negative electrode promoting aluminum dual-ion batteries. Chem. Eng. J. 430, 132743 (2022). https://doi.org/10.1016/j.cej.2021.132743
- H.-G. Wang, H. Wang, Z. Si, Q. Li, Q. Wu et al., A bipolar and self-polymerized phthalocyanine complex for fast and tunable energy storage in dual-ion batteries. Angew. Chem. Int. Ed. 58(30), 10204–10208 (2019). https://doi.org/10.1002/anie.201904242
- K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60(12), 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
- Z. Sun, K. Zhu, P. Liu, H. Li, L. Jiao, Optimized cathode for high-energy sodium-ion based dual-ion full battery with fast kinetics. Adv. Funct. Mater. 31(51), 2107830 (2021). https://doi.org/10.1002/adfm.202107830
- C.-Y. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, An energy-dense solvent-free dual-ion battery. Adv. Funct. Mater. 30(39), 2003557 (2020). https://doi.org/10.1002/adfm.202003557
References
T. Liu, J. Liu, L. Li, L. Yu, J. Diao et al., Origin of structural degradation in Li-rich layered oxide cathode. Nature 606(7913), 305–312 (2022). https://doi.org/10.1038/s41586-022-04689-y
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
K. Lemoine, A. Hemon-Ribaud, M. Leblanc, J. Lhoste, J.-M. Tarascon et al., Fluorinated materials as positive electrodes for Li- and Na-Ion batteries. Chem. Rev. 122(18), 14405 (2022). https://doi.org/10.1021/acs.chemrev.2c00247
Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(11), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
Y. Zeng, P. Gordiichuk, T. Ichihara, G. Zhang, E. Sandoz-Rosado et al., Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602(7895), 91–95 (2022). https://doi.org/10.1038/s41586-021-04296-3
H. Lv, Q. Pan, Y. Song, X.-X. Liu, T. Liu, A Review on Nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12(1), 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan et al., Machine learning: an advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 34(25), 2101474 (2022). https://doi.org/10.1002/adma.202101474
Y. Shan, Y. Li, H. Pang, Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 30(23), 2001298 (2020). https://doi.org/10.1002/adfm.202001298
H. Wu, Q. Liu, S. Guo, Composites of Graphene and LiFePO4 as cathode materials for lithium-ion battery: a mini-review. Nano-Micro Lett. 6(4), 316–326 (2014). https://doi.org/10.1007/s40820-014-0004-6
R. Fang, K. Chen, L. Yin, Z. Sun, F. Li et al., The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 31(9), 1800863 (2019). https://doi.org/10.1002/adma.201800863
H. Liang, L. Wang, A. Wang, Y. Song, Y. Wu et al., Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 15(1), 42 (2023). https://doi.org/10.1007/s40820-022-00996-1
M. Li, T. Liu, X. Bi, Z. Chen, K. Amine et al., Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49(6), 1688–1705 (2020). https://doi.org/10.1039/c8cs00426a
H. Liu, W.-H. Lai, Q. Yang, Y. Lei, C. Wu et al., Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na–S batteries. Nano-Micro Lett. 13(1), 121 (2021). https://doi.org/10.1007/s40820-021-00648-w
S. Chae, S.-H. Choi, N. Kim, J. Sung, J. Cho, Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 59(1), 110–135 (2020). https://doi.org/10.1002/anie.201902085
A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15(1), 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
H. Xia, W. Zhang, S. Cao, X. Chen, A figure of merit for fast-charging Li-ion battery materials. ACS Nano 16(6), 8525–8530 (2022). https://doi.org/10.1021/acsnano.2c03922
D. Ma, Z. Cao, A. Hu, Si-based anode materials for li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
