Metal–Organic Frameworks: Multifunctional Materials for High-Performance Zn-Halogen Batteries
Corresponding Author: Syed Shoaib Ahmad Shah
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 238
Abstract
Aqueous zinc batteries are gaining attention as promising alternatives to Li-ion systems, owing to the increased need for safe and cost-effective energy storage. Aqueous Zn-halogen batteries are particularly important because of their low cost and the abundance of precursors. However, critical challenges, such as the shuttle effect, sluggish redox kinetics, and dendrite growth, impede their practical development. Metal–organic frameworks (MOFs) with high porosity, ease of functionalization, and stability offer a multifunctional approach to overcome these limitations. This review systematically examines the advancements in MOF-based Zn-halogen batteries, focusing on their roles in different components of the battery, including the cathode, anode, and separator. This review also highlights the key design strategies for MOF-based materials and then examines the structure–performance relationships through advanced characterization and computational insights. The remaining challenges and future directions are also outlined. Overall, this review provides a roadmap for developing advanced MOF-based Zn-halogen batteries that combine high energy density and long-term durability for next-generation energy storage applications.
Highlights:
1 This review comprehensively summarizes the application of metal-organic frameworks (MOFs) in aqueous Zn-halogen batteries, covering their roles as cathodes, anodes, and separators.
2 The mechanism of MOFs in suppressing the shuttle effect via nanoconfinement, inhibiting dendrite growth by regulating ion flux, and enhancing redox kinetics through catalytic sites are thoroughly discussed.
3 The structure-performance relationships of MOFs in Zn-halogen batteries are elucidated, linking their porosity, metal nodes, and linker functionalities to overall battery performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Nyamathulla, C. Dhanamjayulu, A review of battery energy storage systems and advanced battery management system for different applications: challenges and recommendations. J. Energy Storage 86, 111179 (2024). https://doi.org/10.1016/j.est.2024.111179
- Y. Wang, H. Xiang, Y.-Y. Soo, X. Fan, Aging mechanisms, prognostics and management for lithium-ion batteries: recent advances. Renew. Sustain. Energy Rev. 207, 114915 (2025). https://doi.org/10.1016/j.rser.2024.114915
- T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7(7), 2942–2964 (2019). https://doi.org/10.1039/c8ta10513h
- N. Dong, F. Zhang, H. Pan, Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem. Sci. 13(28), 8243–8252 (2022). https://doi.org/10.1039/d2sc01818g
- G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin et al., Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34(5), 2301291 (2024). https://doi.org/10.1002/adfm.202301291
- H. Yan, S. Li, J. Zhong, B. Li, An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 16(1), 15 (2023). https://doi.org/10.1007/s40820-023-01227-x
- C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Letters 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- B. Wang, C. Guan, Q. Zhou, Y. Wang, Y. Zhu et al., Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous zinc ion batteries. Nano-Micro Lett. 17(1), 314 (2025). https://doi.org/10.1007/s40820-025-01826-w
- T. Wang, Y. Zhang, J. You, F. Hu, Recent progress in aqueous zinc-ion batteries: from fundamentalscience to structure design. Chem. Rec. 23(5), e202200309 (2023). https://doi.org/10.1002/tcr.202200309
- Y. Yan, Y. Zhang, Y. Wu, Z. Wang, A. Mathur et al., A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries. ACS Appl. Energy Mater. 1(11), 6345–6351 (2018). https://doi.org/10.1021/acsaem.8b01321
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2021). https://doi.org/10.1002/aenm.202002529
- J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 131(23), 7905–7910 (2019). https://doi.org/10.1002/ange.201904174
- W. Lv, Z. Shen, X. Li, J. Meng, W. Yang et al., Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 16(1), 109 (2024). https://doi.org/10.1007/s40820-024-01334-3
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- Z. Fang, C. Liu, X. Li, L. Peng, W. Ding et al., Systematic modification of MoO3-based cathode by the intercalation engineering for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 33(7), 2210010 (2023). https://doi.org/10.1002/adfm.202210010
- J. Liu, Z. Shen, C.-Z. Lu, Research progress of Prussian blue and its analogues for cathodes of aqueous zinc ion batteries. J. Mater. Chem. A 12(5), 2647–2672 (2024). https://doi.org/10.1039/D3TA06641J
- R. Kumar, J. Shin, L. Yin, J.-M. You, Y.S. Meng et al., All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv. Energy Mater. 7(8), 1602096 (2017). https://doi.org/10.1002/aenm.201602096
- R. Chen, P. Shi, Y. Gong, C. Yu, L. Hua et al., Solution-processable design of fiber-shaped wearable Zn// Ni(OH)2 battery. Energy Technol. 6(12), 2326–2332 (2018). https://doi.org/10.1002/ente.201800318
- X.-W. Lv, Z. Wang, Z. Lai, Y. Liu, T. Ma et al., Rechargeable zinc–air batteries: advances, challenges, and prospects. Small 20(4), 2306396 (2024). https://doi.org/10.1002/smll.202306396
- T. Najam, M. Wang, M.S. Javed, S. Ibraheem, Z. Song et al., Nano-engineering of Prussian blue analogues to core-shell architectures: enhanced catalytic activity for zinc-air battery. J. Colloid Interface Sci. 578, 89–95 (2020). https://doi.org/10.1016/j.jcis.2020.05.071
- T. Najam, S.S. Ahmad Shah, W. Ding, J. Deng, Z. Wei, Enhancing by nano-engineering: hierarchical architectures as oxygen reduction/evolution reactions for zinc-air batteries. J. Power. Sources 438, 226919 (2019). https://doi.org/10.1016/j.jpowsour.2019.226919
- M. Ulaganathan, Zinc–iron (Zn–Fe) redox flow battery single to stack cells: a futuristic solution for high energy storage off-grid applications. Energy Adv. 3(12), 2861–2876 (2024). https://doi.org/10.1039/D4YA00358F
- N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc-bromine rechargeable batteries: from device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15(1), 209 (2023). https://doi.org/10.1007/s40820-023-01174-7
- J. Zhang, M. Shi, X. Ren, C. Wu, S. Hu et al., Low-cost, high-voltage and durable aqueous zinc-chlorine battery enabled by condensed choline chloride electrolytes. J. Energy Storage 88, 111604 (2024). https://doi.org/10.1016/j.est.2024.111604
- W. Li, H. Xu, S. Ke, H. Zhang, H. Chen et al., Integrating electric ambipolar effect for high-performance zinc bromide batteries. Nano-Micro Lett. 17(1), 143 (2025). https://doi.org/10.1007/s40820-024-01636-6
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song et al., Boosting Zn||I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
- X. Kong, J. Zhang, X. Zhang, Z. Wang, D. Wang, Boosting reversible four-electron redox in aqueous Zn-iodine batteries with two halogen ionic additives and a N, F codoped carbon cathode. ACS Appl. Energy Mater. 8(1), 601–610 (2025). https://doi.org/10.1021/acsaem.4c02898
- J. Guo, G. Ma, G. Liu, C. Dai, Z. Lin, Ti2CTx MXene cathode host for enhanced zinc-bromine battery performance. Adv. Energy Mater. 14(20), 2304516 (2024). https://doi.org/10.1002/aenm.202304516
