2D Materials Boost Advanced Zn Anodes: Principles, Advances, and Challenges
Corresponding Author: Xiaowei Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 46
Abstract
Aqueous zinc-ion battery (ZIB) featuring with high safety, low cost, environmentally friendly, and high energy density is one of the most promising systems for large-scale energy storage application. Despite extensive research progress made in developing high-performance cathodes, the Zn anode issues, such as Zn dendrites, corrosion, and hydrogen evolution, have been observed to shorten ZIB’s lifespan seriously, thus restricting their practical application. Engineering advanced Zn anodes based on two-dimensional (2D) materials are widely investigated to address these issues. With atomic thickness, 2D materials possess ultrahigh specific surface area, much exposed active sites, superior mechanical strength and flexibility, and unique electrical properties, which confirm to be a promising alternative anode material for ZIBs. This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress. Firstly, the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced. Then, the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized. Finally, perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed.
Highlights:
1 The mechanisms of two-dimensional (2D) materials protecting Zn anodes were summarized.
2 The recent progress of 2D materials boosting advanced Zn anodes was exhaustively categorized and reviewed.
3 The prospects in the commercial application of aqueous zinc ion batteries were discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sust. Energy Rev. 39, 748 (2014). https://doi.org/10.1016/j.rser.2014.07.113
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19 (2015). https://doi.org/10.1038/nchem.2085
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543 (2018). https://doi.org/10.1038/s41563-018-0063-z
- T. Jin, H. Li, K. Zhu, P.F. Wang, P. Liu et al., Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342 (2020). https://doi.org/10.1039/c9cs00846b
- P. Poizot, F. Dolhem, Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4(6), 2003 (2011). https://doi.org/10.1039/c0ee00731e
- Y. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W. Zhang et al., A review of rechargeable batteries for portable electronic devices. InfoMat 1(1), 6 (2019). https://doi.org/10.1002/inf2.12000
- F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695 (2011). https://doi.org/10.1002/adma.201003587
- G.L. Soloveichik, Flow batteries: current status and trends. Chem. Rev. 115(20), 11533 (2015). https://doi.org/10.1021/cr500720t
- M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sust. Energy Rev. 69, 771 (2017). https://doi.org/10.1016/j.rser.2016.11.171
- J. Yi, X. Liu, P. Liang, K. Wu, J. Xu et al., Non-noble iron group (Fe Co, Ni)-based oxide electrocatalysts for aqueous zinc–air batteries: recent progress, challenges, and perspectives. Organometallics 38(6), 1186 (2018). https://doi.org/10.1021/acs.organomet.8b00508
- P. He, Q. Chen, M. Yan, X. Xu, L. Zhoun et al., Building better zinc-ion batteries: a materials perspective. J. Energy Chem. 1(3), 100022 (2019). https://doi.org/10.1016/j.enchem.2019.100022
- Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10(11), 1902104 (2019). https://doi.org/10.1002/aenm.201902104
- T. Jin, P.F. Wang, Q.C. Wang, K. Zhu, T. Deng et al., Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 59(34), 14511 (2020). https://doi.org/10.1002/anie.202003972
- F. Wang, X. Wu, C. Li, Y. Zhu, L. Fu et al., Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 9(12), 3570 (2016). https://doi.org/10.1039/c6ee02070d
- D. Zhang, J. Cao, X. Zhang, N. Insin, S. Wang et al., NiMn-layered double hydroxides chemically anchored on Ti3C2 MXene for superior lithium ion storage. ACS Appl. Energy Mater. 3(11), 11119 (2020). https://doi.org/10.1021/acsaem.0c02086
- B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang et al., Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 27(12), 1605784 (2017). https://doi.org/10.1002/adfm.201605784
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014). https://doi.org/10.1021/cr500192f
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
- D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
- L. Hu, P. Xiao, L. Xue, H. Li, T. Zhai, The rising zinc anodes for high-energy aqueous batteries. EnergyChem 3(2), 100052 (2021). https://doi.org/10.1016/j.enchem.2021.100052
- M. Yan, H. Ni, H. Pan, Rechargeable mild aqueous zinc batteries for grid storage. Adv. Energy Sustain. Res. 1(1), 2000026 (2020). https://doi.org/10.1002/aesr.202000026
- X. Liu, Y. Fang, P. Liang, J. Xu, B. Xing et al., Surface-tuned two-dimension MXene scaffold for highly reversible zinc metal anode. Chin. Chem. Lett. 32(9), 2899 (2021). https://doi.org/10.1016/j.cclet.2021.02.055
- Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, pH-buffer contained electrolyte for self-adjusted cathode-free Zn–MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2(11), 2100119 (2021). https://doi.org/10.1002/sstr.202100119