C. Wu, X. Tong, Y. Ai, D.-S. Liu, P. Yu et al., A review: enhanced anodes of Li/Na-Ion batteries based on yolk–shell structured nanomaterials. Nano-Micro Lett. 10(3), 40 (2018). https://doi.org/10.1007/s40820-018-0194-4
H. Li, W. Zhang, K. Sun, J. Guo, K. Yuan et al., Manganese-based materials for rechargeable batteries beyond lithium-ion. Adv. Energy Mater. 11(25), 2100867 (2021). https://doi.org/10.1002/aenm.202100867
W. Ma, L.-W. Luo, P. Dong, P. Zheng, X. Huang et al., Toward high-performance dihydrophenazine-based conjugated microporous polymer cathodes for dual-ion batteries through donor-acceptor structural design. Adv. Funct. Mater. 31(45), 2105027 (2021). https://doi.org/10.1002/adfm.202105027
Y. Huang, Z. Liang, H. Wang, A dual-ion battery has two sides: the effect of ion-pairs. Chem. Commun. 56(69), 10070–10073 (2020). https://doi.org/10.1039/d0cc03951a
W. Rüdorff, U. Hofmann, Über Graphitsalze. Z. Anorg. Allg. Chem. 238(1), 1–50 (1938). https://doi.org/10.1002/zaac.19382380102
F.P. McCullough, C.A. Levine, R.V. Snelgrove, Secondary battery, US Patent: US4830938, (1989)
R.T. Carlin, C. Hugh, D. Long, J. Fuller, P.C. Trulove, dual intercalating molten electrolyte batteries. J. Electrochem. Soc. 141(7), L73–L76 (1994). https://doi.org/10.1149/1.2055041
Q. Guo, K.-I. Kim, S. Li, A.M. Scida, P. Yu et al., Reversible insertion of I-Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6(2), 459–467 (2021). https://doi.org/10.1021/acsenergylett.0c02575
I.A. Rodriguez-Perez, L. Zhang, J.M. Wrogemann, D.M. Driscoll, M.L. Sushko et al., Enabling natural graphite in high-voltage aqueous graphite||Zn metal dual-ion batteries. Adv. Energy Mater. 10(41), 2001256 (2020). https://doi.org/10.1002/aenm.202001256
G. Dai, Y. He, Z. Niu, P. He, C. Zhang et al., A dual- ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules. Angew. Chem. Int. Ed. 58(29), 9902–9906 (2019). https://doi.org/10.1002/anie.201901040
H. Yu, C. Deng, H. Yan, M. Xia, X. Zhang et al., Cu3(PO4)2: novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13(1), 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
C. Cui, Z. Wei, J. Xu, Y. Zhang, S. Liu et al., Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Mater. 15, 22–30 (2018). https://doi.org/10.1016/j.ensm.2018.03.011
Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici et al., Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
T. Placke, P. Bieker, S.F. Lux, O. Fromm, H.-W. Meyer et al., Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z. Phys. Chem. 226(5–6), 391–407 (2012). https://doi.org/10.1524/zpch.2012.0222
X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6(11), 1502588 (2016). https://doi.org/10.1002/aenm.201502588
C.Y. Yang, J. Chen, X. Ji, T.P. Pollard, X.J. Lu et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569(7755), 245 (2019). https://doi.org/10.1038/s41586-019-1175-6
M. Yu, Y. Sui, S.K. Sandstrom, C.-Y. Wu, H. Yang et al., Reversible copper cathode for nonaqueous dual-ion batteries. Angew. Chem. Int. Ed. 61(47), e202212191 (2022). https://doi.org/10.1002/anie.202212191
Q. Xu, R. Ding, W. Shi, D. Ying, Y. Huang et al., Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J. Mater. Chem. A 7(14), 8315–8326 (2019). https://doi.org/10.1039/c9ta00493a
H. Wu, Z. Ye, J. Zhu, S. Luo, L. Li et al., High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 14(44), 49774–49784 (2022). https://doi.org/10.1021/acsami.2c14206
C. Wei, D. Gong, D. Xie, Y. Tang, The free-standing alloy strategy to improve the electrochemical performance of potassium-based dual-ion batteries. ACS Energy Lett. 6(12), 4336–4344 (2021). https://doi.org/10.1021/acsenergylett.1c02092
H. Wu, L. Li, W. Yuan, Nano-cubic alpha-Fe2O3 anode for Li+/Na+ based dual-ion full battery. Chem. Eng. J. 442, 136259 (2022). https://doi.org/10.1016/j.cej.2022.136259