- N. Chen, W. Wang, Y. Ma, M. Chuai, X. Zheng et al., Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small Methods 8(6), e2201553 (2024). https://doi.org/10.1002/smtd.202201553
- M. Rana, N. Alghamdi, X. Peng, Y. Huang, B. Wang et al., Scientific issues of zinc-bromine flow batteries and mitigation strategies. Exploration 3(6), 20220073 (2023). https://doi.org/10.1002/EXP.20220073
- A. Mahmood, Z. Zheng, Y. Chen, Zinc-bromine batteries: challenges, prospective solutions, and future. Adv. Sci. 11(3), 2305561 (2024). https://doi.org/10.1002/advs.202305561
- Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14(1), 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
- D.-Q. Cai, H. Xu, T. Xue, J.-L. Yang, H.J. Fan, A synchronous strategy to Zn-iodine battery by polycationic long-chain molecules. Nano-Micro Lett. 18(1), 3 (2025). https://doi.org/10.1007/s40820-025-01854-6
- Y. Sui, M. Lei, M. Yu, A. Scida, S.K. Sandstrom et al., Reversible Cl2/Cl– redox for low-temperature aqueous batteries. ACS Energy Lett. 8(2), 988–994 (2023). https://doi.org/10.1021/acsenergylett.2c02757
- C. Wang, G. Gao, Y. Su, J. Xie, D. He et al., High-voltage and dendrite-free zinc-iodine flow battery. Nat. Commun. 15(1), 6234 (2024). https://doi.org/10.1038/s41467-024-50543-2
- H. Deng, X. Wang, Z. Wei, W. Liao, S. Li et al., Improved static membrane-free zinc-bromine batteries by an efficient bromine complexing agent. J. Energy Storage 81, 110449 (2024). https://doi.org/10.1016/j.est.2024.110449
- L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng et al., A high-performance aqueous zinc-bromine static battery. iScience 23(8), 101348 (2020). https://doi.org/10.1016/j.isci.2020.101348
- H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 32(38), e2004240 (2020). https://doi.org/10.1002/adma.202004240
- Z. Yan, Q.-H. Yang, C. Yang, Elemental halogen cathodes for aqueous zinc batteries: mechanisms, challenges and strategies. J. Mater. Chem. A 12(37), 24746–24760 (2024). https://doi.org/10.1039/D4TA05108D
- L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007
- Y. Li, X. Guo, S. Wang, W. Sun, D. Yu et al., Nano/micro metal-organic framework-derived porous carbon with rich nitrogen sites as efficient iodine hosts for aqueous zinc-iodine batteries. Adv. Sci. 12(26), 2502563 (2025). https://doi.org/10.1002/advs.202502563
- H. Xing, Y. Han, X. Huang, C. Zhang, M. Lyu et al., Recent progress of low-dimensional metal-organic frameworks for aqueous zinc-based batteries. Small 20(36), e2402998 (2024). https://doi.org/10.1002/smll.202402998
- N. Sun, S.S. Ahmad Shah, Z. Lin, Y.-Z. Zheng, L. Jiao et al., MOF-based electrocatalysts: an overview from the perspective of structural design. Chem. Rev. 125(5), 2703–2792 (2025). https://doi.org/10.1021/acs.chemrev.4c00664
- R. Naresh, K. Satchidhanandam, K.R. Ilancheran, B. Ambrose, M. Kathiresan et al., Bimetallic metal–organic framework: an efficient electrocatalyst for bromine-based flow batteries. J. Mater. Chem. A 12(24), 14669–14678 (2024). https://doi.org/10.1039/d4ta02590c
- J. Li, Z. Xu, M. Wu, Reaction kinetics and mass transfer synergistically enhanced electrodes for high-performance zinc-bromine flow batteries. ACS Appl. Mater. Interfaces 17(17), 25206–25215 (2025). https://doi.org/10.1021/acsami.4c22329
- H. Wei, G. Qu, X. Zhang, B. Ren, S. Li et al., Boosting aqueous non-flow zinc–bromine batteries with a two-dimensional metal–organic framework host: an adsorption-catalysis approach. Energy Environ. Sci. 16(9), 4073–4083 (2023). https://doi.org/10.1039/D3EE01639K
- Q. Liu, S. Wang, J. Lang, J. Wang, J. Zhan et al., Atomic synergy catalysis enables high-performing aqueous zinc-iodine batteries. Nano Lett. 25(16), 6661–6669 (2025). https://doi.org/10.1021/acs.nanolett.5c00279
- J. Yang, Q. Dai, S. Hou, C. Han, L. Zhao, Anti-self-discharge capability of Zn-halogen batteries through an entrapment-adsorption-catalysis strategy built upon separator. Adv. Mater. 37(11), 2418258 (2025). https://doi.org/10.1002/adma.202418258
- J. Liu, S. Chen, W. Shang, J. Ma, J. Zhang, In situ formation of 3D ZIF-8/MXene composite coating for high-performance zinc-iodine batteries. Adv. Funct. Mater. 35(19), 2422081 (2025). https://doi.org/10.1002/adfm.202422081
- M. Han, D. Chen, Q. Lu, G. Fang, Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives. Small 20(18), e2310293 (2024). https://doi.org/10.1002/smll.202310293
- L. She, H. Cheng, Z. Yuan, Z. Shen, Q. Wu et al., Rechargeable aqueous zinc–halogen batteries: fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 11(8), 2305061 (2024). https://doi.org/10.1002/advs.202305061
- D. Liu, Z. Wang, D. Zhao, S. Guo, L. Zhang et al., Design strategies and advanced methods for cathode engineering in aqueous zinc-iodine batteries. Small Methods 9(9), e01287 (2025). https://doi.org/10.1002/smtd.202501287
- X. Guo, H. Xu, Y. Tang, Z. Yang, F. Dou et al., Confining iodine into metal-organic framework derived metal-nitrogen-carbon for long-life aqueous zinc-iodine batteries. Adv. Mater. 36(38), 2408317 (2024). https://doi.org/10.1002/adma.202408317
- B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu et al., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). https://doi.org/10.1038/ncomms7303
- G. Guo, Q. Dai, W. Li, S. Ke, H. Chen et al., Intercatenation weaves MOFs with conductive networks as iodine hosts for zinc-iodine batteries. Chem. Eng. J. 514, 163100 (2025). https://doi.org/10.1016/j.cej.2025.163100
- Z. Li, X. Wu, X. Yu, S. Zhou, Y. Qiao et al., Long-life aqueous Zn–I2 battery enabled by a low-cost multifunctional zeolite membrane separator. Nano Lett. 22(6), 2538–2546 (2022). https://doi.org/10.1021/acs.nanolett.2c00460
- D. Qi, H. Jiang, X. Chen, Y. Wang, H. Zhang et al., Design strategies, challenges, and prospects of nanomaterials for aqueous Zn–iodine batteries. ACS Nano (2025). https://doi.org/10.1021/acsnano.5c06585
- Z. Wang, X. Meng, K. Chen, S. Mitra, High capacity aqueous periodate batteries featuring a nine-electron transfer process. Energy Storage Mater. 19, 206–211 (2019). https://doi.org/10.1016/j.ensm.2019.02.021
- F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang et al., A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv. Mater. 32(16), e2000287 (2020). https://doi.org/10.1002/adma.202000287
- A. Khor, P. Leung, M.R. Mohamed, C. Flox, Q. Xu et al., Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater. Today Energy 8, 80–108 (2018). https://doi.org/10.1016/j.mtener.2017.12.012
- X. Li, T. Li, P. Xu, C. Xie, Y. Zhang, A complexing agent to enable a wide-temperature range bromine-based flow battery for stationary energy storage. Adv. Funct. Mater. 31(22), 2100133 (2021). https://doi.org/10.1002/adfm.202100133
- Y.-H. Lee, K. Shin, J. Baek, H.-T. Kim, Boosting the kinetics of bromine cathode in Zn–Br flow battery by enhancing the electrode adsorption of the droplet of bromine sequestration agent/polybromides complex. J. Power. Sources 620, 235219 (2024). https://doi.org/10.1016/j.jpowsour.2024.235219
- Y. Wu, P.-W. Huang, J.D. Howe, Y. Yan, J. Martinez et al., In operando visualization of the electrochemical formation of liquid polybromide microdroplets. Angew. Chem. Int. Ed. 58(43), 15228–15234 (2019). https://doi.org/10.1002/anie.201906980
- J. Li, Z. Xu, M. Wu, Halogen enabled aqueous flow cells for large-scale energy storage: current status and perspectives. J. Power. Sources 581, 233477 (2023). https://doi.org/10.1016/j.jpowsour.2023.233477
