Advancing Energy Development with MBene: Chemical Mechanism, AI, and Applications in Energy Storage and Harvesting
Corresponding Author: Xiaowei Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 97
Abstract
MXene derivatives are notable two-dimensional nanomaterials with numerous prospective applications in the domains of energy development. MXene derivative, MBene, diversifies its focus on energy storage and harvesting due to its exceptional electrical conductivity, structural flexibility, and mechanical properties. This comprehensive review describes the sandwich-like structure of the synthesized MBene, derived from its multilayered parent material and its distinct chemical framework to date. The fields of focus encompass the investigation of novel MBenes, the study of phase-changing mechanisms, and the examination of hex-MBenes, ortho-MBenes, tetra-MBenes, tri-MBenes, and MXenes with identical transition metal components. A critical analysis is also provided on the electrochemical mechanism and performance of MBene in energy storage (Li/Na/Mg/Ca/Li–S batteries and supercapacitors), as well as conversion and harvesting (CO2 reduction, and nitrogen reduction reactions). The persistent difficulties associated with conducting experimental synthesis and establishing artificial intelligence-based forecasts are extensively deliberated alongside the potential and forthcoming prospects of MBenes. This review provides a single platform for an overview of the MBene’s potential in energy storage and harvesting.
Highlights:
1 Revealing the synergistic potential of MBene as an advanced material.
2 Comprehensive study into MBene chemistry and electrochemical efficacy.
3 The potential research for batteries, supercapacitors, CO2 reduction, and nitrogen reduction reactions is unveiled.
4 AI-driven predictions and limitations in experimental synthesis are addressed comprehensively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.H. Solangi, F. Hussin, A. Anjum, N. Sabzoi, S.A. Mazari et al., A review of encapsulated ionic liquids for CO2 capture. J. Mol. Liq. 374, 121266 (2023). https://doi.org/10.1016/j.molliq.2023.121266
- X. Han, C. Hao, Y. Peng, H. Yu, T. Zhang et al., Novel cellulosic fiber composites with integrated multi-band electromagnetic interference shielding and energy storage functionalities. Nano-Micro Lett. 17(1), 122 (2025). https://doi.org/10.1007/s40820-025-01652-0
- N.H. Solangi, N.M. Mubarak, R.R. Karri, S.A. Mazari, A.S. Jatoi et al., MXene-based phase change materials for solar thermal energy storage. Energy Convers. Manag. 273, 116432 (2022). https://doi.org/10.1016/j.enconman.2022.116432
- J. Chen, W. Zhang, R. Chen, Y. Dai, J. Zhang et al., From synthesis to energy storage, the microchemistry of MXene and MBene. Adv. Energy Mater. 15(17), 2403757 (2025). https://doi.org/10.1002/aenm.202403757
- C.A.F. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16(1), 1 (2023). https://doi.org/10.1007/s40820-023-01222-2
- D. Bury, M. Jakubczak, M.A.K. Purbayanto, M. Rybak, M. Birowska et al., Wet-chemical etching and delamination of MoAlB into MBene and its outstanding photocatalytic performance. Adv. Funct. Mater. 33(50), 2308156 (2023). https://doi.org/10.1002/adfm.202308156
- I. Hussain, W.U. Arifeen, S.A. Khan, S. Aftab, M.S. Javed et al., M4X3 MXenes: application in energy storage devices. Nano-Micro Lett. 16(1), 215 (2024). https://doi.org/10.1007/s40820-024-01418-0
- N.H. Solangi, S. Ali Mazari, N.M. Mubarak, R.R. Karri, N. Rajamohan et al., Recent trends in MXene-based material for biomedical applications. Environ. Res. 222, 115337 (2023). https://doi.org/10.1016/j.envres.2023.115337
- R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15(1), 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
- B. Zhang, J. Zhou, Z. Sun, MBenes: progress, challenges and future. J. Mater. Chem. A 10(30), 15865–15880 (2022). https://doi.org/10.1039/d2ta03482d
- M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54(13), 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
- S. Kota, M. Sokol, M.W. Barsoum, A progress report on the MAB phases: atomically laminated, ternary transition metal borides. Int. Mater. Rev. 65(4), 226–255 (2020). https://doi.org/10.1080/09506608.2019.1637090
- M. Ozkan, K.A.M. Quiros, J.M. Watkins, T.M. Nelson, N.D. Singh et al., Curbing pollutant CO2 by using two-dimensional MXenes and MBenes. Chem 10(2), 443–483 (2024). https://doi.org/10.1016/j.chempr.2023.09.001
- J. Wang, T.-N. Ye, Y. Gong, J. Wu, N. Miao et al., Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 10(1), 2284 (2019). https://doi.org/10.1038/s41467-019-10297-8
- N. Miao, Y. Gong, H. Zhang, Q. Shen, R. Yang et al., Discovery of two-dimensional hexagonal MBene HfBO and exploration on its potential for lithium-ion storage. Angew. Chem. Int. Ed. 62(36), e202308436 (2023). https://doi.org/10.1002/anie.202308436
- A. Hayat, T. Bashir, A.M. Ahmed, Z. Ajmal, M.M. Alghamdi et al., Novel 2D MBenes-synthesis, structure, properties with excellent performance in energy conversion and storage: a review. Mater. Sci. Eng. R. Rep. 159, 100796 (2024). https://doi.org/10.1016/j.mser.2024.100796
- Z. Liu, W. Gao, L. Liu, Y. Gao, C. Zhang et al., Spin polarization induced by atomic strain of MBene promotes the O2− production for groundwater disinfection. Nat. Commun. 16(1), 197 (2025). https://doi.org/10.1038/s41467-024-55626-8
- V.G. Nair, M. Birowska, D. Bury, M. Jakubczak, A. Rosenkranz et al., 2D mbenes: a novel member in the flatland. Adv. Mater. 34(23), 2108840 (2022). https://doi.org/10.1002/adma.202108840