W. Ma, L.-W. Luo, X. Huang, P. Dong, Y. Chen et al., Dihydrophenazine-based conjugated microporous polymer cathodes with enhanced electronic and ionic conductivities for high-performance aluminum dual-ion batteries. Adv. Energy Mater. 13(3), 2203253 (2023). https://doi.org/10.1002/aenm.202203253
H. Lei, H. Wang, B. Cheng, F. Zhang, X. Liu et al., Anion-vacancy modified WSSe nanosheets on 3D cross-networked porous carbon skeleton for non-aqueous sodium-based dual-ion storage. Small (2022). https://doi.org/10.1002/smll.202206340
H. Wu, T. Hu, S. Chang, L. Li, W. Yuan, Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl. Mater. Interfaces 13(37), 44254–44265 (2021). https://doi.org/10.1021/acsami.1c10836
Y. Fang, W. Zheng, T. Hu, L. Li, W. Yuan, N-doped carbon-coated mixed-phase SnS-SnS2 anode with carbon nanofibers skeleton for improving dual-ion battery in concentrated electrolyte. Energy Technol. 10(12), 2200917 (2022). https://doi.org/10.1002/ente.202200917
M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8(19), 1703320 (2018). https://doi.org/10.1002/aenm.201703320
Y. Xu, J. Ruan, Y. Pang, H. Sun, C. Liang et al., Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 13(1), 14 (2020). https://doi.org/10.1007/s40820-020-00524-z
Y. Sui, C. Liu, R.C. Masse, Z.G. Neale, M. Atif et al., Dual-ion batteries: the emerging alternative rechargeable batteries. Energy Storage Mater. 25, 1–32 (2020). https://doi.org/10.1016/j.ensm.2019.11.003
J. Li, J. Fleetwood, W.B. Hawley, W. Kays, From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 122(1), 903–956 (2022). https://doi.org/10.1021/acs.chemrev.1c00565
M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). https://doi.org/10.1021/cr500207g
F. Ming, H. Liang, G. Huang, Z. Bayhan, H.N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 33(1), 2004039 (2021). https://doi.org/10.1002/adma.202004039
Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11(2), 2000982 (2021). https://doi.org/10.1002/aenm.202000982
B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017). https://doi.org/10.1002/adma.201700519
C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie et al., Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32(17), 1908470 (2020). https://doi.org/10.1002/adma.201908470
K.-H. Kwak, H.J. Suh, A. Kim, S. Park, J. Song et al., Reversible dual-ion battery via mesoporous Cu2O cathode in SO2-in-salt non-flammable electrolyte. Nano Energy 66, 104138 (2019). https://doi.org/10.1016/j.nanoen.2019.104138
Q. Guo, K.-I. Kim, H. Jiang, L. Zhang, C. Zhang et al., A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 30(38), 2002825 (2020). https://doi.org/10.1002/adfm.202002825
Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li et al., All carbon dual ion batteries. ACS Appl. Mater. Interfaces 10(42), 35978–35983 (2018). https://doi.org/10.1021/acsami.8b11824
M.E. Speer, M. Kolek, J.J. Jassoy, J. Heine, M. Winter et al., Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51(83), 15261–15264 (2015). https://doi.org/10.1039/c5cc04932f
Z. Sun, K. Zhu, P. Liu, X. Chen, H. Li et al., Fluorination treatment of conjugated protonated polyanilines for high-performance sodium dual-ion batteries. Angew. Chem. Int. Ed. 61(42), e202211866 (2022). https://doi.org/10.1002/anie.202211866
D. Wu, F. Wang, H. Yang, Y. Xu, Y. Zhuang et al., Realizing rapid electrochemical kinetics of Mg2+ in Ti-Nb oxides through a Li+ intercalation activated strategy toward extremely fast charge/discharge dual-ion batteries. Energy Storage Mater. 52, 94–103 (2022). https://doi.org/10.1016/j.ensm.2022.07.042