- H. Chen, X. Li, K. Fang, H. Wang, J. Ning et al., Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy Mater. 13(41), 2302187 (2023). https://doi.org/10.1002/aenm.202302187
- S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10(1), 114–120 (2017). https://doi.org/10.1039/c6ee02782b
- Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries. Adv. Sci. 9(12), 2106004 (2022). https://doi.org/10.1002/advs.202106004
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
- Z. Bai, G. Wang, H. Liu, Y. Lou, N. Wang et al., Advancements in aqueous zinc–iodine batteries: a review. Chem. Sci. 15(9), 3071–3092 (2024). https://doi.org/10.1039/d3sc06150g
- J. Sun, Z. Wang, J. Zhang, D. Wang, Shuttle-free zinc–iodine batteries enabled by a cobalt single atom anchored on N-doped porous carbon host with ultra-high specific surface area. J. Energy Storage 90, 111716 (2024). https://doi.org/10.1016/j.est.2024.111716
- Z. Xu, Q. Fan, Y. Li, J. Wang, P.D. Lund, Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustain. Energy Rev. 127, 109838 (2020). https://doi.org/10.1016/j.rser.2020.109838
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn‐based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
- C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A long cycle life, self-healing zinc–iodine flow battery with high power density. Angew. Chem. Int. Ed. 57(35), 11171–11176 (2018). https://doi.org/10.1002/anie.201803122
- W. Huang, L. Wang, Q. Zhu, P. Zhang, X. Pu et al., Alloying effects on inhibiting hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Mater. Today Commun. 33, 104576 (2022). https://doi.org/10.1016/j.mtcomm.2022.104576
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2021). https://doi.org/10.1002/aenm.202003065
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
- Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang et al., Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2(3), e12035 (2020). https://doi.org/10.1002/eom2.12035
- C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
- J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
- W. Zhang, Y. Liu, X. Luo, R. Wang, K. Zhou et al., Multi-solvent synergy strategy unlocks anti-corrosion and high reversibility of zinc anodes: paving the way for robust and temperature-resilient zinc-iodine batteries. Adv. Funct. Mater. 35(51), e12633 (2025). https://doi.org/10.1002/adfm.202512633
- H. Chen, L. Zhou, Y. Sun, T. Zhang, H. Wang et al., Bio-inspired biomass hydrogel interface with ion-selective responsive sieving mechanism for corrosion-resistant and dendrite-free zinc-iodine batteries. Energy Storage Mater. 76, 104113 (2025). https://doi.org/10.1016/j.ensm.2025.104113
- D. Han, S. Shanmugam, Recent advances in the hybrid cathode for rechargeable zinc-bromine redox batteries. Curr. Opin. Electrochem. 45, 101485 (2024). https://doi.org/10.1016/j.coelec.2024.101485
- X. Li, W. Xu, C. Zhi, Halogen-powered static conversion chemistry. Nat. Rev. Chem. 8(5), 359–375 (2024). https://doi.org/10.1038/s41570-024-00597-z
- Z. Xue, Z. Gao, X. Zhao, Halogen storage electrode materials for rechargeable batteries. Energy Environ. Mater. 5(4), 1155–1179 (2022). https://doi.org/10.1002/eem2.12442
- W. Gao, S. Cheng, Y. Zhang, E. Xie, J. Fu, Efficient charge storage in zinc–iodine batteries based on pre‐embedded iodine‐ions with reduced electrochemical reaction barrier and suppression of polyiodide self‐shuttle effect. Adv. Funct. Mater. 33(17), 2211979 (2023). https://doi.org/10.1002/adfm.202211979
- Q. Jin, K. Zhao, L. Wu, L. Li, L. Kong et al., Enhancing Li cycling coulombic efficiency while mitigating “shuttle effect” of Li-S battery through sustained release of LiNO3. J. Energy Chem. 84, 22–29 (2023). https://doi.org/10.1016/j.jechem.2023.05.020
- S. Li, Y. Nie, Y. Wang, G. Feng, Q. Li et al., Quantum size effect synergizes space-limited domain action for advanced aqueous zinc-iodine batteries. Adv. Mater. (2025). https://doi.org/10.1002/adma.202514577
- Q. Zhang, S. Jiang, T. Lv, Y. Peng, H. Pang, Application of conductive MOF in zinc‐based batteries. Adv. Mater. 35(48), 2305532 (2023). https://doi.org/10.1002/adma.202305532
- L. Zhang, Y. Hou, The rise and development of MOF‐based materials for metal‐chalcogen batteries: current status, challenges, and prospects. Adv. Energy Mater. 13(20), 2204378 (2023). https://doi.org/10.1002/aenm.202204378
- N. Li, Z. Yang, Y. Li, D. Yu, T. Pan et al., Size confinement strategy effect enables advanced aqueous zinc–iodine batteries. Adv. Energy Mater. 14(44), 2402846 (2024). https://doi.org/10.1002/aenm.202402846
- J. Xu, J. Wang, L. Ge, J. Sun, W. Ma et al., ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 610, 98–105 (2022). https://doi.org/10.1016/j.jcis.2021.12.043
- J. Ye, W. Tian, Y. Du, J. Ji, Defect-engineered ZIF-derived carbon hosts for long-life aqueous zinc-iodine batteries. Adv. Funct. Mater. 35(47), 2509582 (2025). https://doi.org/10.1002/adfm.202509582
- Y. He, M. Liu, S. Chen, J. Zhang, Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries. Sci. China Chem. 65(2), 391–398 (2022). https://doi.org/10.1007/s11426-021-1177-1
- C. Wang, Q. Lai, K. Feng, P. Xu, X. Li et al., From zeolite-type metal organic framework to porous nano-sheet carbon: high activity positive electrode material for bromine-based flow batteries. Nano Energy 44, 240–247 (2018). https://doi.org/10.1016/j.nanoen.2017.12.007
- Y. Wang, X. Zhang, X. Li, Y. Jiang, T. Shen et al., Entrapping polyiodide by using highly N, P co-doping porous carbon framework towards high performance zinc-iodine batteries. Diamond Relat. Mater. 150, 111685 (2024). https://doi.org/10.1016/j.diamond.2024.111685
- J. Sun, H. Ma, D. Wang, Heavily heteroatoms doped carbons with tunable microstructure as the iodine hosts for rechargeable zinc-iodine aqueous batteries. J. Alloys Compd. 947, 169696 (2023). https://doi.org/10.1016/j.jallcom.2023.169696
- S. Chai, J. Yao, Y. Wang, J. Zhu, J. Jiang, Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-I2 batteries. Chem. Eng. J. 439, 135676 (2022). https://doi.org/10.1016/j.cej.2022.135676
- S. Niu, B. Zhao, D. Liu, High-performance Zn–I2 batteries enabled by a metal-free defect-rich carbon cathode catalyst. ACS Appl. Mater. Interfaces 15(21), 25558–25566 (2023). https://doi.org/10.1021/acsami.3c03134
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
- T. Liu, H. Wang, C. Lei, Y. Mao, H. Wang et al., Recognition of the catalytic activities of graphitic N for zinc-iodine batteries. Energy Storage Mater. 53, 544–551 (2022). https://doi.org/10.1016/j.ensm.2022.09.028
- J. Yang, Y. Kang, F. Meng, W. Meng, G. Chen et al., Theoretical calculation-driven rational screening of d-block single-atom electrocatalysts based on d–p orbital hybridization for durable aqueous zinc–iodine batteries. Energy Environ. Sci. 18(1), 236–245 (2025). https://doi.org/10.1039/D4EE04119D
- S.S. Ahmad Shah, T. Najam, M.S. Javed, M.S. Bashir, M.A. Nazir et al., Recent advances in synthesis and applications of single-atom catalysts for rechargeable batteries. Chem. Rec. 22(7), e202100280 (2022). https://doi.org/10.1002/tcr.202100280
- H. Li, X. Kang, M. Zhu, Nanocluster-based aggregates: assembled forms, driving forces, and structure-related properties. Coord. Chem. Rev. 539, 216738 (2025). https://doi.org/10.1016/j.ccr.2025.216738