- A. Mockute, A. Kostka, L. Abdellaoui, O. Krysiak, W. Schuhmann et al., Structural and hydrogen evolution electrocatalysis properties of Cr–Al–B MAB phase thin films. Adv. Eng. Mater. 26(23), 2401063 (2024). https://doi.org/10.1002/adem.202401063
- D.B. Tripathy, Novel two-dimensional MBenes: synthesis, properties, and energy storage and electrocatalytic applications of two-dimensional metal borides. ACS Appl. Eng. Mater. 2(5), 1209–1224 (2024). https://doi.org/10.1021/acsaenm.4c00211
- Y. Guo, Z. Du, Z. Cao, B. Li, S. Yang, MXene derivatives for energy storage and conversions. Small Meth. 7(8), 2201559 (2023). https://doi.org/10.1002/smtd.202201559
- S. Javaid, A. Hussain, R.T.A. Khan, Adsorption of noble fission gas atoms Xe and Kr on Ti- and V-based bare MXenes: an ab-initio DFT investigation. Surf. Sci. 739, 122387 (2024). https://doi.org/10.1016/j.susc.2023.122387
- M. Wu, Z. Wang, G. Chen, M. Zhang, T. Sun et al., Synergistic effects and products distribution during co-pyrolysis of biomass and plastics. J. Energy Inst. 111, 101392 (2023). https://doi.org/10.1016/j.joei.2023.101392
- Z. Guo, J. Zhou, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5(45), 23530–23535 (2017). https://doi.org/10.1039/C7TA08665B
- W. Cao, J. Nie, Y. Cao, C. Gao, M. Wang et al., A review of how to improve Ti3C2Tx MXene stability. Chem. Eng. J. 496, 154097 (2024). https://doi.org/10.1016/j.cej.2024.154097
- R. Xu, Y. Kang, W. Zhang, B. Pan, X. Zhang, Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving. Nat. Commun. 14(1), 4907 (2023). https://doi.org/10.1038/s41467-023-40742-8
- Z. Jiang, P. Wang, X. Jiang, J. Zhao, MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz. 3(3), 335–341 (2018). https://doi.org/10.1039/C7NH00197E
- S. Zhou, X. Yang, W. Pei, Z. Jiang, J. Zhao, MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J. Phys. Energy 3(1), 012002 (2021). https://doi.org/10.1088/2515-7655/abb6d1
- H. Zhou, Z. Chen, E. Kountoupi, A. Tsoukalou, P.M. Abdala et al., Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nat. Commun. 12(1), 5510 (2021). https://doi.org/10.1038/s41467-021-25784-0
- I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31(2), 1805472 (2019). https://doi.org/10.1002/adma.201805472
- M. Ozkan, MXenes vs MBenes: demystifying the materials of tomorrow’s carbon capture revolution. MRS Energy Sustain 11(1), 181–190 (2024). https://doi.org/10.1557/s43581-024-00082-6
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Z. Zhang, Y. Li, F. Mo, J. Wang, W. Ling et al., MBene with redox-active terminal groups for an energy-dense cascade aqueous battery. Adv. Mater. 36(16), 2311914 (2024). https://doi.org/10.1002/adma.202311914
- Y. Yang, H. Wang, C. Wang, J. Liu, H. Wu et al., Novel 2D material of MBenes: structures, synthesis, properties, and applications in energy conversion and storage. Small 20(51), 2405870 (2024). https://doi.org/10.1002/smll.202405870
- T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo et al., All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci. Rep. 6, 23289 (2016). https://doi.org/10.1038/srep23289
- I.M. Arias-Camacho, N. Gonzalez Szwacki, Exploring the structural, electronic, magnetic, and transport properties of 2D Cr, Fe, and Zr monoborides. Materials 16(14), 5104 (2023). https://doi.org/10.3390/ma16145104
- H. Gunda, L.E. Klebanoff, P.A. Sharma, A.K. Varma, V. Dolia et al., Progress, challenges, and opportunities in the synthesis, characterization, and application of metal-boride-derived two-dimensional nanostructures. ACS Mater. Lett. 3(5), 535–556 (2021). https://doi.org/10.1021/acsmaterialslett.1c00086
- M. Dahlqvist, Q. Tao, J. Zhou, J. Palisaitis, P.O.Å. Persson et al., Theoretical prediction and synthesis of a family of atomic laminate metal borides with in-plane chemical ordering. J. Am. Chem. Soc. 142(43), 18583–18591 (2020). https://doi.org/10.1021/jacs.0c08113
- T. Bo, P.-F. Liu, J. Zhang, F. Wang, B.-T. Wang, Tetragonal and trigonal Mo2B2 monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 21(9), 5178–5188 (2019). https://doi.org/10.1039/C9CP00012G
- M. Jakubczak, A. Szuplewska, A. Rozmysłowska-Wojciechowska, A. Rosenkranz, A.M. Jastrzębska, Novel 2D mbenes: synthesis, structure, and biotechnological potential. Adv. Funct. Mater. 31(38), 2103048 (2021). https://doi.org/10.1002/adfm.202103048
- H. Zhang, F.-Z. Dai, H. Xiang, X. Wang, Z. Zhang et al., Phase pure and well crystalline Cr2AlB2: a key precursor for two-dimensional CrB. J. Mater. Sci. Technol. 35(8), 1593–1600 (2019). https://doi.org/10.1016/j.jmst.2019.03.031
- L. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140(28), 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705
- Z. Jin, D. Chen, P. Zhao, Y. Wen, M. Fan et al., Coordination-induced exfoliation to monolayer bi-anchored MnB2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 10(4), 1861–1872 (2020). https://doi.org/10.7150/thno.39715
- H. Li, J. Lei, L. Zhu, Y. Yao, Y. Li et al., MOF synthesis using waste PET for applications of adsorption, catalysis and energy storage. Green Energy Environ. 9(11), 1650–1665 (2024). https://doi.org/10.1016/j.gee.2024.06.003
- N. Miao, Z. Duan, S. Wang, Y. Cui, S. Feng et al., H-MBenes: promising two-dimensional material family for room-temperature antiferromagnetic and hydrogen evolution reaction applications. ACS Appl. Mater. Interfaces 16(5), 5792–5802 (2024). https://doi.org/10.1021/acsami.3c15360
- H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Hydrogen therapy: acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1970054 (2019). https://doi.org/10.1002/adhm.201970054