Y. Zhang, Y. An, B. Yin, J. Jiang, S. Dong et al., A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7(18), 11314–11320 (2019). https://doi.org/10.1039/c9ta00254e
K. Zhu, T. Wu, S. Sun, W. van den Bergh, M. Stefik et al., Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 29, 60–70 (2020). https://doi.org/10.1016/j.ensm.2020.03.030
Y. Liu, X. Hu, J. Li, G. Zhong, J. Yuan et al., Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat. Commun. 13(1), 663 (2022). https://doi.org/10.1038/s41467-022-28176-0
J.M. Wrogemann, L. Haneke, T. Ramireddy, J.E. Frerichs, I. Sultana et al., Advanced dual-ion batteries with high-capacity negative electrodes incorporating black phosphorus. Adv. Sci. 9(20), 2201116 (2022). https://doi.org/10.1002/advs.202201116
S. Zhang, M. Wang, Z. Zhou, Y. Tang, Multifunctional electrode design consisting of 3D porous separator modulated with patterned anode for high-performance dual-ion batteries. Adv. Funct. Mater. 27(39), 1703035 (2017). https://doi.org/10.1002/adfm.201703035
C. Song, Y. Li, H. Li, T. He, Q. Guan et al., A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode. Nano Energy 60, 285–293 (2019). https://doi.org/10.1016/j.nanoen.2019.03.062
X.X. Liu, C. Chen, D.J. Blackwood, N.W. Li, Q. He et al., Self-supported transition metal-based nanoarrays for efficient energy storage. Chem. Rec. 22(10), 202100294 (2022). https://doi.org/10.1002/tcr.202100294
A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv. Funct. Mater. 30(24), 2001440 (2020). https://doi.org/10.1002/adfm.202001440
H.-G. Wang, Q. Li, Q. Wu, Z. Si, X. Lv et al., Conjugated microporous polymers with bipolar and double redox-active centers for high-performance dual-ion, organic symmetric battery. Adv. Energy Mater. 11(20), 2100381 (2021). https://doi.org/10.1002/aenm.202100381
B. Liu, Y. Liu, X. Hu, G. Zhong, J. Li et al., N-doped carbon modifying MoSSe nanosheets on hollow cubic carbon for high-performance anodes of sodium-based dual-ion batteries. Adv. Funct. Mater. 31(31), 2101066 (2021). https://doi.org/10.1002/adfm.202101066
Y. Liu, W. Deng, Z. Meng, W.-Y. Wong, A tetrakis(terpyridine) ligand-based cobalt(ii) complex nanosheet as a stable dual-ion battery cathode material. Small 16(17), 1905204 (2020). https://doi.org/10.1002/smll.201905204
X. Tong, F. Zhang, G. Chen, X. Liu, L. Gu et al., Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater. 8(6), 1701967 (2018). https://doi.org/10.1002/aenm.201701967
T.T. Salunkhe, A.N. Kadam, W.G. Kidanu, S.-W. Lee, T.L. Nguyen et al., A diffusion encouraged core-shell heterostructured Co3Sn2@SnO2 anode towards emerging dual ion batteries with high energy density. J. Mater. Chem. A 9(26), 14991–15002 (2021). https://doi.org/10.1039/d1ta03496k
L. Fan, Q. Liu, Z. Xu, B. Lu, An organic cathode for potassium dual-ion full battery. ACS Energy Lett. 2(7), 1614–1620 (2017). https://doi.org/10.1021/acsenergylett.7b00378
Q. Li, K. Ma, C. Hong, Z. Yang, C. Qi et al., High-voltage K/Zn dual-ion battery with 100,000-cycles life using zero-strain ZnHCF cathode. Energy Storage Mater. 42, 715–722 (2021). https://doi.org/10.1016/j.ensm.2021.08.017
K.-I. Kim, L. Tang, P. Mirabedini, A. Yokoi, J.M. Muratli et al., [LiCl2]- Superhalide: a new charge carrier for graphite cathode of dual-ion batteries. Adv. Funct. Mater. 32(23), 2112709 (2022). https://doi.org/10.1002/adfm.202112709
C. Li, H. Yang, J. Xie, K. Wang, J. Li et al., Ferrocene-based mixed-valence metal-organic framework as an efficient and stable cathode for lithium-ion-based dual-ion battery. ACS Appl. Mater. Interfaces 12(29), 32719–32725 (2020). https://doi.org/10.1021/acsami.0c07729
I.A. Rodriguez-Perez, X. Ji, Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2(8), 1762–1770 (2017). https://doi.org/10.1021/acsenergylett.7b00321