- L. Chai, X. Wang, Y. Hu, X. Li, S. Huang et al., In-MOF-derived hierarchically hollow carbon nanostraws for advanced zinc-iodine batteries. Adv. Sci. 9(33), 2105063 (2022). https://doi.org/10.1002/advs.202105063
- X. Wang, Q. Zhang, S. Chu, T. Qin, Q. Liu et al., Fe/N co-doped micro-mesoporous carbon nanofibers as high-performance catalysts for zinc-bromine flow batteries. Prog. Natural Sci. Mater. Int. 35(5), 955–962 (2025). https://doi.org/10.1016/j.pnsc.2025.07.008
- B. Li, J. Liu, Z. Nie, W. Wang, D. Reed et al., Metal–organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries. Nano Lett. 16(7), 4335–4340 (2016). https://doi.org/10.1021/acs.nanolett.6b01426
- H.K. Machhi, K.K. Sonigara, S.N. Bariya, H.P. Soni, S.S. Soni, Hierarchically porous metal–organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous zinc–I2 batteries. ACS Appl. Mater. Interfaces 13(18), 21426–21435 (2021). https://doi.org/10.1021/acsami.1c03812
- J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/D3EE03297C
- X. Pan, K. Song, Y. Zhu, M. Yang, M. Ren et al., Functional nanoarchitectonics with metal-organic framework derived porous carbon as an efficient iodine host for high performance aqueous zinc-iodine batteries. J. Electroanal. Chem. 1000, 119645 (2026). https://doi.org/10.1016/j.jelechem.2025.119645
- Y. Hou, F. Kong, Z. Wang, M. Ren, C. Qiao et al., High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J. Colloid Interface Sci. 629, 279–287 (2023). https://doi.org/10.1016/j.jcis.2022.09.079
- S. Shin, D. Jung, J. Chae, J. Chang, Stochastic electrochemical analysis of electrochemically generated ethylpyridinium polybromide droplets: evidence of Br−/Br3−/Br2 electro-oxidation in quaternary ammonium polybromide. J. Electroanal. Chem. 802, 123–130 (2017). https://doi.org/10.1016/j.jelechem.2017.08.021
- W. Han, J. Zhao, X. Li, Long cycle life Zn-I2 batteries: utilizing Co/N Co-doped carbon matrix derived from zeolitic imidazolate framework-67 as a bifunctional iodine host. J. Alloys Compd. 1008, 176647 (2024). https://doi.org/10.1016/j.jallcom.2024.176647
- S. Chen, Y. He, S. Ding, J. Zhang, In situ formation of tungsten nitride among porous carbon polyhedra for high performance zinc–iodine batteries. J. Phys. Chem. C 127(16), 7609–7617 (2023). https://doi.org/10.1021/acs.jpcc.3c00678
- Y. He, M. Liu, J. Zhang, Rational modulation of carbon fibers for high-performance zinc–iodine batteries. Adv. Sustain. Syst. 4(11), 2000138 (2020). https://doi.org/10.1002/adsu.202000138
- S.S. Ahmad Shah, T. Najam, M.S. Bashir, L. Peng, M.A. Nazir et al., Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Mater. 45, 301–322 (2022). https://doi.org/10.1016/j.ensm.2021.11.049
- S. Chen, J. Ma, Q. Chen, W. Shang, J. Liu et al., Exploring interfacial electrocatalysis for iodine redox conversion in zinc-iodine battery. Sci. Bull. 70(4), 546–555 (2025). https://doi.org/10.1016/j.scib.2024.11.042
- J. Lee, W. Lee, S. Back, S.Y. Yi, S. Lee et al., Activating iodine redox by enabling single-atom coordination to dormant nitrogen sites to realize durable zinc–iodine batteries. EES Catal. 2(1), 276–285 (2024). https://doi.org/10.1039/D3EY00228D
- X. Guo, H. Xu, Z. Qiu, Q. Li, N. Li et al., Heteroatom-modulated asymmetric cobalt single-atom catalysts on MOF-derived carbon enabling durable zinc-iodine batteries. Adv. Mater. 37(45), e14035 (2025). https://doi.org/10.1002/adma.202514035
- T. Hu, Y. Zhao, Y. Yang, H. Lv, R. Zhong et al., Development of inverse-opal-structured charge-deficient Co9S8@nitrogen-doped-carbon to catalytically enable high energy and high power for the two-electron transfer I+/I− electrode. Adv. Mater. 36(18), 2312246 (2024). https://doi.org/10.1002/adma.202312246
- W. Du, L. Miao, Z. Song, X. Zheng, C. Hu et al., Organic iodine electrolyte starting triple I+ storage in in-based metal-organic frameworks for high-capacity aqueous Zn-I2 batteries. Chem. Eng. J. 484, 149535 (2024). https://doi.org/10.1016/j.cej.2024.149535
- S. Shoaib Ahmad Shah, M. Altaf Nazir, A. Mahmood, M. Sohail, A. Ur Rehman et al., Synthesis of electrical conductive metal-organic frameworks for electrochemical applications. Chem. Rec. 24(1), e202300141 (2024). https://doi.org/10.1002/tcr.202300141
- J.-H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical–chemical growth of polybromides. Adv. Mater. 31(52), 1904524 (2019). https://doi.org/10.1002/adma.201904524
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon et al., Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy Environ. Sci. 13(9), 2839–2848 (2020). https://doi.org/10.1039/D0EE00723D
- J. Wu, Q. Dai, H. Zhang, X. Li, A defect-free MOF composite membrane prepared via in situ binder-controlled restrained second-growth method for energy storage device. Energy Storage Mater. 35, 687–694 (2021). https://doi.org/10.1016/j.ensm.2020.11.040
- P. Yang, K. Zhang, S. Liu, W. Zhuang, Z. Shao et al., Ionic selective separator design enables long-life zinc–iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 34(52), 2410712 (2024). https://doi.org/10.1002/adfm.202410712
- D. Han, K. Shin, H.-T. Kim, S. Shanmugam, Functionalized metal–organic framework modified membranes with ultralong cyclability and superior capacity for zinc/bromine flowless batteries. J. Mater. Chem. A 12(23), 13970–13979 (2024). https://doi.org/10.1039/D4TA01005A
- L. Zhu, X. Guan, Z. Zhang, Z. Yuan, C. Zhang et al., Polar-nonpolar synergy toward high-performance aqueous zinc-iodine batteries. Small 21(13), 2500223 (2025). https://doi.org/10.1002/smll.202500223
- L. Wang, J. Guan, N. Li, J. Li, T. Duan et al., Amine-functionalized MIL-125 separator and MOF-derived carbon host for high-performance aqueous zinc-iodine batteries. Adv. Energy Mater. 15(45), e04201 (2025). https://doi.org/10.1002/aenm.202504201
- W. He, S. Zuo, X. Xu, L. Zeng, L. Liu et al., Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater. Chem. Front. 5(5), 2201–2217 (2021). https://doi.org/10.1039/D0QM00693A
- S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb2O5 layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40–51 (2022). https://doi.org/10.1016/j.ensm.2022.07.036
- H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 15(5), 1872–1881 (2022). https://doi.org/10.1039/D2EE00209D
- H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32(48), 2207898 (2022). https://doi.org/10.1002/adfm.202207898
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/D2EE02931F
- Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self‐adapting interface coating for stable Zn‐metal anodes. Adv. Mater. 34(2), 2105133 (2022). https://doi.org/10.1002/adma.202105133
- W. Zhang, W. Qi, K. Yang, Y. Hu, F. Jiang et al., Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries. Energy Storage Mater. 71, 103616 (2024). https://doi.org/10.1016/j.ensm.2024.103616
- Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
- Q. Nian, X. Yang, H. Hong, P. Chen, Y. Zhao et al., Advancements in separator materials for aqueous zinc batteries. Nanoscale Horiz. 10(9), 1932–1955 (2025). https://doi.org/10.1039/D5NH00172B
- C.-Y. Liu, Y.-D. Wang, H. Liu, Q. Chen, X. Jiang et al., Channel engineering strategy of precisely modified MOF/nanofiber composite separator for advanced aqueous zinc ion batteries. Compos. Part B Eng. 272, 111227 (2024). https://doi.org/10.1016/j.compositesb.2024.111227
- T. Yuan, S. Qi, L. Ye, Y. Zhao, Y. Jiang et al., Metal-organic frameworks-based materials: a feasible path for redox flow battery. Coord. Chem. Rev. 531, 216503 (2025). https://doi.org/10.1016/j.ccr.2025.216503