- R. Sahu, D. Bogdanovski, J.-O. Achenbach, S. Zhang, M. Hans et al., Direct MoB MBene domain formation in magnetron sputtered MoAlB thin films. Nanoscale 13(43), 18077–18083 (2021). https://doi.org/10.1039/D1NR05712J
- S. Jin, Z. Shi, R. Wang, Y. Guo, L. Wang et al., 2D MoB MBene: an efficient co-catalyst for photocatalytic hydrogen production under visible light. ACS Nano 18(19), 12524–12536 (2024). https://doi.org/10.1021/acsnano.4c02642
- L. Alameda, R.W. Lord, J.A. Barr, P. Moradifar, Z.P. Metzger et al., Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures. J. Am. Chem. Soc. 141(27), 10852–10861 (2019). https://doi.org/10.1021/jacs.9b04726
- R. Khaledialidusti, M. Khazaei, V. Wang, N. Miao, C. Si et al., Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. J. Phys. Condens. Matter 33(15), 155503 (2021). https://doi.org/10.1088/1361-648x/abbb0e
- S. Liu, L. Bai, J. Wang, M. Zhang, L. Niu, A first-principles study of functionalization effects on mechanical stability and electronic structure of Mo2B2 monolayers. Mater. Lett. 351, 135068 (2023). https://doi.org/10.1016/j.matlet.2023.135068
- S. Li, W. Sun, T. Zhu, S. Wang, J. Zhang et al., Top-down design of high-performance V-based MBene anode for Li/Na-ion batteries. Phys. Chem. Chem. Phys. 26(7), 6396–6409 (2024). https://doi.org/10.1039/d3cp05743g
- N. Miao, J. Wang, Y. Gong, J. Wu, H. Niu et al., Computational prediction of boron-based MAX phases and MXene derivatives. Chem. Mater. 32(16), 6947–6957 (2020). https://doi.org/10.1021/acs.chemmater.0c02139
- M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5(10), 2488–2503 (2017). https://doi.org/10.1039/c7tc00140a
- M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, S. Yunoki, Recent advances in MXenes: from fundamentals to applications. Curr. Opin. Solid State Mater. Sci. 23(3), 164–178 (2019). https://doi.org/10.1016/j.cossms.2019.01.002
- N.H. Solangi, R.R. Karri, N.M. Mubarak, S.A. Mazari, A.S. Jatoi et al., Emerging 2D MXene-based adsorbents for hazardous pollutants removal. Desalination 549, 116314 (2023). https://doi.org/10.1016/j.desal.2022.116314
- N.H. Solangi, R.R. Karri, N.M. Mubarak, S.A. Mazari, A.K. Azad, Emerging 2D MXenes as next-generation materials for energy storage applications. J. Energy Storage 70, 108004 (2023). https://doi.org/10.1016/j.est.2023.108004
- Y. Liu, K.T.E. Chua, T.C. Sum, C.K. Gan, First-principles study of the lattice dynamics of Sb2S3. Phys. Chem. Chem. Phys. 16(1), 345–350 (2014). https://doi.org/10.1039/c3cp53879f
- Z. Guo, J. Zhou, C. Si, Z. Sun, Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 17(23), 15348–15354 (2015). https://doi.org/10.1039/C5CP00775E
- A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4(6), eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
- M.K. Masood, J. Wang, J. Song, Y. Liu, Exploring the potential of MB4 (M = Cr, Mo, and W) Mbenes as high-capacity anode materials for Ca-ion batteries: a DFT approach. J. Mater. Chem. A 12(34), 22945–22959 (2024). https://doi.org/10.1039/D4TA02176B
- Y. Yue, W. Xie, J. Ren, M. Wang, Room-temperature ferromagnetism in two-dimensional Mn2B. Vacuum 220, 112825 (2024). https://doi.org/10.1016/j.vacuum.2023.112825
- B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017). https://doi.org/10.1038/nature22391
- Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao et al., Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19(5), 3138–3142 (2019). https://doi.org/10.1021/acs.nanolett.9b00553
- C. Gong, L. Li, Z. Li, H. Ji, A. Stern et al., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546(7657), 265–269 (2017). https://doi.org/10.1038/nature22060
- T. Li, R. Liu, Q. Wang, J. Rao, Y. Liu et al., A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. J. Hazard. Mater. 468, 133831 (2024). https://doi.org/10.1016/j.jhazmat.2024.133831
- Y. Zhang, Y. Zhang, Z. Guo, Y. Fang, C. Tang et al., Establishing theoretical landscapes for identifying basal plane active sites in MBene toward multifunctional HER, OER, and ORR catalysts. J. Colloid Interface Sci. 652, 1954–1964 (2023). https://doi.org/10.1016/j.jcis.2023.09.006
- T. Bashir, S.A. Ismail, J. Wang, W. Zhu, J. Zhao et al., MXene terminating groups O, –F or–OH, –F or O, –OH, –F, or O, –OH, –Cl? J. Energy Chem. 76, 90–104 (2023). https://doi.org/10.1016/j.jechem.2022.08.032
- B. Miao, T. Bashir, H. Zhang, T. Ali, S. Raza et al., Impact of various 2D MXene surface terminating groups in energy conversion. Renew. Sustain. Energy Rev. 199, 114506 (2024). https://doi.org/10.1016/j.rser.2024.114506
- J. Cai, J. Huang, A. Cao, Y. Wei, H. Wang et al., Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene. Appl. Catal. B Environ. 328, 122473 (2023). https://doi.org/10.1016/j.apcatb.2023.122473
- H. Li, Y. Chen, Q. Tang, Surface termination (–O, –F or –OH) and metal doping on the HER activity of Mo2CTx MXene. ChemPhysChem 25(18), e202400255 (2024). https://doi.org/10.1002/cphc.202400255
- V. Burtsev, E. Miliutina, V. Shilenko, K. Kukrálová, A. Chumakov et al., Covalent surface grafting of Ti3C2T flakes for enhancement of symmetric supercapacitor performance. J. Power. Sources 609, 234710 (2024). https://doi.org/10.1016/j.jpowsour.2024.234710
- S.W. Koh, L. Rekhi, A. Arramel, M.D. Birowosuto, Q.T. Trinh et al., Tuning the work function of MXene via surface functionalization. ACS Appl. Mater. Interfaces 16(49), 66826–66836 (2024). https://doi.org/10.1021/acsami.3c11857