- L. Shan, Y. Wang, S. Liang, B. Tang, Y. Yang et al., Interfacial adsorption–insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. InfoMat 3(9), 1028 (2021). https://doi.org/10.1002/inf2.12223
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933 (2012). https://doi.org/10.1002/anie.201106307
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841 (2019). https://doi.org/10.1002/anie.201907830
- C. Wang, J. Li, Z. Zhou, Y. Pan, Z. Yu et al., Rechargeable zinc-air batteries with neutral electrolytes: recent advances, challenges, and prospects. EnergyChem 3(4), 100055 (2021). https://doi.org/10.1016/j.enchem.2021.100055
- T.T. Lv, X. Luo, G.Q. Yuan, S.Y. Yang, H. Pang, Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 428, 131211 (2022). https://doi.org/10.1016/j.cej.2021.131211
- F. Wang, J. Hu, Y. Liu, G. Yuan, S. Zhang et al., Turning coordination environment of 2D nickel-based metal-organic frameworks by π-conjugated molecule for enhancing glucose electrochemical sensor performance. Mater. Today Chem. 24, 100885 (2022). https://doi.org/10.1016/j.mtchem.2022.100885
- J. Cao, D. Zhang, X. Zhang, S. Wang, J. Han et al., Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 534, 147630 (2020). https://doi.org/10.1016/j.apsusc.2020.147630
- M. Han, L. Qin, Z. Liu, L. Zhang, X. Li et al., Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 20, 100626 (2021). https://doi.org/10.1016/j.mtener.2020.100626
- R. Yang, Y. Fan, R. Ye, Y. Tang, X. Cao et al., MnO2-based materials for environmental applications. Adv. Mater. 33(9), e2004862 (2021). https://doi.org/10.1002/adma.202004862
- D. Zhang, J. Cao, X. Zhang, N. Insin, S. Wang et al., Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 31(14), 2009412 (2021). https://doi.org/10.1002/adfm.202009412
- J. Zhao, Z. Xu, Z. Zhou, S. Xi, Y. Xia et al., A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells. ACS Nano 15(6), 10597 (2021). https://doi.org/10.1021/acsnano.1c03341
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157 (2018). https://doi.org/10.1039/c8ee01651h
- J. Cao, D. Zhang, Y. Yue, T. Pakornchote, T. Bovornratanaraks et al., Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Mater. Today Energy 21, 100824 (2021). https://doi.org/10.1016/j.mtener.2021.100824
- J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote et al., Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc‐ion batteries. Nano Energy 84, 105876 (2021). https://doi.org/10.1016/j.nanoen.2021.105876
- D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks et al., Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 13(32), 38416 (2021). https://doi.org/10.1021/acsami.1c11531
- H. Yi, R. Qin, S. Ding, Y. Wang, S. Li et al., Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 31(6), 2006970 (2020). https://doi.org/10.1002/adfm.202006970
- W. Deng, Z. Li, Y. Ye, Z. Zhou, Y. Li et al., Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater. 11(31), 2003639 (2021). https://doi.org/10.1002/aenm.202003639
- L. Ma, H. Cui, S. Chen, X. Li, B. Dong et al., Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy 81, 105632 (2021). https://doi.org/10.1016/j.nanoen.2020.105632
- Y. Zeng, X.F. Lu, S.L. Zhang, D. Luan, S. Li et al., Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 60(41), 22189 (2021). https://doi.org/10.1002/anie.202107697
- Y. Tian, M. Ju, X. Bin, Y. Luo, W. Que, Long cycle life aqueous rechargeable battery Zn/vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity. Chem. Eng. J. 430, 132864 (2022). https://doi.org/10.1016/j.cej.2021.132864
- Y. Yang, J. Zhou, L. Wang, Z. Jiao, M. Xiao et al., Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy 99, 107424 (2022). https://doi.org/10.1016/j.nanoen.2022.107424
- V. Jabbari, T. Foroozan, R. Shahbazian-Yassar, Dendritic Zn deposition in zinc-metal batteries and mitigation strategies. Adv. Energy Sustain. Res. 2(4), 2000082 (2021). https://doi.org/10.1002/aesr.202000082
- M. Zhou, S. Guo, G. Fang, H. Sun, X. Cao et al., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549 (2021). https://doi.org/10.1016/j.jechem.2020.07.021
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247 (2021). https://doi.org/10.1002/anie.202105756
- D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
- N. Dubouis, A. Serva, E. Salager, M. Deschamps, M. Salanne et al., The fate of water at the electrochemical interfaces: electrochemical behavior of free water versus coordinating water. J. Phys. Chem. Lett. 9(23), 6683 (2018). https://doi.org/10.1021/acs.jpclett.8b03066
- Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in-situ rescue in-service batteries. Adv. Mater. 31(43), e1903778 (2019). https://doi.org/10.1002/adma.201903778
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917 (2020). https://doi.org/10.1039/d0ee02162h
- L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), e1908121 (2020). https://doi.org/10.1002/adma.201908121
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743 (2020). https://doi.org/10.1038/s41560-020-0674-x