- H. Di, Y. An, J. Yang, D. Luan, X.W. Lou, Fluorine modified zeolitic imidazolate framework enables long-life Zn–I2 batteries by suppression of polyiodide shuttle. Angew. Chem. Int. Ed. 64(43), e202513312 (2025). https://doi.org/10.1002/anie.202513312
- H. Zheng, J. Ding, J. Huang, J. Wang, H. Zhang et al., Metal-organic frameworks facilitating complexation for long-cycle zinc-bromine flow batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202514730
- X.-D. Zhou, X.-X. Wu, H.-J. Fu, P.-X. Lei, N. Li et al., Self-assembled Co-MOF@MXene heterostructures as bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Mater. Today Energy 52, 101950 (2025). https://doi.org/10.1016/j.mtener.2025.101950
References
S. Nyamathulla, C. Dhanamjayulu, A review of battery energy storage systems and advanced battery management system for different applications: challenges and recommendations. J. Energy Storage 86, 111179 (2024). https://doi.org/10.1016/j.est.2024.111179
Y. Wang, H. Xiang, Y.-Y. Soo, X. Fan, Aging mechanisms, prognostics and management for lithium-ion batteries: recent advances. Renew. Sustain. Energy Rev. 207, 114915 (2025). https://doi.org/10.1016/j.rser.2024.114915
T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7(7), 2942–2964 (2019). https://doi.org/10.1039/c8ta10513h
N. Dong, F. Zhang, H. Pan, Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem. Sci. 13(28), 8243–8252 (2022). https://doi.org/10.1039/d2sc01818g
G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin et al., Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 34(5), 2301291 (2024). https://doi.org/10.1002/adfm.202301291
H. Yan, S. Li, J. Zhong, B. Li, An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 16(1), 15 (2023). https://doi.org/10.1007/s40820-023-01227-x
C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Letters 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
B. Wang, C. Guan, Q. Zhou, Y. Wang, Y. Zhu et al., Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous zinc ion batteries. Nano-Micro Lett. 17(1), 314 (2025). https://doi.org/10.1007/s40820-025-01826-w
T. Wang, Y. Zhang, J. You, F. Hu, Recent progress in aqueous zinc-ion batteries: from fundamentalscience to structure design. Chem. Rec. 23(5), e202200309 (2023). https://doi.org/10.1002/tcr.202200309
Y. Yan, Y. Zhang, Y. Wu, Z. Wang, A. Mathur et al., A lasagna-inspired nanoscale ZnO anode design for high-energy rechargeable aqueous batteries. ACS Appl. Energy Mater. 1(11), 6345–6351 (2018). https://doi.org/10.1021/acsaem.8b01321
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2021). https://doi.org/10.1002/aenm.202002529
J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 131(23), 7905–7910 (2019). https://doi.org/10.1002/ange.201904174
W. Lv, Z. Shen, X. Li, J. Meng, W. Yang et al., Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 16(1), 109 (2024). https://doi.org/10.1007/s40820-024-01334-3
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
Z. Fang, C. Liu, X. Li, L. Peng, W. Ding et al., Systematic modification of MoO3-based cathode by the intercalation engineering for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 33(7), 2210010 (2023). https://doi.org/10.1002/adfm.202210010
J. Liu, Z. Shen, C.-Z. Lu, Research progress of Prussian blue and its analogues for cathodes of aqueous zinc ion batteries. J. Mater. Chem. A 12(5), 2647–2672 (2024). https://doi.org/10.1039/D3TA06641J
R. Kumar, J. Shin, L. Yin, J.-M. You, Y.S. Meng et al., All-printed, stretchable Zn-Ag2O rechargeable battery via hyperelastic binder for self-powering wearable electronics. Adv. Energy Mater. 7(8), 1602096 (2017). https://doi.org/10.1002/aenm.201602096
R. Chen, P. Shi, Y. Gong, C. Yu, L. Hua et al., Solution-processable design of fiber-shaped wearable Zn// Ni(OH)2 battery. Energy Technol. 6(12), 2326–2332 (2018). https://doi.org/10.1002/ente.201800318
X.-W. Lv, Z. Wang, Z. Lai, Y. Liu, T. Ma et al., Rechargeable zinc–air batteries: advances, challenges, and prospects. Small 20(4), 2306396 (2024). https://doi.org/10.1002/smll.202306396
T. Najam, M. Wang, M.S. Javed, S. Ibraheem, Z. Song et al., Nano-engineering of Prussian blue analogues to core-shell architectures: enhanced catalytic activity for zinc-air battery. J. Colloid Interface Sci. 578, 89–95 (2020). https://doi.org/10.1016/j.jcis.2020.05.071
T. Najam, S.S. Ahmad Shah, W. Ding, J. Deng, Z. Wei, Enhancing by nano-engineering: hierarchical architectures as oxygen reduction/evolution reactions for zinc-air batteries. J. Power. Sources 438, 226919 (2019). https://doi.org/10.1016/j.jpowsour.2019.226919
M. Ulaganathan, Zinc–iron (Zn–Fe) redox flow battery single to stack cells: a futuristic solution for high energy storage off-grid applications. Energy Adv. 3(12), 2861–2876 (2024). https://doi.org/10.1039/D4YA00358F
N.S. Alghamdi, M. Rana, X. Peng, Y. Huang, J. Lee et al., Zinc-bromine rechargeable batteries: from device configuration, electrochemistry, material to performance evaluation. Nano-Micro Lett. 15(1), 209 (2023). https://doi.org/10.1007/s40820-023-01174-7
J. Zhang, M. Shi, X. Ren, C. Wu, S. Hu et al., Low-cost, high-voltage and durable aqueous zinc-chlorine battery enabled by condensed choline chloride electrolytes. J. Energy Storage 88, 111604 (2024). https://doi.org/10.1016/j.est.2024.111604
W. Li, H. Xu, S. Ke, H. Zhang, H. Chen et al., Integrating electric ambipolar effect for high-performance zinc bromide batteries. Nano-Micro Lett. 17(1), 143 (2025). https://doi.org/10.1007/s40820-024-01636-6
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song et al., Boosting Zn||I(2) battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi et al., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 12(1), 170 (2021). https://doi.org/10.1038/s41467-020-20331-9
X. Kong, J. Zhang, X. Zhang, Z. Wang, D. Wang, Boosting reversible four-electron redox in aqueous Zn-iodine batteries with two halogen ionic additives and a N, F codoped carbon cathode. ACS Appl. Energy Mater. 8(1), 601–610 (2025). https://doi.org/10.1021/acsaem.4c02898
J. Guo, G. Ma, G. Liu, C. Dai, Z. Lin, Ti2CTx MXene cathode host for enhanced zinc-bromine battery performance. Adv. Energy Mater. 14(20), 2304516 (2024). https://doi.org/10.1002/aenm.202304516
N. Chen, W. Wang, Y. Ma, M. Chuai, X. Zheng et al., Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small Methods 8(6), e2201553 (2024). https://doi.org/10.1002/smtd.202201553
M. Rana, N. Alghamdi, X. Peng, Y. Huang, B. Wang et al., Scientific issues of zinc-bromine flow batteries and mitigation strategies. Exploration 3(6), 20220073 (2023). https://doi.org/10.1002/EXP.20220073
A. Mahmood, Z. Zheng, Y. Chen, Zinc-bromine batteries: challenges, prospective solutions, and future. Adv. Sci. 11(3), 2305561 (2024). https://doi.org/10.1002/advs.202305561
Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14(1), 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
D.-Q. Cai, H. Xu, T. Xue, J.-L. Yang, H.J. Fan, A synchronous strategy to Zn-iodine battery by polycationic long-chain molecules. Nano-Micro Lett. 18(1), 3 (2025). https://doi.org/10.1007/s40820-025-01854-6
Y. Sui, M. Lei, M. Yu, A. Scida, S.K. Sandstrom et al., Reversible Cl2/Cl– redox for low-temperature aqueous batteries. ACS Energy Lett. 8(2), 988–994 (2023). https://doi.org/10.1021/acsenergylett.2c02757