- S.K. De, T.K. Aparna, K.R. Gopi Krishna, S. Bhattacharyya, Enhancing the electrochemical performance of TiVCTx MXene by tuning termination groups through different synthesis routes. Chem. Eng. J. 504, 158882 (2025). https://doi.org/10.1016/j.cej.2024.158882
- E. Rems, Y.-J. Hu, Y. Gogotsi, R. Dominko, Pivotal role of surface terminations in MXene thermodynamic stability. Chem. Mater. 36(20), 10295–10306 (2024). https://doi.org/10.1021/acs.chemmater.4c02274
- V. Buravets, A. Olshtrem, V. Burtsev, O. Gorin, S. Chertopalov et al., Plasmon assisted Ti3C2Tx grafting and surface termination tuning for enhancement of flake stability and humidity sensing performance. Nanoscale Adv. 5(24), 6837–6846 (2023). https://doi.org/10.1039/d3na00429e
- C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16(1), 123 (2024). https://doi.org/10.1007/s40820-024-01352-1
- S. Gong, F. Zhao, H. Xu, M. Li, J. Qi et al., Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. J. Colloid Interface Sci. 615, 643–649 (2022). https://doi.org/10.1016/j.jcis.2022.02.013
- L. Liu, E. Raymundo-Piñero, S. Sunny, P.-L. Taberna, P. Simon, Role of surface terminations for charge storage of Ti3C2Tx MXene electrodes in aqueous acidic electrolyte. Angew. Chem. Int. Ed. 63(14), e202319238 (2024). https://doi.org/10.1002/anie.202319238
- A. Olshtrem, I. Panov, S. Chertopalov, K. Zaruba, B. Vokata et al., Chiral plasmonic response of 2D Ti3C2Tx flakes: realization and applications. Adv. Funct. Mater. 33(30), 2212786 (2023). https://doi.org/10.1002/adfm.202212786
- A. Zabelina, E. Miliutina, J. Dedek, A. Trelin, D. Zabelin et al., Nitrogen photoelectrochemical reduction on TiB2 surface plasmon coupling allows us to reach enhanced efficiency of ammonia production. ACS Catal. 13(16), 10916–10926 (2023). https://doi.org/10.1021/acscatal.3c03210
- V. Neubertova, O. Guselnikova, Y. Yamauchi, A. Olshtrem, S. Rimpelova et al., Covalent functionalization of Ti3C2T MXene flakes with Gd-DTPA complex for stable and biocompatible MRI contrast agent. Chem. Eng. J. 446, 136939 (2022). https://doi.org/10.1016/j.cej.2022.136939
- Y. Cao, S. Wei, Q. Zhou, P. Zhang, C. Wang et al., Ti–Cl bonds decorated Ti2NTxMXene towards high-performance lithium-ion batteries. 2D Mater. 10(1), 014001 (2023). https://doi.org/10.1088/2053-1583/ac953b
- Y. Xiang, L. Lu, Y. Luo, R.-G. Xu, G. Zeng et al., Understanding the termination effect of Ti3C2Tx MXene membrane on water structure and interaction with alginate foulants: a molecular dynamics study. Langmuir 41(1), 975–985 (2025). https://doi.org/10.1021/acs.langmuir.4c04258
- Y. Wang, N. Ma, B. Liang, J. Fan, Exploring the potential of Ti2BT2 (T = F, Cl, Br, I, O, S, Se and Te) monolayers as anode materials for lithium and sodium ion batteries. Appl. Surf. Sci. 596, 153619 (2022). https://doi.org/10.1016/j.apsusc.2022.153619
- J. Wang, L. Bai, L. Wu, L. Niu, Ordered double transition metal mbene: the hexagonal ScTiB2 monolayer as a superior anode material for lithium-ion batteries. Comput. Mater. Sci. 214, 111736 (2022). https://doi.org/10.1016/j.commatsci.2022.111736
- S. Qi, Y. Fan, L. Zhao, W. Li, M. Zhao, Two-dimensional transition metal borides as highly efficient N2 fixation catalysts. Appl. Surf. Sci. 536, 147742 (2021). https://doi.org/10.1016/j.apsusc.2020.147742
- B. Zhang, J. Zhou, Z. Sun, New horizons of MBenes: highly active catalysts for the CO oxidation reaction. Nanoscale 15(2), 483–489 (2023). https://doi.org/10.1039/D2NR05705K
- Z. Li, Q. Zeng, Y. Yu, Y. Liu, A. Chen et al., Application of transition metal boride nanosheet as sulfur host in high loading Li-S batteries. Chem. Eng. J. 452, 139366 (2023). https://doi.org/10.1016/j.cej.2022.139366
- X. Liu, Z. Liu, H. Deng, Theoretical evaluation of mbenes as catalysts for the CO2 reduction reaction. J. Phys. Chem. C 125(35), 19183–19189 (2021). https://doi.org/10.1021/acs.jpcc.1c02749
- C. Tewari, M. Pathak, G. Tatrari, S. Kumar, S. Dhali et al., Waste plastics derived reduced graphene oxide-based nanocomposite with Fe3O4 for water purification and supercapacitor applications. J. Ind. Eng. Chem. 130, 346–356 (2024). https://doi.org/10.1016/j.jiec.2023.09.038
- B. Padha, S. Verma, A. Ahmed, S.P. Patole, S. Arya, Plastic turned into MXene–based pyro-piezoelectric hybrid nanogenerator-driven self-powered wearable symmetric supercapacitor. Appl. Energy 356, 122402 (2024). https://doi.org/10.1016/j.apenergy.2023.122402
- S. Mazzotta, S. Lettieri, G. Ferraro, M. Bartoli, M. Etzi et al., A concise overview of ultrasound-assisted techniques for the production of 2D materials. Processes 12(4), 759 (2024). https://doi.org/10.3390/pr12040759
- I. Ozdemir, Y. Kadioglu, O.Ü. Aktürk, Y. Yuksel, Ü. Akıncı et al., A new single-layer structure of MBene family: Ti2B. J. Phys. Condens. Matter 31(50), 505401 (2019). https://doi.org/10.1088/1361-648X/ab3d1d
- E.T. Akgul, O.C. Altıncı, A. Umay, P. Aghamohammadi, A.A. Farghaly et al., Nanoengineering of 2D MBenes for energy storage applications: a review. J. Energy Storage 84, 110882 (2024). https://doi.org/10.1016/j.est.2024.110882
- A.J. Khan, S.S. Shah, S. Khan, A. Mateen, B. Iqbal et al., 2D metal borides (mbenes): synthesis methods for energy storage applications. Chem. Eng. J. 497, 154429 (2024). https://doi.org/10.1016/j.cej.2024.154429
- H. Yuan, Z. Li, J. Yang, Transition-metal diboride: a new family of two-dimensional materials designed for selective CO2 electroreduction. J. Phys. Chem. C 123(26), 16294–16299 (2019). https://doi.org/10.1021/acs.jpcc.9b04221