- J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li et al., Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12(10), 993 (2017). https://doi.org/10.1038/nnano.2017.129
- S. Liu, A. Wang, Q. Li, J. Wu, K. Chiou et al., Crumpled graphene balls stabilized dendrite-free lithium metal snodes. Joule 2(1), 184 (2018). https://doi.org/10.1016/j.joule.2017.11.004
- G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li et al., In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309 (2019). https://doi.org/10.1016/j.cej.2019.05.119
- C. Wei, H. Fei, Y. Tian, Y. An, H. Guo et al., Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Stor. Mater. 26, 223 (2020). https://doi.org/10.1016/j.ensm.2020.01.005
- C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
- N.R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte et al., Emerging applications of elemental 2D materials. Adv. Mater. 32(7), e1904302 (2020). https://doi.org/10.1002/adma.201904302
- C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen et al., Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 0(0), 2108017 (2021). https://doi.org/10.3866/pku.Whxb202108017
- X. Tian, Direct ink writing of 2D material-based supercapacitors. 2D Mater. 9(1), 012001 (2021). https://doi.org/10.1088/2053-1583/ac3f43
- T. Zeng, X. Meng, H. Huang, L. Zheng, H. Chen et al., Controllable synthesis of web-footed PdCu nanosheets and their electrocatalytic applications. Small 18(14), e2107623 (2022). https://doi.org/10.1002/smll.202107623
- L.Y. Zhang, C.X. Guo, H. Cao, S. Wang, Y. Ouyang et al., Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium. Chem. Eng. J. 431, 133237 (2022). https://doi.org/10.1016/j.cej.2021.133237
- J. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42(12), 7355 (1990). https://doi.org/10.1103/physreva.42.7355
- D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal snodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
- Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Stor. Mater. 16, 323 (2019). https://doi.org/10.1016/j.ensm.2018.05.026
- J. Yamaki, S. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74(2), 219 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
- J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5(3), 389 (2018). https://doi.org/10.1093/nsr/nwx077
- J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74(2), 219 (1998)
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330 (2020). https://doi.org/10.1039/d0ee02079f
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), e2001854 (2020). https://doi.org/10.1002/adma.202001854
- X. Zhang, R. Lv, W. Tang, G. Li, A. Wang et al., Challenges and opportunities for multivalent metal anodes in rechargeable batteries. Adv. Funct. Mater. 30(45), 2004187 (2020). https://doi.org/10.1002/adfm.202004187
- J. Gu, Y. Tao, H. Chen, Z. Cao, Y. Zhang et al., Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12(16), 2200115 (2022). https://doi.org/10.1002/aenm.202200115
- Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing‐scalable Ti3C2Tx MXene‐decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 204306 (2022). https://doi.org/10.1002/adfm.202204306
- Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma et al., Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14(6), 3492 (2021). https://doi.org/10.1039/d1ee00409c
- C. Shen, X. Li, N. Li, K. Xie, J.G. Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446 (2018). https://doi.org/10.1021/acsami.8b07781
- J.X. Zheng, Q. Zhao, T. Tang, J.F. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645 (2019). https://doi.org/10.1126/science.aax6873
- C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), e2003425 (2020). https://doi.org/10.1002/adma.202003425
- J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 4602 (2021). https://doi.org/10.1021/acsaem.1c00224
- Y. An, Y. Tian, Q. Man, H. Shen, C. Liu et al., Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano 16(4), 6755–6770 (2022). https://doi.org/10.1021/acsnano.2c01571
- X. Yan, Z. Chen, Y. Wang, H. Li, J. Zhang, In-situ growth of ZnO nanoplates on graphene for the application of high rate flexible quasi-solid-state Ni-Zn secondary battery. J. Power Sources 407, 137 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.071
- Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
- Y. Luo, Y. Yang, Y. Tao, D. Huang, B. Huang et al., Directing the preferred crystal orientation by a cellulose acetate/graphene oxide composite separator for dendrite-free Zn-metal anodes. ACS Appl. Energy Mater. 4(12), 14599 (2021). https://doi.org/10.1021/acsaem.1c03223
- M. Qiu, D. Wang, B. Tawiah, H. Jia, B. Fei et al., Constructing PEDOT:PSS/praphene sheet nanofluidic channels to achieve dendrite-free Zn anode. Compos. B Eng. 215, 108798 (2021). https://doi.org/10.1016/j.compositesb.2021.108798
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), e2101649 (2021). https://doi.org/10.1002/adma.202101649
- G. Chen, Z. Sang, J. Cheng, S. Tan, Z. Yi et al., Reversible and homogenous zinc deposition enabled by in-situ grown Cu ps on expanded graphite for dendrite-free and flexible zinc metal anodes. Energy Stor. Mater. 50, 589 (2022). https://doi.org/10.1016/j.ensm.2022.05.036