C. Chen, N.W. Li, X.Y. Zhang, C.H. Zhang, J. Qiu et al., Interlayer-expanded titanate hierarchical hollow spheres embedded in carbon nanofibers for enhanced Na storage. Small 18(16), 2107890 (2022). https://doi.org/10.1002/smll.202107890
L.S. Stolz, S.H. Hochstädt, S.R. Röser, M.R.H. Hansen, M.W. Winter et al., Single-ion versus dual-ion conducting electrolytes: the relevance of concentration polarization in solid-state batteries. ACS Appl. Mater. Interfaces 14(9), 11559–11566 (2022). https://doi.org/10.1021/acsami.2c00084
M. Zhang, Y. Pei, W. Liu, R. Liang, Y.-P. Deng et al., Rational design of interlayer binding towards highly reversible anion intercalation cathode for dual ion batteries. Nano Energy 81, 105643 (2021). https://doi.org/10.1016/j.nanoen.2020.105643
C. Chen, N.-W. Li, B. Wang, S. Yuan, L. Yu, Advanced pillared designs for two-dimensional materials in electrochemical energy storage. Nanoscale Adv. 2(12), 5496 (2020). https://doi.org/10.1039/d0na00593b
C. Li, B. Lao, Z. Lia, H. Yin, Z. Yang et al., Dual-ion battery with MoS2 cathode. Energy Storage Mater. 32, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.07.033
N. Xu, X. Ma, M. Wang, T. Qian, J. Liang et al., Stationary full Li-ion batteries with interlayer-expanded V6O13 cathodes and lithiated graphite anodes. Electrochim. Acta 203(10), 171–177 (2016). https://doi.org/10.1016/j.electacta.2016.04.044
M. Zhang, M. Shoaib, H. Fei, T. Wang, J. Zhong et al., Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 9(37), 1901663 (2019). https://doi.org/10.1002/aenm.201901663
H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17(25), 2100902 (2021). https://doi.org/10.1002/smll.202100902
Z. Zhang, X. Hu, Y. Zhou, S. Wang, L. Yao et al., Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry. J. Mater. Chem. A 6(18), 8244–8250 (2018). https://doi.org/10.1039/c8ta01525b
W.-H. Li, Q.-L. Ning, X.-T. Xi, B.-H. Hou, J.-Z. Guo et al., Highly improved cycling stability of anion de-/intercalation in the graphite cathode for dual-ion batteries. Adv. Mater. 31(4), 1804766 (2019). https://doi.org/10.1002/adma.201804766
S. Li, J.-H. Lee, S.M. Hwang, J.-B. Yoo, H. Kim et al., Natural activation of CuO to CuCl2 as a cathode material for dual-ion lithium metal batteries. Energy Storage Mater. 41, 466–474 (2021). https://doi.org/10.1016/j.ensm.2021.06.022
F.C. Han, Y.X. Chen, J.Z. Zhang, J. Cai, X.H. Xia et al., Realizing ultralong-term cyclicability of 5 volt-cathode-material graphite flakes by uniformly comodified TiO2/carbon layer inducing stable cathode-electrolyte interphase. ACS Appl. Mater. Interfaces 13(8), 10101–10109 (2021). https://doi.org/10.1021/acsami.0c23070
W.H. Li, Y.M. Li, J.L. Yang, X.L. Wu, An integrated design of electrodes for flexible dual-ion batteries. Chemsuschem 16(4), e202201252 (2022). https://doi.org/10.1002/cssc.202201252
W.H. Li, Y.M. Li, X.F. Liu, Z.Y. Gu, H.J. Liang et al., All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201038
A. Clarisza, H.K. Bezabh, S.-K. Jiang, C.-J. Huang, B.W. Olbasa et al., Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl. Mater. Interfaces 14(32), 36644–36655 (2022). https://doi.org/10.1021/acsami.2c09040
T. Hosaka, A. Noda, K. Kubota, K. Chiguchi, Y. Matsuda et al., Superconcentrated NaFSA-KFSA aqueous electrolytes for 2 V-class dual-ion batteries. ACS Appl. Mater. Interfaces 14(20), 23507–23517 (2022). https://doi.org/10.1021/acsami.2c04289
H. Jiang, X. Han, X. Du, Z. Chen, C. Lu et al., A PF6–permselective polymer electrolyte with anion solvation regulation enabling long-cycle dual-ion battery. Adv. Mater. 34(9), 2108665 (2022). https://doi.org/10.1002/adma.202108665