- H. Yuan, Z. Li, X.C. Zeng, J. Yang, Descriptor-based design principle for two-dimensional single-atom catalysts: carbon dioxide electroreduction. J. Phys. Chem. Lett. 11(9), 3481–3487 (2020). https://doi.org/10.1021/acs.jpclett.0c00676
- Z. Hu, Y. Yang, X.-F. Zhang, C. Xu, J. Yao, Integrating two-dimensional MXene fillers into nanocellulose for the fabrication of CO2 separation membranes. Sep. Purif. Technol. 326, 124704 (2023). https://doi.org/10.1016/j.seppur.2023.124704
- Z. Li, Y. Cheng, Y. Wang, J. Cheng, J. Qiu et al., Exploring the potential of Mbenes in energy storage. Colloids Surf. A, Physicochem. Eng. Aspects 696, 134317 (2024). https://doi.org/10.1016/j.colsurfa.2024.134317
- P. Lin, J. Xie, Y. He, X. Lu, W. Li et al., MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 206, 110229 (2020). https://doi.org/10.1016/j.solmat.2019.110229
- S. Sagadevan, I. Fatimah, J.A. Lett, B. Kakavandi, T. Soga et al., Exploring the potential of MXene-based aerogels and hybrid nanocomposites for supercapacitor applications. J. Energy Storage 99, 113269 (2024). https://doi.org/10.1016/j.est.2024.113269
- C. Wei, Q. Zhang, Z. Wang, W. Yang, H. Lu et al., Recent advances in MXene-based aerogels: fabrication, performance and application. Adv. Funct. Mater. 33(9), 2211889 (2023). https://doi.org/10.1002/adfm.202211889
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
- Y. Hou, Z. Chen, X. Li, Y. Wang, P. Li et al., MBene promoted Zn peroxide chemistry in rechargeable near-neutral Zn–air batteries. Energy Environ. Sci. 16(8), 3407–3415 (2023). https://doi.org/10.1039/d3ee01297b
- J. Zhao, M. Zhou, J. Chen, L. Wang, Q. Zhang et al., Two birds one stone: graphene assisted reaction kinetics and ionic conductivity in phthalocyanine-based covalent organic framework anodes for lithium-ion batteries. Small 19(44), 2303353 (2023). https://doi.org/10.1002/smll.202303353
- X. Zheng, G. Cai, J. Guo, W. Gao, Y. Huang et al., Combustion characteristics and thermal decomposition mechanism of the flame-retardant cable in urban utility tunnel. Case Stud. Therm. Eng. 44, 102887 (2023). https://doi.org/10.1016/j.csite.2023.102887
- M. Zheng, H. Salim, T. Liu, R.A. Stewart, J. Lu et al., Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy Environ. Sci. 14(11), 5801–5815 (2021). https://doi.org/10.1039/D1EE01812D
- W. Xiong, X. Feng, Y. Xiao, T. Huang, X. Li et al., Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance. Chem. Eng. J. 446, 137466 (2022). https://doi.org/10.1016/j.cej.2022.137466
- Y. Wang, R. Huang, Q. Zhang, Y. Ma, B. Gao et al., Theoretical investigation of the V2BX2 (X = S, Se, and Te) monolayers as anode materials for Na-ion batteries. Mater. Today Commun. 35, 105923 (2023). https://doi.org/10.1016/j.mtcomm.2023.105923
- P. Sang, Q. Chen, D.-Y. Wang, W. Guo, Y. Fu, Organosulfur materials for rechargeable batteries: structure, mechanism, and application. Chem. Rev. 123(4), 1262–1326 (2023). https://doi.org/10.1021/acs.chemrev.2c00739
- C. Yuan, D.-D. Liu, Y.-J. Zhu, T. Zeng, B.-X. Jiang et al., Effect of charge transport on electrical degradation in polypropylene/organic molecular semiconductor composites for HVDC cable insulation. Appl. Phys. Lett. 122(11), 112904 (2023). https://doi.org/10.1063/5.0133417
- X. Li, S. Aftab, A. Abbas, S. Hussain, M. Aslam et al., Advances in mixed 2D and 3D perovskite heterostructure solar cells: a comprehensive review. Nano Energy 118, 108979 (2023). https://doi.org/10.1016/j.nanoen.2023.108979
- J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium–sulfur batteries: a critical review. Adv. Mater. 35(29), 2211168 (2023). https://doi.org/10.1002/adma.202211168
- Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium–sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
- X. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao et al., Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 14(1), 291 (2023). https://doi.org/10.1038/s41467-022-35736-x
- H. Hao, T. Hutter, B.L. Boyce, J. Watt, P. Liu et al., Review of multifunctional separators: stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries. Chem. Rev. 122(9), 8053–8125 (2022). https://doi.org/10.1021/acs.chemrev.1c00838
- Y. Xiao, Y. Li, Z. Guo, C. Tang, B. Sa et al., Functionalized Mo2B2 MBenes: Promising anchoring and electrocatalysis materials for Lithium-Sulfur battery. Appl. Surf. Sci. 566, 150634 (2021). https://doi.org/10.1016/j.apsusc.2021.150634
- W. Zhang, P. Sun, S. Sun, A theoretical method to predict novel organic electrode materials for Na-ion batteries. Comput. Mater. Sci. 134, 42–47 (2017). https://doi.org/10.1016/j.commatsci.2017.03.031
- K. Huang, Z. Zhao, H. Du, P. Du, H. Wang et al., Rapid thermal annealing toward high-quality 2D cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustainable Chem. Eng. 8(18), 6905–6913 (2020). https://doi.org/10.1021/acssuschemeng.0c00830
- R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11), 639–642 (2001). https://doi.org/10.1016/S1388-2481(01)00244-2
- W. Xiong, X. Feng, T. Huang, Z. Huang, X. He et al., Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries. J. Mater. Sci. Technol. 212, 67–76 (2025). https://doi.org/10.1016/j.jmst.2024.05.060
- B. Liang, N. Ma, Y. Wang, T. Wang, J. Fan, N-functionalized Ti2B MBene as high-performance anode materials for sodium-ion batteries: a DFT study. Appl. Surf. Sci. 599, 153927 (2022). https://doi.org/10.1016/j.apsusc.2022.153927
- S. Gao, J. Hao, X. Zhang, L. Li, C. Zhang et al., Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries. Comput. Mater. Sci. 200, 110776 (2021). https://doi.org/10.1016/j.commatsci.2021.110776