- X. Chen, R. Huang, M. Ding, H. He, F. Wang et al., Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 14(3), 3961–3969 (2022). https://doi.org/10.1021/acsami.1c18975
- S. Khamsanga, H. Uyama, W. Nuanwat, P. Pattananuwat, Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Sci. Rep. 12(1), 8689 (2022). https://doi.org/10.1038/s41598-022-12657-9
- R. Siburian, S. Paiman, F. Hutagalung, A.M.M. Ali, L. Simatupang et al., Developing nickel/praphene nanosheets as an alternative primary battery anode. Ceram. Int. 48(9), 12897 (2022). https://doi.org/10.1016/j.ceramint.2022.01.162
- X. Wang, J. Qin, Q. Hu, P. Das, P. Wen et al., Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 18(29), e2200678 (2022). https://doi.org/10.1002/smll.202200678
- P. Xue, C. Guo, L. Li, H. Li, D. Luo et al., A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34(14), e2110047 (2022). https://doi.org/10.1002/adma.202110047
- Y. An, Y. Tian, C. Liu, S. Xiong, J. Feng et al., Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 15(9), 15259 (2021). https://doi.org/10.1021/acsnano.1c05934
- H. Chen, M. Chen, W. Zhou, X. Han, B. Liu et al., Flexible Ti3C2Tx/nanocellulose hybrid film as a stable Zn-free anode for aqueous hybrid Zn-Li batteries. ACS Appl. Mater. Interfaces 14(5), 6876 (2022). https://doi.org/10.1021/acsami.1c23402
- Y. Tian, Y. An, Y. Yang, B. Xu, Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Stor. Mater. 49, 122 (2022). https://doi.org/10.1016/j.ensm.2022.03.045
- N. Wang, Z. Wu, Y. Long, D. Chen, C. Geng et al., MXene-assisted polymer coating from aqueous monomer solution towards dendrite-free zinc anodes. J. Energy Chem. 73, 277 (2022). https://doi.org/10.1016/j.jechem.2022.06.009
- Y. Zhang, Z. Cao, S. Liu, Z. Du, Y. Cui et al., Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12(13), 2103979 (2022). https://doi.org/10.1002/aenm.202103979
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010). https://doi.org/10.1002/adma.201001068
- X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120 (2021). https://doi.org/10.1039/d0ee03898a
- H. Gan, J. Wu, R. Li, B. Huang, H. Liu, Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Stor. Mater. 47, 602 (2022). https://doi.org/10.1016/j.ensm.2022.02.040
- W. Du, S. Huang, Y. Zhang, M. Ye, C.C. Li, Enable commercial zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Mater. 45, 465 (2022). https://doi.org/10.1016/j.ensm.2021.12.007
- X. Zhang, J. Li, K. Qi, Y. Yang, D. Liu et al., An ion-sieving janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv. Mater. 34(38), e2205175 (2022). https://doi.org/10.1002/adma.202205175
- C. Yin, M. Zhu, Y. Kong, Q. Wang, H. Zhou et al., Rapid synthesis of few-layer graphdiyne using radio frequency heating and its application for dendrite-free zinc anodes. 2D Mater. 8(4), 044003 (2021). https://doi.org/10.1088/2053-1583/ac105a
- Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32(25), e2001755 (2020). https://doi.org/10.1002/adma.202001755
- P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu et al., Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 403, 126425 (2021). https://doi.org/10.1016/j.cej.2020.126425
- L. Wu, Y. Zhang, P. Shang, Y. Dong, Z.S. Wu, Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J. Mater. Chem. A 9(48), 27408 (2021). https://doi.org/10.1039/d1ta08697a
- Y. Yang, T. Chen, B. Yu, M. Zhu, F. Meng et al., Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode. Chem. Eng. J. 433, 134077 (2022). https://doi.org/10.1016/j.cej.2021.134077
- J. Jiang, Z. Pan, J. Yuan, J. Shan, C. Chen et al., Zincophilic polymer semiconductor as multifunctional protective layer enables dendrite-free zinc metal anodes. Chem. Eng. J. 452, 139335 (2023). https://doi.org/10.1016/j.cej.2022.139335
- Y. Tian, Y. An, J. Feng, Y. Qian, MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater. Today 52, 225 (2022). https://doi.org/10.1016/j.mattod.2021.11.021
- J.E. Treifeldt, K.L. Firestein, J.F.S. Fernando, C. Zhang, D.P. Siriwardena et al., The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Mater. Des. 199, 109403 (2021). https://doi.org/10.1016/j.matdes.2020.109403
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861 (2021). https://doi.org/10.1002/anie.202012322
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34(1), e2106897 (2022). https://doi.org/10.1002/adma.202106897
- X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c08358
- L. Tan, C. Wei, Y. Zhang, Y. An, S. Xiong et al., Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J. 431, 134277 (2022). https://doi.org/10.1016/j.cej.2021.134277
- X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Stor. Mater. 50, 243 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13(10), 11676 (2019). https://doi.org/10.1021/acsnano.9b05599
- Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Stor. Mater. 41, 343 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- Y. Wang, X. Xu, J. Yin, G. Huang, T. Guo et al., MoS2 mediated epitaxial plating of Zn metal anodes. Adv Mater., 2208171 (2022). https://doi.org/10.1002/adma.202208171