A. Kim, H. Jung, J. Song, J. Lee, G. Jeong et al., Self-formulated Na-based dual-ion battery using nonflammable SO2-based inorganic liquid electrolyte. Small 17(9), 1902144 (2021). https://doi.org/10.1002/smll.201902144
P. Qin, M. Wang, N. Li, H. Zhu, X. Ding et al., Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 29(17), 1606805 (2017). https://doi.org/10.1002/adma.201606805
Y. Wang, Y. Zhang, S. Dong, W. Zhou, P.-K. Lee et al., An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries. Adv. Energy Mater. 12(19), 2103360 (2022). https://doi.org/10.1002/aenm.202103360
Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang et al., Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode-electrolyte interface. Adv. Funct. Mater. 31(29), 2102360 (2021). https://doi.org/10.1002/adfm.202102360
G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8(25), 1801219 (2018). https://doi.org/10.1002/aenm.201801219
X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin et al., Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6(4), 902–918 (2020). https://doi.org/10.1016/j.chempr.2020.01.008
A. Kotronia, H.D. Asfaw, C.-W. Tai, M. Hahlin, D. Brandell et al., Nature of the Cathode-electrolyte interface in highly concentrated electrolytes used in graphite dual-ion batteries. ACS Appl. Mater. Interfaces 13(3), 3867–3880 (2021). https://doi.org/10.1021/acsami.0c18586
H. Li, T. Kurihara, D. Yang, M. Watanabe, T. Ishihara, A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Storage Mater. 38, 454–461 (2021). https://doi.org/10.1016/j.ensm.2021.03.029
Z. Li, J. Liu, B. Niu, J. Li, F. Kang, A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte. Small 14(28), 1800745 (2018). https://doi.org/10.1002/smll.201800745
X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141(15), 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
L. Xiang, X. Ou, X. Wang, Z. Zhou, X. Li et al., Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew. Chem. Int. Ed. 59(41), 17924–17930 (2020). https://doi.org/10.1002/anie.202006595
X. Han, H. Zhang, T. Liu, X. Du, G. Xu et al., An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 V dual-ion batteries. J. Mater. Chem. A 8(3), 1451–1456 (2020). https://doi.org/10.1039/c9ta12359h
Z. Xiong, P. Guo, Y. Yang, S. Yuan, N. Shang et al., A high-performance dual-ion battery-supercapacitor hybrid device based on LiCl in ion liquid dual-salt electrolyte. Adv. Energy Mater. 12(7), 2103226 (2022). https://doi.org/10.1002/aenm.202103226
Z.A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn-graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/d1ta10122f
Y. Zhang, J. Gui, T. Li, Z. Chen, S.-A. Cao et al., A novel Mg/Na hybrid battery based on Na2VTi(PO4)3 cathode: enlightening the Na-intercalation cathodes by a metallic Mg anode and a dual-ion Mg2+/Na+ electrolyte. Chem. Eng. J. 399, 125689 (2020). https://doi.org/10.1016/j.cej.2020.125689
X. Tong, X. Ou, N. Wu, H. Wang, J. Li et al., High oxidation potential approximate to 6.0 V of concentrated electrolyte toward high-performance dual-ion battery. Adv. Energy Mater. 11(25), 2100151 (2021). https://doi.org/10.1002/aenm.202100151
X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Advances and prospects of dual-ion batteries. Adv. Energy Mater. 11(46), 2102498 (2021). https://doi.org/10.1002/aenm.202102498
Z. Cheng, L. Guo, Q. Dong, C. Wang, Q. Yao et al., Highly durable and ultrafast cycling of dual-ion batteries via in situ construction of cathode-electrolyte interphase. Adv. Energy Mater. 12(44), 2202253 (2022). https://doi.org/10.1002/aenm.202202253