- W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou et al., Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: modeling and applications. Acta Mater. 159, 16–30 (2018). https://doi.org/10.1016/j.actamat.2018.08.008
- M.K. Masood, J. Wang, J. Song, Y. Liu, A novel two-dimensional monolayer MB4(M = Cr, Mo, W) mbenes as a high-performance anode material for Mg-ion batteries. J. Energy Storage 86, 111370 (2024). https://doi.org/10.1016/j.est.2024.111370
- T. Mei, J. Wu, S. Lu, B. Wang, X. Zhao et al., First-principles investigations to evaluate Mo2B monolayers as promising two-dimensional anode materials for Mg-ion batteries. J. Phys. Energy 4(3), 035002 (2022). https://doi.org/10.1088/2515-7655/ac71cb
- Y. Wang, S. Wang, N. Song, X. Wu, J. Xu et al., On two-dimensional metal borides (MBenes) as anode materials for metal-ion batteries: a first-principles study. Comput. Mater. Sci. 233, 112710 (2024). https://doi.org/10.1016/j.commatsci.2023.112710
- M. Chotsawat, L. Ngamwongwan, I. Fongkaew, A. Junkaew, S. Suthirakun, Exploring Mo2B MBene as a high-capacity anode material for multi-valent metal-ion batteries: insights from first-principles calculations. Colloids Surf. A, Physicochem. Eng. Aspects 704, 135531 (2025). https://doi.org/10.1016/j.colsurfa.2024.135531
- Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li et al., Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 27(42), 6598–6605 (2015). https://doi.org/10.1002/adma.201502378
- Y. Jin, J. Geng, Y. Wang, Z. Zhao, Z. Chen et al., Flexible all-solid-state asymmetric supercapacitor based on Ti3C2Tx MXene/graphene/carbon nanotubes. Surf. Interfaces 53, 104999 (2024). https://doi.org/10.1016/j.surfin.2024.104999
- Y. Zou, C. Chen, Y. Sun, S. Gan, L. Dong et al., Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 418, 128616 (2021). https://doi.org/10.1016/j.cej.2021.128616
- H. Zhang, Y. Qiao, Z. Lu, Fully printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Appl. Mater. Interfaces 8(47), 32317–32323 (2016). https://doi.org/10.1021/acsami.6b11172
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- C. Qiu, L. Jiang, Y. Gao, L. Sheng, Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater. Des. 230, 111952 (2023). https://doi.org/10.1016/j.matdes.2023.111952
- A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, Application of graphene in energy storage device–a review. Renew. Sustain. Energy Rev. 135, 110026 (2021). https://doi.org/10.1016/j.rser.2020.110026
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
- X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao et al., Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 60(39), 21310–21318 (2021). https://doi.org/10.1002/anie.202104167
- S. Wei, X. Lai, G.M. Kale, Exploring the potential of MBenes supercapacitors: fluorine-free synthesized MoAl1–xB with ultrahigh conductivity and open space. ACS Appl. Mater. Interfaces 15(28), 33560–33570 (2023). https://doi.org/10.1021/acsami.3c04301
- Y. Shi, G. Song, B. Yang, Y. Tang, Z. Liu et al., Prussian blue analogues “dressed” in MXene nanosheets tightly for high performance lithium-ion batteries. Adv. Mater. 37(8), e2416665 (2025). https://doi.org/10.1002/adma.202416665
- B. Zhao, L. Song, Z. Zou, Z. Xiong, Y. Zhang et al., Electrospun Ti3C2 MXene fiber-decorated interlayer for synchronous sulfur activation and lithium stabilization. Adv. Funct. Mater. 35(28), 2500079 (2025). https://doi.org/10.1002/adfm.202500079
- S. Vinoth, H.T. Das, M. Govindasamy, S.-F. Wang, N.S. Alkadhi et al., Facile solid-state synthesis of layered molybdenum boride-based electrode for efficient electrochemical aqueous asymmetric supercapacitor. J. Alloys Compd. 877, 160192 (2021). https://doi.org/10.1016/j.jallcom.2021.160192
- A.J. Khan, H. Ding, Y. Zhang, D. Zhang, L. Gao et al., NiCo2O4@MXene composite electrodes: unveiling high-performance asymmetric supercapacitor capabilities through enhanced redox activity. Chem. Eng. J. 506, 160287 (2025). https://doi.org/10.1016/j.cej.2025.160287
- S. Wei, G. Kale, X. Lai, Unlocking enhanced electrochemical performance of MBene-MoB through controlled aluminum dissipation from MoAlB. Small 20(38), 2401573 (2024). https://doi.org/10.1002/smll.202401573
- S. Wang, Y. Gao, Z. Yang, H. Zhou, D. Ni et al., Heterostructured CoO/MoB mbene composites for high performance lithium-ion batteries anode. iScience 28(4), 112133 (2025). https://doi.org/10.1016/j.isci.2025.112133
- D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/am501144q
- N.H. Solangi, L.P. Lingamdinne, R.R. Karri, N.M. Mubarak, S.A. Mazari et al., Emerging 2D MXene quantum dots for catalytic conversion of CO2. Carbon 232, 119758 (2025). https://doi.org/10.1016/j.carbon.2024.119758
- S.H. Mir, V.K. Yadav, J.K. Singh, Efficient CO2 capture and activation on novel two-dimensional transition metal borides. ACS Appl. Mater. Interfaces 14(26), 29703–29710 (2022). https://doi.org/10.1021/acsami.2c02469
- A. Thakur, A. Rasyotra, K. Jasuja, Review and perspectives of electrochemical energy conversion and storage in metal diborides and XBenes. Energy Fuels 37(23), 18310–18329 (2023). https://doi.org/10.1021/acs.energyfuels.3c02785
- K.A. Papadopoulou, A. Chroneos, D. Parfitt, S.G. Christopoulos, A perspective on MXenes: their synthesis, properties, and recent applications. J. Appl. Phys. 128(17), 170902 (2020). https://doi.org/10.1063/5.0021485
- A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater. Appl. 5, 61 (2021). https://doi.org/10.1038/s41699-021-00239-8