- Y. Zhang, M. Zhu, G. Wang, F.H. Du, F. Yu et al., Dendrites-free Zn metal anodes enabled by an artificial protective layer filled with 2D anionic nanosheets. Small Methods 5(10), e2100650 (2021). https://doi.org/10.1002/smtd.202100650
- H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
- L. Lei, F. Chen, Y. Wu, J. Shen, X.J. Wu et al., Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Sci. China Chem. 65(11), 2205 (2022). https://doi.org/10.1007/s11426-022-1324-0
- J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
References
O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sust. Energy Rev. 39, 748 (2014). https://doi.org/10.1016/j.rser.2014.07.113
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19 (2015). https://doi.org/10.1038/nchem.2085
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543 (2018). https://doi.org/10.1038/s41563-018-0063-z
T. Jin, H. Li, K. Zhu, P.F. Wang, P. Liu et al., Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49(8), 2342 (2020). https://doi.org/10.1039/c9cs00846b
P. Poizot, F. Dolhem, Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4(6), 2003 (2011). https://doi.org/10.1039/c0ee00731e
Y. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W. Zhang et al., A review of rechargeable batteries for portable electronic devices. InfoMat 1(1), 6 (2019). https://doi.org/10.1002/inf2.12000
F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695 (2011). https://doi.org/10.1002/adma.201003587
G.L. Soloveichik, Flow batteries: current status and trends. Chem. Rev. 115(20), 11533 (2015). https://doi.org/10.1021/cr500720t
M.A. Hannan, M.M. Hoque, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sust. Energy Rev. 69, 771 (2017). https://doi.org/10.1016/j.rser.2016.11.171
J. Yi, X. Liu, P. Liang, K. Wu, J. Xu et al., Non-noble iron group (Fe Co, Ni)-based oxide electrocatalysts for aqueous zinc–air batteries: recent progress, challenges, and perspectives. Organometallics 38(6), 1186 (2018). https://doi.org/10.1021/acs.organomet.8b00508
P. He, Q. Chen, M. Yan, X. Xu, L. Zhoun et al., Building better zinc-ion batteries: a materials perspective. J. Energy Chem. 1(3), 100022 (2019). https://doi.org/10.1016/j.enchem.2019.100022
Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10(11), 1902104 (2019). https://doi.org/10.1002/aenm.201902104
T. Jin, P.F. Wang, Q.C. Wang, K. Zhu, T. Deng et al., Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 59(34), 14511 (2020). https://doi.org/10.1002/anie.202003972
F. Wang, X. Wu, C. Li, Y. Zhu, L. Fu et al., Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 9(12), 3570 (2016). https://doi.org/10.1039/c6ee02070d
D. Zhang, J. Cao, X. Zhang, N. Insin, S. Wang et al., NiMn-layered double hydroxides chemically anchored on Ti3C2 MXene for superior lithium ion storage. ACS Appl. Energy Mater. 3(11), 11119 (2020). https://doi.org/10.1021/acsaem.0c02086
B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang et al., Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 27(12), 1605784 (2017). https://doi.org/10.1002/adfm.201605784
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014). https://doi.org/10.1021/cr500192f
J.Y. Hwang, S.T. Myung, Y.K. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28(43), 1802938 (2018). https://doi.org/10.1002/adfm.201802938
D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
L. Hu, P. Xiao, L. Xue, H. Li, T. Zhai, The rising zinc anodes for high-energy aqueous batteries. EnergyChem 3(2), 100052 (2021). https://doi.org/10.1016/j.enchem.2021.100052
M. Yan, H. Ni, H. Pan, Rechargeable mild aqueous zinc batteries for grid storage. Adv. Energy Sustain. Res. 1(1), 2000026 (2020). https://doi.org/10.1002/aesr.202000026
X. Liu, Y. Fang, P. Liang, J. Xu, B. Xing et al., Surface-tuned two-dimension MXene scaffold for highly reversible zinc metal anode. Chin. Chem. Lett. 32(9), 2899 (2021). https://doi.org/10.1016/j.cclet.2021.02.055
Z. Liu, Y. Yang, S. Liang, B. Lu, J. Zhou, pH-buffer contained electrolyte for self-adjusted cathode-free Zn–MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2(11), 2100119 (2021). https://doi.org/10.1002/sstr.202100119
L. Shan, Y. Wang, S. Liang, B. Tang, Y. Yang et al., Interfacial adsorption–insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. InfoMat 3(9), 1028 (2021). https://doi.org/10.1002/inf2.12223
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933 (2012). https://doi.org/10.1002/anie.201106307
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841 (2019). https://doi.org/10.1002/anie.201907830
C. Wang, J. Li, Z. Zhou, Y. Pan, Z. Yu et al., Rechargeable zinc-air batteries with neutral electrolytes: recent advances, challenges, and prospects. EnergyChem 3(4), 100055 (2021). https://doi.org/10.1016/j.enchem.2021.100055
T.T. Lv, X. Luo, G.Q. Yuan, S.Y. Yang, H. Pang, Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 428, 131211 (2022). https://doi.org/10.1016/j.cej.2021.131211