C. Wang, G. Gao, Y. Su, J. Xie, D. He et al., High-voltage and dendrite-free zinc-iodine flow battery. Nat. Commun. 15(1), 6234 (2024). https://doi.org/10.1038/s41467-024-50543-2
H. Deng, X. Wang, Z. Wei, W. Liao, S. Li et al., Improved static membrane-free zinc-bromine batteries by an efficient bromine complexing agent. J. Energy Storage 81, 110449 (2024). https://doi.org/10.1016/j.est.2024.110449
L. Gao, Z. Li, Y. Zou, S. Yin, P. Peng et al., A high-performance aqueous zinc-bromine static battery. iScience 23(8), 101348 (2020). https://doi.org/10.1016/j.isci.2020.101348
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 32(38), e2004240 (2020). https://doi.org/10.1002/adma.202004240
Z. Yan, Q.-H. Yang, C. Yang, Elemental halogen cathodes for aqueous zinc batteries: mechanisms, challenges and strategies. J. Mater. Chem. A 12(37), 24746–24760 (2024). https://doi.org/10.1039/D4TA05108D
L. Yan, T. Liu, X. Zeng, L. Sun, X. Meng et al., Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon 187, 145–152 (2022). https://doi.org/10.1016/j.carbon.2021.11.007
Y. Li, X. Guo, S. Wang, W. Sun, D. Yu et al., Nano/micro metal-organic framework-derived porous carbon with rich nitrogen sites as efficient iodine hosts for aqueous zinc-iodine batteries. Adv. Sci. 12(26), 2502563 (2025). https://doi.org/10.1002/advs.202502563
H. Xing, Y. Han, X. Huang, C. Zhang, M. Lyu et al., Recent progress of low-dimensional metal-organic frameworks for aqueous zinc-based batteries. Small 20(36), e2402998 (2024). https://doi.org/10.1002/smll.202402998
N. Sun, S.S. Ahmad Shah, Z. Lin, Y.-Z. Zheng, L. Jiao et al., MOF-based electrocatalysts: an overview from the perspective of structural design. Chem. Rev. 125(5), 2703–2792 (2025). https://doi.org/10.1021/acs.chemrev.4c00664
R. Naresh, K. Satchidhanandam, K.R. Ilancheran, B. Ambrose, M. Kathiresan et al., Bimetallic metal–organic framework: an efficient electrocatalyst for bromine-based flow batteries. J. Mater. Chem. A 12(24), 14669–14678 (2024). https://doi.org/10.1039/d4ta02590c
J. Li, Z. Xu, M. Wu, Reaction kinetics and mass transfer synergistically enhanced electrodes for high-performance zinc-bromine flow batteries. ACS Appl. Mater. Interfaces 17(17), 25206–25215 (2025). https://doi.org/10.1021/acsami.4c22329
H. Wei, G. Qu, X. Zhang, B. Ren, S. Li et al., Boosting aqueous non-flow zinc–bromine batteries with a two-dimensional metal–organic framework host: an adsorption-catalysis approach. Energy Environ. Sci. 16(9), 4073–4083 (2023). https://doi.org/10.1039/D3EE01639K
Q. Liu, S. Wang, J. Lang, J. Wang, J. Zhan et al., Atomic synergy catalysis enables high-performing aqueous zinc-iodine batteries. Nano Lett. 25(16), 6661–6669 (2025). https://doi.org/10.1021/acs.nanolett.5c00279
J. Yang, Q. Dai, S. Hou, C. Han, L. Zhao, Anti-self-discharge capability of Zn-halogen batteries through an entrapment-adsorption-catalysis strategy built upon separator. Adv. Mater. 37(11), 2418258 (2025). https://doi.org/10.1002/adma.202418258
J. Liu, S. Chen, W. Shang, J. Ma, J. Zhang, In situ formation of 3D ZIF-8/MXene composite coating for high-performance zinc-iodine batteries. Adv. Funct. Mater. 35(19), 2422081 (2025). https://doi.org/10.1002/adfm.202422081
M. Han, D. Chen, Q. Lu, G. Fang, Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives. Small 20(18), e2310293 (2024). https://doi.org/10.1002/smll.202310293
L. She, H. Cheng, Z. Yuan, Z. Shen, Q. Wu et al., Rechargeable aqueous zinc–halogen batteries: fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 11(8), 2305061 (2024). https://doi.org/10.1002/advs.202305061
D. Liu, Z. Wang, D. Zhao, S. Guo, L. Zhang et al., Design strategies and advanced methods for cathode engineering in aqueous zinc-iodine batteries. Small Methods 9(9), e01287 (2025). https://doi.org/10.1002/smtd.202501287
X. Guo, H. Xu, Y. Tang, Z. Yang, F. Dou et al., Confining iodine into metal-organic framework derived metal-nitrogen-carbon for long-life aqueous zinc-iodine batteries. Adv. Mater. 36(38), 2408317 (2024). https://doi.org/10.1002/adma.202408317
B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu et al., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015). https://doi.org/10.1038/ncomms7303
G. Guo, Q. Dai, W. Li, S. Ke, H. Chen et al., Intercatenation weaves MOFs with conductive networks as iodine hosts for zinc-iodine batteries. Chem. Eng. J. 514, 163100 (2025). https://doi.org/10.1016/j.cej.2025.163100
Z. Li, X. Wu, X. Yu, S. Zhou, Y. Qiao et al., Long-life aqueous Zn–I2 battery enabled by a low-cost multifunctional zeolite membrane separator. Nano Lett. 22(6), 2538–2546 (2022). https://doi.org/10.1021/acs.nanolett.2c00460
D. Qi, H. Jiang, X. Chen, Y. Wang, H. Zhang et al., Design strategies, challenges, and prospects of nanomaterials for aqueous Zn–iodine batteries. ACS Nano (2025). https://doi.org/10.1021/acsnano.5c06585
Z. Wang, X. Meng, K. Chen, S. Mitra, High capacity aqueous periodate batteries featuring a nine-electron transfer process. Energy Storage Mater. 19, 206–211 (2019). https://doi.org/10.1016/j.ensm.2019.02.021
F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang et al., A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv. Mater. 32(16), e2000287 (2020). https://doi.org/10.1002/adma.202000287
A. Khor, P. Leung, M.R. Mohamed, C. Flox, Q. Xu et al., Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater. Today Energy 8, 80–108 (2018). https://doi.org/10.1016/j.mtener.2017.12.012
X. Li, T. Li, P. Xu, C. Xie, Y. Zhang, A complexing agent to enable a wide-temperature range bromine-based flow battery for stationary energy storage. Adv. Funct. Mater. 31(22), 2100133 (2021). https://doi.org/10.1002/adfm.202100133
Y.-H. Lee, K. Shin, J. Baek, H.-T. Kim, Boosting the kinetics of bromine cathode in Zn–Br flow battery by enhancing the electrode adsorption of the droplet of bromine sequestration agent/polybromides complex. J. Power. Sources 620, 235219 (2024). https://doi.org/10.1016/j.jpowsour.2024.235219
Y. Wu, P.-W. Huang, J.D. Howe, Y. Yan, J. Martinez et al., In operando visualization of the electrochemical formation of liquid polybromide microdroplets. Angew. Chem. Int. Ed. 58(43), 15228–15234 (2019). https://doi.org/10.1002/anie.201906980
J. Li, Z. Xu, M. Wu, Halogen enabled aqueous flow cells for large-scale energy storage: current status and perspectives. J. Power. Sources 581, 233477 (2023). https://doi.org/10.1016/j.jpowsour.2023.233477
H. Chen, X. Li, K. Fang, H. Wang, J. Ning et al., Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy Mater. 13(41), 2302187 (2023). https://doi.org/10.1002/aenm.202302187
S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan et al., Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10(1), 114–120 (2017). https://doi.org/10.1039/c6ee02782b
Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries. Adv. Sci. 9(12), 2106004 (2022). https://doi.org/10.1002/advs.202106004
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
Z. Bai, G. Wang, H. Liu, Y. Lou, N. Wang et al., Advancements in aqueous zinc–iodine batteries: a review. Chem. Sci. 15(9), 3071–3092 (2024). https://doi.org/10.1039/d3sc06150g
J. Sun, Z. Wang, J. Zhang, D. Wang, Shuttle-free zinc–iodine batteries enabled by a cobalt single atom anchored on N-doped porous carbon host with ultra-high specific surface area. J. Energy Storage 90, 111716 (2024). https://doi.org/10.1016/j.est.2024.111716