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- M. van der Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 15(3), 1034–1077 (2022). https://doi.org/10.1039/D1EE02118D
- C. Kim, J.C. Bui, X. Luo, J.K. Cooper, A. Kusoglu et al., Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6(11), 1026–1034 (2021). https://doi.org/10.1038/s41560-021-00920-8
- Y. Xiao, C. Shen, N. Hadaeghi, Quantum mechanical screening of 2D MBenes for the electroreduction of CO2 to C1 hydrocarbon fuels. J. Phys. Chem. Lett. 12(27), 6370–6382 (2021). https://doi.org/10.1021/acs.jpclett.1c01499
- X. Lu, Y. Hu, S. Cao, J. Li, C. Yang et al., Two-dimensional MBene: a comparable catalyst to MXene for effective CO2RR towards C1 products. Phys. Chem. Chem. Phys. 25(28), 18952–18959 (2023). https://doi.org/10.1039/D2CP05449C
- M. Melchionna, P. Fornasiero, M. Prato, M. Bonchio, Electrocatalytic CO2 reduction: role of the cross-talk at nano-carbon interfaces. Energy Environ. Sci. 14(11), 5816–5833 (2021). https://doi.org/10.1039/d1ee00228g
- Y. Ren, S. Li, C. Yu, Y. Zheng, C. Wang et al., NH3 electrosynthesis from N2 molecules: progresses, challenges, and future perspectives. J. Am. Chem. Soc. 146(10), 6409–6421 (2024). https://doi.org/10.1021/jacs.3c11676
- B. Lee, L.R. Winter, H. Lee, D. Lim, H. Lim et al., Pathways to a green ammonia future. ACS Energy Lett. 7(9), 3032–3038 (2022). https://doi.org/10.1021/acsenergylett.2c01615
- H. Iriawan, S.Z. Andersen, X. Zhang, B.M. Comer, J. Barrio et al., Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021). https://doi.org/10.1038/s43586-021-00053-y
- C.S. Wang, H. Wang, R. Wu, R. Ragan, Evaluating the stability of single-atom catalysts with high chemical activity. J. Phys. Chem. C 122(38), 21919–21926 (2018). https://doi.org/10.1021/acs.jpcc.8b06621
- L. Zeng, C. Xue, Single metal atom decorated photocatalysts: progress and challenges. Nano Res. 14(4), 934–944 (2021). https://doi.org/10.1007/s12274-020-3099-8
- Z.-H. Xue, D. Luan, H. Zhang, X.W.( Lou, Single-atom catalysts for photocatalytic energy conversion. Joule 6(1), 92–133 (2022). https://doi.org/10.1016/j.joule.2021.12.011
- W. Zhao, L. Zhang, Q. Luo, Z. Hu, W. Zhang et al., Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 9(4), 3419–3425 (2019). https://doi.org/10.1021/acscatal.8b05061
- J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al., Beyond fossil fuel–driven nitrogen transformations. Science 360(6391), eaar6611 (2018)
- Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
- C. Gu, J.L. Zhang, J.Q. Zhong, Q. Shen, X. Zhou et al., Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine. Nano Res. 13(9), 2393–2398 (2020). https://doi.org/10.1007/s12274-020-2863-0
- Y. Li, L. Li, R. Huang, Y. Wen, Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Nanoscale 13(35), 15002–15009 (2021). https://doi.org/10.1039/D1NR04652G
- Y. Zhang, Z. Guo, Y. Fang, C. Tang, F. Meng et al., Rational design of bimetallic MBene for efficient electrocatalytic nitrogen reduction. J. Colloid Interface Sci. 670, 687–697 (2024). https://doi.org/10.1016/j.jcis.2024.05.145
- K. Cheng, S. Li, Q. Cheng, L. Zhang, Y. Jiang et al., The electron-rich interface regulated MBene by S-bridge guided to enhance nitrogen fixation under environmental conditions. Adv. Funct. Mater. 35(13), 2417914 (2025). https://doi.org/10.1002/adfm.202417914
- L. Liu, H. Li, T. Yuan, J. Zhang, K. Xue et al., Copper anchored MXene regulated metal-oxide interfaces for the CO2 electrocatalytic conversion. J. Mater. Sci. Technol. 250, 17–24 (2026). https://doi.org/10.1016/j.jmst.2025.04.087
- A. Vijayaprabhakaran, M. Kathiresan, Ag/Zn-Ta2C MXene composite as an efficient electrocatalyst for aqueous and non-aqueous CO2 reduction reactions. Adv. Compos. Hybrid Mater. 8(3), 239 (2025). https://doi.org/10.1007/s42114-025-01266-5
- Z. Han, Y. Chang, H. Liu, Y. Wei, S. Hao et al., Efficient electrocatalytic CO2 reduction to formate via continuous microfluidic synthesis of Bi2O3/MXene-based composite catalysts with tunable metal oxide interfaces. Adv. Energy Mater. 15(32), 2501761 (2025). https://doi.org/10.1002/aenm.202501761
- T. Yu, P. Zhao, Z. Cui, H. Liu, R. Guo et al., Built-in electric field synergizes tandem catalysis boosting Co2B@MXene heterostructure for electrochemical nitrate reduction. Chem. Eng. J. 515, 163663 (2025). https://doi.org/10.1016/j.cej.2025.163663
- L. Sun, Z. Liu, Y. Wu, Y. Zhu, S. Shao et al., MXene laminar membrane functionalized with Pd-Cu for efficient and selective nitrate reduction to ammonia. Sep. Purif. Technol. 355, 129638 (2025). https://doi.org/10.1016/j.seppur.2024.129638
- Q. Zhou, X. Wang, S. Rong, G. Li, H. Pang et al., Anderson-type polyoxometalate/MXene heterostructures for efficient electrochemical nitrate reduction to ammonia. Appl. Surf. Sci. 708, 163675 (2025). https://doi.org/10.1016/j.apsusc.2025.163675
- T. Chen, Y. Gao, Z. Guo, E. Wang, J. Zhou et al., Vacancy induced dissociation of hydrogenized CO2 for promoted CH4 production in MBenes. J. Mater. Chem. A 13(11), 7929–7938 (2025). https://doi.org/10.1039/D4TA08000A
- V. Sharma, R. Dhiman, A. Mahajan, Ti2+ and Ti4+ species enriched MXene electrocatalyst for highly efficient hydrogen evolution and oxygen evolution reaction kinetics. Appl. Surf. Sci. 612, 155883 (2023). https://doi.org/10.1016/j.apsusc.2022.155883
- X. Zhao, W.-P. Li, Y. Cao, A. Portniagin, B. Tang et al., Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano 18(5), 4256–4268 (2024). https://doi.org/10.1021/acsnano.3c09639