F. Wang, J. Hu, Y. Liu, G. Yuan, S. Zhang et al., Turning coordination environment of 2D nickel-based metal-organic frameworks by π-conjugated molecule for enhancing glucose electrochemical sensor performance. Mater. Today Chem. 24, 100885 (2022). https://doi.org/10.1016/j.mtchem.2022.100885
J. Cao, D. Zhang, X. Zhang, S. Wang, J. Han et al., Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 534, 147630 (2020). https://doi.org/10.1016/j.apsusc.2020.147630
M. Han, L. Qin, Z. Liu, L. Zhang, X. Li et al., Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Mater. Today Energy 20, 100626 (2021). https://doi.org/10.1016/j.mtener.2020.100626
R. Yang, Y. Fan, R. Ye, Y. Tang, X. Cao et al., MnO2-based materials for environmental applications. Adv. Mater. 33(9), e2004862 (2021). https://doi.org/10.1002/adma.202004862
D. Zhang, J. Cao, X. Zhang, N. Insin, S. Wang et al., Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 31(14), 2009412 (2021). https://doi.org/10.1002/adfm.202009412
J. Zhao, Z. Xu, Z. Zhou, S. Xi, Y. Xia et al., A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells. ACS Nano 15(6), 10597 (2021). https://doi.org/10.1021/acsnano.1c03341
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 11(11), 3157 (2018). https://doi.org/10.1039/c8ee01651h
J. Cao, D. Zhang, Y. Yue, T. Pakornchote, T. Bovornratanaraks et al., Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Mater. Today Energy 21, 100824 (2021). https://doi.org/10.1016/j.mtener.2021.100824
J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote et al., Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc‐ion batteries. Nano Energy 84, 105876 (2021). https://doi.org/10.1016/j.nanoen.2021.105876
D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks et al., Two birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 13(32), 38416 (2021). https://doi.org/10.1021/acsami.1c11531
H. Yi, R. Qin, S. Ding, Y. Wang, S. Li et al., Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 31(6), 2006970 (2020). https://doi.org/10.1002/adfm.202006970
W. Deng, Z. Li, Y. Ye, Z. Zhou, Y. Li et al., Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater. 11(31), 2003639 (2021). https://doi.org/10.1002/aenm.202003639
L. Ma, H. Cui, S. Chen, X. Li, B. Dong et al., Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: the electrochemical redox reactions. Nano Energy 81, 105632 (2021). https://doi.org/10.1016/j.nanoen.2020.105632
Y. Zeng, X.F. Lu, S.L. Zhang, D. Luan, S. Li et al., Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 60(41), 22189 (2021). https://doi.org/10.1002/anie.202107697
Y. Tian, M. Ju, X. Bin, Y. Luo, W. Que, Long cycle life aqueous rechargeable battery Zn/vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity. Chem. Eng. J. 430, 132864 (2022). https://doi.org/10.1016/j.cej.2021.132864
Y. Yang, J. Zhou, L. Wang, Z. Jiao, M. Xiao et al., Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy 99, 107424 (2022). https://doi.org/10.1016/j.nanoen.2022.107424
V. Jabbari, T. Foroozan, R. Shahbazian-Yassar, Dendritic Zn deposition in zinc-metal batteries and mitigation strategies. Adv. Energy Sustain. Res. 2(4), 2000082 (2021). https://doi.org/10.1002/aesr.202000082
M. Zhou, S. Guo, G. Fang, H. Sun, X. Cao et al., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549 (2021). https://doi.org/10.1016/j.jechem.2020.07.021
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247 (2021). https://doi.org/10.1002/anie.202105756
D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
N. Dubouis, A. Serva, E. Salager, M. Deschamps, M. Salanne et al., The fate of water at the electrochemical interfaces: electrochemical behavior of free water versus coordinating water. J. Phys. Chem. Lett. 9(23), 6683 (2018). https://doi.org/10.1021/acs.jpclett.8b03066
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in-situ rescue in-service batteries. Adv. Mater. 31(43), e1903778 (2019). https://doi.org/10.1002/adma.201903778
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917 (2020). https://doi.org/10.1039/d0ee02162h
L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), e1908121 (2020). https://doi.org/10.1002/adma.201908121
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743 (2020). https://doi.org/10.1038/s41560-020-0674-x
J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li et al., Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12(10), 993 (2017). https://doi.org/10.1038/nnano.2017.129
S. Liu, A. Wang, Q. Li, J. Wu, K. Chiou et al., Crumpled graphene balls stabilized dendrite-free lithium metal snodes. Joule 2(1), 184 (2018). https://doi.org/10.1016/j.joule.2017.11.004
G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li et al., In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 373, 1309 (2019). https://doi.org/10.1016/j.cej.2019.05.119
C. Wei, H. Fei, Y. Tian, Y. An, H. Guo et al., Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Stor. Mater. 26, 223 (2020). https://doi.org/10.1016/j.ensm.2020.01.005
C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