Z. Xu, Q. Fan, Y. Li, J. Wang, P.D. Lund, Review of zinc dendrite formation in zinc bromine redox flow battery. Renew. Sustain. Energy Rev. 127, 109838 (2020). https://doi.org/10.1016/j.rser.2020.109838
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn‐based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
V. Yufit, F. Tariq, D.S. Eastwood, M. Biton, B. Wu et al., Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002
C. Xie, H. Zhang, W. Xu, W. Wang, X. Li, A long cycle life, self-healing zinc–iodine flow battery with high power density. Angew. Chem. Int. Ed. 57(35), 11171–11176 (2018). https://doi.org/10.1002/anie.201803122
W. Huang, L. Wang, Q. Zhu, P. Zhang, X. Pu et al., Alloying effects on inhibiting hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Mater. Today Commun. 33, 104576 (2022). https://doi.org/10.1016/j.mtcomm.2022.104576
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2021). https://doi.org/10.1002/aenm.202003065
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/D0EE02079F
Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang et al., Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2(3), e12035 (2020). https://doi.org/10.1002/eom2.12035
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
W. Zhang, Y. Liu, X. Luo, R. Wang, K. Zhou et al., Multi-solvent synergy strategy unlocks anti-corrosion and high reversibility of zinc anodes: paving the way for robust and temperature-resilient zinc-iodine batteries. Adv. Funct. Mater. 35(51), e12633 (2025). https://doi.org/10.1002/adfm.202512633
H. Chen, L. Zhou, Y. Sun, T. Zhang, H. Wang et al., Bio-inspired biomass hydrogel interface with ion-selective responsive sieving mechanism for corrosion-resistant and dendrite-free zinc-iodine batteries. Energy Storage Mater. 76, 104113 (2025). https://doi.org/10.1016/j.ensm.2025.104113
D. Han, S. Shanmugam, Recent advances in the hybrid cathode for rechargeable zinc-bromine redox batteries. Curr. Opin. Electrochem. 45, 101485 (2024). https://doi.org/10.1016/j.coelec.2024.101485
X. Li, W. Xu, C. Zhi, Halogen-powered static conversion chemistry. Nat. Rev. Chem. 8(5), 359–375 (2024). https://doi.org/10.1038/s41570-024-00597-z
Z. Xue, Z. Gao, X. Zhao, Halogen storage electrode materials for rechargeable batteries. Energy Environ. Mater. 5(4), 1155–1179 (2022). https://doi.org/10.1002/eem2.12442
W. Gao, S. Cheng, Y. Zhang, E. Xie, J. Fu, Efficient charge storage in zinc–iodine batteries based on pre‐embedded iodine‐ions with reduced electrochemical reaction barrier and suppression of polyiodide self‐shuttle effect. Adv. Funct. Mater. 33(17), 2211979 (2023). https://doi.org/10.1002/adfm.202211979
Q. Jin, K. Zhao, L. Wu, L. Li, L. Kong et al., Enhancing Li cycling coulombic efficiency while mitigating “shuttle effect” of Li-S battery through sustained release of LiNO3. J. Energy Chem. 84, 22–29 (2023). https://doi.org/10.1016/j.jechem.2023.05.020
S. Li, Y. Nie, Y. Wang, G. Feng, Q. Li et al., Quantum size effect synergizes space-limited domain action for advanced aqueous zinc-iodine batteries. Adv. Mater. (2025). https://doi.org/10.1002/adma.202514577
Q. Zhang, S. Jiang, T. Lv, Y. Peng, H. Pang, Application of conductive MOF in zinc‐based batteries. Adv. Mater. 35(48), 2305532 (2023). https://doi.org/10.1002/adma.202305532
L. Zhang, Y. Hou, The rise and development of MOF‐based materials for metal‐chalcogen batteries: current status, challenges, and prospects. Adv. Energy Mater. 13(20), 2204378 (2023). https://doi.org/10.1002/aenm.202204378
N. Li, Z. Yang, Y. Li, D. Yu, T. Pan et al., Size confinement strategy effect enables advanced aqueous zinc–iodine batteries. Adv. Energy Mater. 14(44), 2402846 (2024). https://doi.org/10.1002/aenm.202402846
J. Xu, J. Wang, L. Ge, J. Sun, W. Ma et al., ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 610, 98–105 (2022). https://doi.org/10.1016/j.jcis.2021.12.043
J. Ye, W. Tian, Y. Du, J. Ji, Defect-engineered ZIF-derived carbon hosts for long-life aqueous zinc-iodine batteries. Adv. Funct. Mater. 35(47), 2509582 (2025). https://doi.org/10.1002/adfm.202509582
Y. He, M. Liu, S. Chen, J. Zhang, Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries. Sci. China Chem. 65(2), 391–398 (2022). https://doi.org/10.1007/s11426-021-1177-1
C. Wang, Q. Lai, K. Feng, P. Xu, X. Li et al., From zeolite-type metal organic framework to porous nano-sheet carbon: high activity positive electrode material for bromine-based flow batteries. Nano Energy 44, 240–247 (2018). https://doi.org/10.1016/j.nanoen.2017.12.007
Y. Wang, X. Zhang, X. Li, Y. Jiang, T. Shen et al., Entrapping polyiodide by using highly N, P co-doping porous carbon framework towards high performance zinc-iodine batteries. Diamond Relat. Mater. 150, 111685 (2024). https://doi.org/10.1016/j.diamond.2024.111685
J. Sun, H. Ma, D. Wang, Heavily heteroatoms doped carbons with tunable microstructure as the iodine hosts for rechargeable zinc-iodine aqueous batteries. J. Alloys Compd. 947, 169696 (2023). https://doi.org/10.1016/j.jallcom.2023.169696
S. Chai, J. Yao, Y. Wang, J. Zhu, J. Jiang, Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-I2 batteries. Chem. Eng. J. 439, 135676 (2022). https://doi.org/10.1016/j.cej.2022.135676
S. Niu, B. Zhao, D. Liu, High-performance Zn–I2 batteries enabled by a metal-free defect-rich carbon cathode catalyst. ACS Appl. Mater. Interfaces 15(21), 25558–25566 (2023). https://doi.org/10.1021/acsami.3c03134
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
T. Liu, H. Wang, C. Lei, Y. Mao, H. Wang et al., Recognition of the catalytic activities of graphitic N for zinc-iodine batteries. Energy Storage Mater. 53, 544–551 (2022). https://doi.org/10.1016/j.ensm.2022.09.028
J. Yang, Y. Kang, F. Meng, W. Meng, G. Chen et al., Theoretical calculation-driven rational screening of d-block single-atom electrocatalysts based on d–p orbital hybridization for durable aqueous zinc–iodine batteries. Energy Environ. Sci. 18(1), 236–245 (2025). https://doi.org/10.1039/D4EE04119D
S.S. Ahmad Shah, T. Najam, M.S. Javed, M.S. Bashir, M.A. Nazir et al., Recent advances in synthesis and applications of single-atom catalysts for rechargeable batteries. Chem. Rec. 22(7), e202100280 (2022). https://doi.org/10.1002/tcr.202100280
H. Li, X. Kang, M. Zhu, Nanocluster-based aggregates: assembled forms, driving forces, and structure-related properties. Coord. Chem. Rev. 539, 216738 (2025). https://doi.org/10.1016/j.ccr.2025.216738
L. Chai, X. Wang, Y. Hu, X. Li, S. Huang et al., In-MOF-derived hierarchically hollow carbon nanostraws for advanced zinc-iodine batteries. Adv. Sci. 9(33), 2105063 (2022). https://doi.org/10.1002/advs.202105063
X. Wang, Q. Zhang, S. Chu, T. Qin, Q. Liu et al., Fe/N co-doped micro-mesoporous carbon nanofibers as high-performance catalysts for zinc-bromine flow batteries. Prog. Natural Sci. Mater. Int. 35(5), 955–962 (2025). https://doi.org/10.1016/j.pnsc.2025.07.008
B. Li, J. Liu, Z. Nie, W. Wang, D. Reed et al., Metal–organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries. Nano Lett. 16(7), 4335–4340 (2016). https://doi.org/10.1021/acs.nanolett.6b01426
H.K. Machhi, K.K. Sonigara, S.N. Bariya, H.P. Soni, S.S. Soni, Hierarchically porous metal–organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable aqueous zinc–I2 batteries. ACS Appl. Mater. Interfaces 13(18), 21426–21435 (2021). https://doi.org/10.1021/acsami.1c03812
J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/D3EE03297C