S. Ferrari, M. Falco, A.B. Munoz-Garcia, M. Bonomo, S. Brutti et al., Solid-state post Li metal ion batteries: a sustainable forthcoming reality? Adv. Energy Mater. 11(43), 2100785 (2021). https://doi.org/10.1002/aenm.202100785
E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang et al., Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 120(14), 7020–7063 (2020). https://doi.org/10.1021/acs.chemrev.9b00535
S.-K. Jung, I. Hwang, D. Chang, K.-Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
H. Li, N.L. Okamoto, T. Hatakeyama, Y. Kumagai, F. Oba et al., Fast diffusion of multivalent ions facilitated by concerted interactions in dual-ion battery systems. Adv. Energy Mater. 8(27), 1801475 (2018). https://doi.org/10.1002/aenm.201801475
K.V. Kravchyk, M.V. Kovalenko, Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities. Adv. Energy Mater. 9(35), 1901749 (2019). https://doi.org/10.1002/aenm.201901749
J. Gu, Z. Yuan, H. Wang, J. Shen, J. Ning et al., Local protonation of polyaniline induced by nitrogen-doped carbon skeleton towards ultra-stable Zn-organic batteries with a dual-ion insertion/extraction mechanism. Chem. Eng. J. 448, 137711 (2022). https://doi.org/10.1016/j.cej.2022.137711
X. Han, G. Xu, Z. Zhang, X. Du, P. Han et al., An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv. Energy Mater. 9(16), 1804022 (2019). https://doi.org/10.1002/aenm.201804022
Y. Xu, J. Feng, H. Ma, J. Zhu, X. Zhang et al., Superior volumetric capability dual-ion batteries enabled by a microsize niobium tungsten oxide anode. Adv. Funct. Mater. 32(25), 2112223 (2022). https://doi.org/10.1002/adfm.202112223
T. Yan, R. Ding, D. Ying, Y. Huang, Y. Huang et al., An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J. Mater. Chem. A 7(40), 22884–22888 (2019). https://doi.org/10.1039/c9ta09233a
M. Sheng, F. Zhang, B. Ji, X. Tong, Y. Tang, A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7(7), 1601963 (2017). https://doi.org/10.1002/aenm.201601963
X. Ding, F. Zhang, B. Ji, Y. Liu, J. Li et al., Potassium dual-ion hybrid batteries with ultrahigh rate performance and excellent cycling stability. ACS Appl. Mater. Interfaces 10(49), 42294–42300 (2018). https://doi.org/10.1021/acsami.8b15193
K.-I. Kim, Q. Guo, L. Tang, L. Zhu, C. Pan et al., Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries. Angew. Chem. Int. Ed. 59(45), 19924–19928 (2020). https://doi.org/10.1002/anie.202009172
Y. Zhu, J. Yin, A.-H. Emwas, O.F. Mohammed, H.N. Alshareef, An aqueous Mg2+-based dual-ion battery with high power density. Adv. Funct. Mater. 31(50), 2107523 (2021). https://doi.org/10.1002/adfm.202107523
H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33(34), 2101857 (2021). https://doi.org/10.1002/adma.202101857
J. Tu, C. Chang, M. Wang, W. Guan, S. Jiao, Stable and low-voltage-hysteresis zinc negative electrode promoting aluminum dual-ion batteries. Chem. Eng. J. 430, 132743 (2022). https://doi.org/10.1016/j.cej.2021.132743
H.-G. Wang, H. Wang, Z. Si, Q. Li, Q. Wu et al., A bipolar and self-polymerized phthalocyanine complex for fast and tunable energy storage in dual-ion batteries. Angew. Chem. Int. Ed. 58(30), 10204–10208 (2019). https://doi.org/10.1002/anie.201904242
K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang et al., Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem. Int. Ed. 60(12), 6326–6332 (2021). https://doi.org/10.1002/anie.202016233
Z. Sun, K. Zhu, P. Liu, H. Li, L. Jiao, Optimized cathode for high-energy sodium-ion based dual-ion full battery with fast kinetics. Adv. Funct. Mater. 31(51), 2107830 (2021). https://doi.org/10.1002/adfm.202107830
C.-Y. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, An energy-dense solvent-free dual-ion battery. Adv. Funct. Mater. 30(39), 2003557 (2020). https://doi.org/10.1002/adfm.202003557