N.R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte et al., Emerging applications of elemental 2D materials. Adv. Mater. 32(7), e1904302 (2020). https://doi.org/10.1002/adma.201904302
C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen et al., Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 0(0), 2108017 (2021). https://doi.org/10.3866/pku.Whxb202108017
X. Tian, Direct ink writing of 2D material-based supercapacitors. 2D Mater. 9(1), 012001 (2021). https://doi.org/10.1088/2053-1583/ac3f43
T. Zeng, X. Meng, H. Huang, L. Zheng, H. Chen et al., Controllable synthesis of web-footed PdCu nanosheets and their electrocatalytic applications. Small 18(14), e2107623 (2022). https://doi.org/10.1002/smll.202107623
L.Y. Zhang, C.X. Guo, H. Cao, S. Wang, Y. Ouyang et al., Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium. Chem. Eng. J. 431, 133237 (2022). https://doi.org/10.1016/j.cej.2021.133237
J. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42(12), 7355 (1990). https://doi.org/10.1103/physreva.42.7355
D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal snodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
Y. Wu, Y. Yu, 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Stor. Mater. 16, 323 (2019). https://doi.org/10.1016/j.ensm.2018.05.026
J. Yamaki, S. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74(2), 219 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
J. Mei, Y. Zhang, T. Liao, Z. Sun, S.X. Dou, Strategies for improving the lithium-storage performance of 2D nanomaterials. Natl. Sci. Rev. 5(3), 389 (2018). https://doi.org/10.1093/nsr/nwx077
J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74(2), 219 (1998)
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330 (2020). https://doi.org/10.1039/d0ee02079f
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), e2001854 (2020). https://doi.org/10.1002/adma.202001854
X. Zhang, R. Lv, W. Tang, G. Li, A. Wang et al., Challenges and opportunities for multivalent metal anodes in rechargeable batteries. Adv. Funct. Mater. 30(45), 2004187 (2020). https://doi.org/10.1002/adfm.202004187
J. Gu, Y. Tao, H. Chen, Z. Cao, Y. Zhang et al., Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12(16), 2200115 (2022). https://doi.org/10.1002/aenm.202200115
Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing‐scalable Ti3C2Tx MXene‐decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 204306 (2022). https://doi.org/10.1002/adfm.202204306
Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma et al., Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14(6), 3492 (2021). https://doi.org/10.1039/d1ee00409c
C. Shen, X. Li, N. Li, K. Xie, J.G. Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446 (2018). https://doi.org/10.1021/acsami.8b07781
J.X. Zheng, Q. Zhao, T. Tang, J.F. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645 (2019). https://doi.org/10.1126/science.aax6873
C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), e2003425 (2020). https://doi.org/10.1002/adma.202003425
J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 4602 (2021). https://doi.org/10.1021/acsaem.1c00224
Y. An, Y. Tian, Q. Man, H. Shen, C. Liu et al., Highly reversible Zn metal anodes enabled by freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator for flexible Zn-MnO2 batteries. ACS Nano 16(4), 6755–6770 (2022). https://doi.org/10.1021/acsnano.2c01571
X. Yan, Z. Chen, Y. Wang, H. Li, J. Zhang, In-situ growth of ZnO nanoplates on graphene for the application of high rate flexible quasi-solid-state Ni-Zn secondary battery. J. Power Sources 407, 137 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.071
Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
Y. Luo, Y. Yang, Y. Tao, D. Huang, B. Huang et al., Directing the preferred crystal orientation by a cellulose acetate/graphene oxide composite separator for dendrite-free Zn-metal anodes. ACS Appl. Energy Mater. 4(12), 14599 (2021). https://doi.org/10.1021/acsaem.1c03223
M. Qiu, D. Wang, B. Tawiah, H. Jia, B. Fei et al., Constructing PEDOT:PSS/praphene sheet nanofluidic channels to achieve dendrite-free Zn anode. Compos. B Eng. 215, 108798 (2021). https://doi.org/10.1016/j.compositesb.2021.108798
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), e2101649 (2021). https://doi.org/10.1002/adma.202101649
G. Chen, Z. Sang, J. Cheng, S. Tan, Z. Yi et al., Reversible and homogenous zinc deposition enabled by in-situ grown Cu ps on expanded graphite for dendrite-free and flexible zinc metal anodes. Energy Stor. Mater. 50, 589 (2022). https://doi.org/10.1016/j.ensm.2022.05.036
X. Chen, R. Huang, M. Ding, H. He, F. Wang et al., Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 14(3), 3961–3969 (2022). https://doi.org/10.1021/acsami.1c18975
S. Khamsanga, H. Uyama, W. Nuanwat, P. Pattananuwat, Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Sci. Rep. 12(1), 8689 (2022). https://doi.org/10.1038/s41598-022-12657-9
R. Siburian, S. Paiman, F. Hutagalung, A.M.M. Ali, L. Simatupang et al., Developing nickel/praphene nanosheets as an alternative primary battery anode. Ceram. Int. 48(9), 12897 (2022). https://doi.org/10.1016/j.ceramint.2022.01.162