X. Pan, K. Song, Y. Zhu, M. Yang, M. Ren et al., Functional nanoarchitectonics with metal-organic framework derived porous carbon as an efficient iodine host for high performance aqueous zinc-iodine batteries. J. Electroanal. Chem. 1000, 119645 (2026). https://doi.org/10.1016/j.jelechem.2025.119645
Y. Hou, F. Kong, Z. Wang, M. Ren, C. Qiao et al., High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. J. Colloid Interface Sci. 629, 279–287 (2023). https://doi.org/10.1016/j.jcis.2022.09.079
S. Shin, D. Jung, J. Chae, J. Chang, Stochastic electrochemical analysis of electrochemically generated ethylpyridinium polybromide droplets: evidence of Br−/Br3−/Br2 electro-oxidation in quaternary ammonium polybromide. J. Electroanal. Chem. 802, 123–130 (2017). https://doi.org/10.1016/j.jelechem.2017.08.021
W. Han, J. Zhao, X. Li, Long cycle life Zn-I2 batteries: utilizing Co/N Co-doped carbon matrix derived from zeolitic imidazolate framework-67 as a bifunctional iodine host. J. Alloys Compd. 1008, 176647 (2024). https://doi.org/10.1016/j.jallcom.2024.176647
S. Chen, Y. He, S. Ding, J. Zhang, In situ formation of tungsten nitride among porous carbon polyhedra for high performance zinc–iodine batteries. J. Phys. Chem. C 127(16), 7609–7617 (2023). https://doi.org/10.1021/acs.jpcc.3c00678
Y. He, M. Liu, J. Zhang, Rational modulation of carbon fibers for high-performance zinc–iodine batteries. Adv. Sustain. Syst. 4(11), 2000138 (2020). https://doi.org/10.1002/adsu.202000138
S.S. Ahmad Shah, T. Najam, M.S. Bashir, L. Peng, M.A. Nazir et al., Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy Storage Mater. 45, 301–322 (2022). https://doi.org/10.1016/j.ensm.2021.11.049
S. Chen, J. Ma, Q. Chen, W. Shang, J. Liu et al., Exploring interfacial electrocatalysis for iodine redox conversion in zinc-iodine battery. Sci. Bull. 70(4), 546–555 (2025). https://doi.org/10.1016/j.scib.2024.11.042
J. Lee, W. Lee, S. Back, S.Y. Yi, S. Lee et al., Activating iodine redox by enabling single-atom coordination to dormant nitrogen sites to realize durable zinc–iodine batteries. EES Catal. 2(1), 276–285 (2024). https://doi.org/10.1039/D3EY00228D
X. Guo, H. Xu, Z. Qiu, Q. Li, N. Li et al., Heteroatom-modulated asymmetric cobalt single-atom catalysts on MOF-derived carbon enabling durable zinc-iodine batteries. Adv. Mater. 37(45), e14035 (2025). https://doi.org/10.1002/adma.202514035
T. Hu, Y. Zhao, Y. Yang, H. Lv, R. Zhong et al., Development of inverse-opal-structured charge-deficient Co9S8@nitrogen-doped-carbon to catalytically enable high energy and high power for the two-electron transfer I+/I− electrode. Adv. Mater. 36(18), 2312246 (2024). https://doi.org/10.1002/adma.202312246
W. Du, L. Miao, Z. Song, X. Zheng, C. Hu et al., Organic iodine electrolyte starting triple I+ storage in in-based metal-organic frameworks for high-capacity aqueous Zn-I2 batteries. Chem. Eng. J. 484, 149535 (2024). https://doi.org/10.1016/j.cej.2024.149535
S. Shoaib Ahmad Shah, M. Altaf Nazir, A. Mahmood, M. Sohail, A. Ur Rehman et al., Synthesis of electrical conductive metal-organic frameworks for electrochemical applications. Chem. Rec. 24(1), e202300141 (2024). https://doi.org/10.1002/tcr.202300141
J.-H. Lee, Y. Byun, G.H. Jeong, C. Choi, J. Kwen et al., High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical–chemical growth of polybromides. Adv. Mater. 31(52), 1904524 (2019). https://doi.org/10.1002/adma.201904524
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon et al., Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy Environ. Sci. 13(9), 2839–2848 (2020). https://doi.org/10.1039/D0EE00723D
J. Wu, Q. Dai, H. Zhang, X. Li, A defect-free MOF composite membrane prepared via in situ binder-controlled restrained second-growth method for energy storage device. Energy Storage Mater. 35, 687–694 (2021). https://doi.org/10.1016/j.ensm.2020.11.040
P. Yang, K. Zhang, S. Liu, W. Zhuang, Z. Shao et al., Ionic selective separator design enables long-life zinc–iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 34(52), 2410712 (2024). https://doi.org/10.1002/adfm.202410712
D. Han, K. Shin, H.-T. Kim, S. Shanmugam, Functionalized metal–organic framework modified membranes with ultralong cyclability and superior capacity for zinc/bromine flowless batteries. J. Mater. Chem. A 12(23), 13970–13979 (2024). https://doi.org/10.1039/D4TA01005A
L. Zhu, X. Guan, Z. Zhang, Z. Yuan, C. Zhang et al., Polar-nonpolar synergy toward high-performance aqueous zinc-iodine batteries. Small 21(13), 2500223 (2025). https://doi.org/10.1002/smll.202500223
L. Wang, J. Guan, N. Li, J. Li, T. Duan et al., Amine-functionalized MIL-125 separator and MOF-derived carbon host for high-performance aqueous zinc-iodine batteries. Adv. Energy Mater. 15(45), e04201 (2025). https://doi.org/10.1002/aenm.202504201
W. He, S. Zuo, X. Xu, L. Zeng, L. Liu et al., Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Mater. Chem. Front. 5(5), 2201–2217 (2021). https://doi.org/10.1039/D0QM00693A
S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb2O5 layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40–51 (2022). https://doi.org/10.1016/j.ensm.2022.07.036
H. Liu, J.-G. Wang, W. Hua, L. Ren, H. Sun et al., Navigating fast and uniform zinc deposition via a versatile metal–organic complex interphase. Energy Environ. Sci. 15(5), 1872–1881 (2022). https://doi.org/10.1039/D2EE00209D
H. Wang, H. Li, Y. Tang, Z. Xu, K. Wang et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 32(48), 2207898 (2022). https://doi.org/10.1002/adfm.202207898
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/D2EE02931F
Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self‐adapting interface coating for stable Zn‐metal anodes. Adv. Mater. 34(2), 2105133 (2022). https://doi.org/10.1002/adma.202105133
W. Zhang, W. Qi, K. Yang, Y. Hu, F. Jiang et al., Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries. Energy Storage Mater. 71, 103616 (2024). https://doi.org/10.1016/j.ensm.2024.103616
Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
Q. Nian, X. Yang, H. Hong, P. Chen, Y. Zhao et al., Advancements in separator materials for aqueous zinc batteries. Nanoscale Horiz. 10(9), 1932–1955 (2025). https://doi.org/10.1039/D5NH00172B
C.-Y. Liu, Y.-D. Wang, H. Liu, Q. Chen, X. Jiang et al., Channel engineering strategy of precisely modified MOF/nanofiber composite separator for advanced aqueous zinc ion batteries. Compos. Part B Eng. 272, 111227 (2024). https://doi.org/10.1016/j.compositesb.2024.111227
T. Yuan, S. Qi, L. Ye, Y. Zhao, Y. Jiang et al., Metal-organic frameworks-based materials: a feasible path for redox flow battery. Coord. Chem. Rev. 531, 216503 (2025). https://doi.org/10.1016/j.ccr.2025.216503
H. Di, Y. An, J. Yang, D. Luan, X.W. Lou, Fluorine modified zeolitic imidazolate framework enables long-life Zn–I2 batteries by suppression of polyiodide shuttle. Angew. Chem. Int. Ed. 64(43), e202513312 (2025). https://doi.org/10.1002/anie.202513312
H. Zheng, J. Ding, J. Huang, J. Wang, H. Zhang et al., Metal-organic frameworks facilitating complexation for long-cycle zinc-bromine flow batteries. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202514730
X.-D. Zhou, X.-X. Wu, H.-J. Fu, P.-X. Lei, N. Li et al., Self-assembled Co-MOF@MXene heterostructures as bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Mater. Today Energy 52, 101950 (2025). https://doi.org/10.1016/j.mtener.2025.101950