X. Wang, J. Qin, Q. Hu, P. Das, P. Wen et al., Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 18(29), e2200678 (2022). https://doi.org/10.1002/smll.202200678
P. Xue, C. Guo, L. Li, H. Li, D. Luo et al., A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater. 34(14), e2110047 (2022). https://doi.org/10.1002/adma.202110047
Y. An, Y. Tian, C. Liu, S. Xiong, J. Feng et al., Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 15(9), 15259 (2021). https://doi.org/10.1021/acsnano.1c05934
H. Chen, M. Chen, W. Zhou, X. Han, B. Liu et al., Flexible Ti3C2Tx/nanocellulose hybrid film as a stable Zn-free anode for aqueous hybrid Zn-Li batteries. ACS Appl. Mater. Interfaces 14(5), 6876 (2022). https://doi.org/10.1021/acsami.1c23402
Y. Tian, Y. An, Y. Yang, B. Xu, Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Stor. Mater. 49, 122 (2022). https://doi.org/10.1016/j.ensm.2022.03.045
N. Wang, Z. Wu, Y. Long, D. Chen, C. Geng et al., MXene-assisted polymer coating from aqueous monomer solution towards dendrite-free zinc anodes. J. Energy Chem. 73, 277 (2022). https://doi.org/10.1016/j.jechem.2022.06.009
Y. Zhang, Z. Cao, S. Liu, Z. Du, Y. Cui et al., Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12(13), 2103979 (2022). https://doi.org/10.1002/aenm.202103979
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010). https://doi.org/10.1002/adma.201001068
X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120 (2021). https://doi.org/10.1039/d0ee03898a
H. Gan, J. Wu, R. Li, B. Huang, H. Liu, Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Stor. Mater. 47, 602 (2022). https://doi.org/10.1016/j.ensm.2022.02.040
W. Du, S. Huang, Y. Zhang, M. Ye, C.C. Li, Enable commercial zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Mater. 45, 465 (2022). https://doi.org/10.1016/j.ensm.2021.12.007
X. Zhang, J. Li, K. Qi, Y. Yang, D. Liu et al., An ion-sieving janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv. Mater. 34(38), e2205175 (2022). https://doi.org/10.1002/adma.202205175
C. Yin, M. Zhu, Y. Kong, Q. Wang, H. Zhou et al., Rapid synthesis of few-layer graphdiyne using radio frequency heating and its application for dendrite-free zinc anodes. 2D Mater. 8(4), 044003 (2021). https://doi.org/10.1088/2053-1583/ac105a
Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32(25), e2001755 (2020). https://doi.org/10.1002/adma.202001755
P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu et al., Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 403, 126425 (2021). https://doi.org/10.1016/j.cej.2020.126425
L. Wu, Y. Zhang, P. Shang, Y. Dong, Z.S. Wu, Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J. Mater. Chem. A 9(48), 27408 (2021). https://doi.org/10.1039/d1ta08697a
Y. Yang, T. Chen, B. Yu, M. Zhu, F. Meng et al., Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode. Chem. Eng. J. 433, 134077 (2022). https://doi.org/10.1016/j.cej.2021.134077
J. Jiang, Z. Pan, J. Yuan, J. Shan, C. Chen et al., Zincophilic polymer semiconductor as multifunctional protective layer enables dendrite-free zinc metal anodes. Chem. Eng. J. 452, 139335 (2023). https://doi.org/10.1016/j.cej.2022.139335
Y. Tian, Y. An, J. Feng, Y. Qian, MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater. Today 52, 225 (2022). https://doi.org/10.1016/j.mattod.2021.11.021
J.E. Treifeldt, K.L. Firestein, J.F.S. Fernando, C. Zhang, D.P. Siriwardena et al., The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Mater. Des. 199, 109403 (2021). https://doi.org/10.1016/j.matdes.2020.109403
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861 (2021). https://doi.org/10.1002/anie.202012322
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34(1), e2106897 (2022). https://doi.org/10.1002/adma.202106897
X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c08358
L. Tan, C. Wei, Y. Zhang, Y. An, S. Xiong et al., Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J. 431, 134277 (2022). https://doi.org/10.1016/j.cej.2021.134277
X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Stor. Mater. 50, 243 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13(10), 11676 (2019). https://doi.org/10.1021/acsnano.9b05599
Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Stor. Mater. 41, 343 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
Y. Wang, X. Xu, J. Yin, G. Huang, T. Guo et al., MoS2 mediated epitaxial plating of Zn metal anodes. Adv Mater., 2208171 (2022). https://doi.org/10.1002/adma.202208171
Y. Zhang, M. Zhu, G. Wang, F.H. Du, F. Yu et al., Dendrites-free Zn metal anodes enabled by an artificial protective layer filled with 2D anionic nanosheets. Small Methods 5(10), e2100650 (2021). https://doi.org/10.1002/smtd.202100650
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
L. Lei, F. Chen, Y. Wu, J. Shen, X.J. Wu et al., Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes. Sci. China Chem. 65(11), 2205 (2022). https://doi.org/10.1007/s11426-022-1324-0
J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82 (2022). https://doi.org/10.1016/j.ensm.2022.02.054