- P. Wan, Q. Tang, Theoretical progress of MXenes as electrocatalysts for the hydrogen evolution reaction. Mater. Chem. Front. 8(2), 507–527 (2024). https://doi.org/10.1039/D3QM00783A
- X. Zhao, X. Zheng, Q. Lu, Y. Li, F. Xiao et al., Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat 5(2), e12293 (2023). https://doi.org/10.1002/eom2.12293
- C. Ling, L. Shi, Y. Ouyang, J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem. Mater. 28(24), 9026–9032 (2016). https://doi.org/10.1021/acs.chemmater.6b03972
- P. Li, J. Zhu, A.D. Handoko, R. Zhang, H. Wang et al., High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. J. Mater. Chem. A 6(10), 4271–4278 (2018). https://doi.org/10.1039/C8TA00173A
- T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun, Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1), 433–441 (2021). https://doi.org/10.1039/d0ta08630d
- Y. Wang, W. Tian, J. Wan, Y. Zheng, H. Zhang et al., Tuning coordination microenvironment of V2CTx MXene for anchoring single-atom toward efficient multifunctional electrocatalysis. J. Colloid Interface Sci. 645, 833–840 (2023). https://doi.org/10.1016/j.jcis.2023.05.015
- N. Kumar, K. Naveen, M. Kumar, T.C. Nagaiah, R. Sakla et al., Multifunctionality exploration of Ca2FeRuO6: an efficient trifunctional electrocatalyst toward OER/ORR/HER and photocatalyst for water splitting. ACS Appl. Energy Mater. 4(2), 1323–1334 (2021). https://doi.org/10.1021/acsaem.0c02579
- P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
- K. Zhang, W. Guo, Z. Liang, R. Zou, Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Sci. China Chem. 62(4), 417–429 (2019). https://doi.org/10.1007/s11426-018-9441-4
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- Y. Wei, H. Huang, F. Gao, G. Jiang, 2D transitional-metal nickel compounds monolayer: highly efficient multifunctional electrocatalysts for the HER, OER and ORR. Int. J. Hydrog. Energy 48(11), 4242–4252 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.250
- J. Yang, Y. Fan, P.-F. Liu, Theoretical insights into heterogeneous single-atom Fe1 catalysts supported by graphene-based substrates for water splitting. Appl. Surf. Sci. 540, 148245 (2021). https://doi.org/10.1016/j.apsusc.2020.148245
- C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin et al., Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165
- H. Park, A. Encinas, J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(20), 5575–5578 (2017). https://doi.org/10.1002/anie.201611756
- F. Li, Q. Tang, First-principles calculations of TiB MBene monolayers for hydrogen evolution. ACS Appl. Nano Mater. 2(11), 7220–7229 (2019). https://doi.org/10.1021/acsanm.9b01718
- Y. Xiao, C. Shen, Predicted electrocatalyst properties on metal insulator MoTe2 for hydrogen evolution reaction and oxygen reduction reaction application in fuel cells. Energy Fuels 35(9), 8275–8285 (2021). https://doi.org/10.1021/acs.energyfuels.1c00814
- B. Zhang, J. Zhou, Z. Guo, Q. Peng, Z. Sun, Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500, 144248 (2020). https://doi.org/10.1016/j.apsusc.2019.144248
- A. Shukla, G. Sharma, S. Krishnamurty, Single-atom-catalyst-implanted MBenes as efficient electrocatalysts for hydrogen evolution reaction as realized through computational screening. ACS Appl. Eng. Mater. 2(2), 422–430 (2024). https://doi.org/10.1021/acsaenm.3c00732
- L. Chen, G. Pilania, R. Batra, T.D. Huan, C. Kim et al., Polymer informatics: current status and critical next steps. Mater. Sci. Eng. R. Rep. 144, 100595 (2021). https://doi.org/10.1016/j.mser.2020.100595
- T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno et al., Artificial intelligence applied to battery research: hype or reality? Chem. Rev. 122(12), 10899–10969 (2022). https://doi.org/10.1021/acs.chemrev.1c00108
- A. Trelin, A. Skvortsova, A. Olshtrem, S. Chertopalov, D. Mares et al., Surface-enhanced raman spectroscopy and artificial neural networks for detection of MXene flakes’ surface terminations. J. Phys. Chem. C 128(16), 6780–6787 (2024). https://doi.org/10.1021/acs.jpcc.4c01273
- S.K. Jameer Basha, E. Ajith Jubilson, Stability assessment of mbene materials using scikit-learn inspired application programming interface: gplearn and p swarm optimization. ES Mater. Manuf. 24, 1166 (2024). https://doi.org/10.30919/esmm1166
- A.N. Kolmogorov, S. Curtarolo, Theoretical study of metal borides stability. Phys. Rev. B 74(22), 224507 (2006). https://doi.org/10.1103/physrevb.74.224507
- M. Khazaei, J. Wang, M. Estili, A. Ranjbar, S. Suehara et al., Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale 11(23), 11305–11314 (2019). https://doi.org/10.1039/c9nr01267b
- L. Lan, X. Fan, C. Zhao, J. Gao, Z. Qu et al., Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering. Nanoscale 15(6), 2779–2787 (2023). https://doi.org/10.1039/d2nr06280a
- V. Sharma, D. Datta, Developing potential energy surfaces for graphene-based 2D–3D interfaces from modified high-dimensional neural networks for applications in energy storage. J. Electrochem. Energy Convers. Storage 19(4), 041006 (2022). https://doi.org/10.1115/1.4054781
- R.R. Neiber, J. Kumar, B.P. Sharma, W.-L. Ding, X. Lu, Ultra stable ink with promising areal capacitance as advanced micro-supercapacitor and unique metal absorptivity enabled by surface functionalization of titanium carbide (MXene). Adv. Funct. Mater. 34(49), 2406481 (2024). https://doi.org/10.1002/adfm.202406481
- J. Kumar, R.A. Soomro, B. Fan, J. Tan, N. Sun et al., Butanedioic acid unlock shelf-stable Ti3C2Tx (MXene) dispersions and their electrochemical performance in supercapacitor. J. Alloys Compd. 1009, 176749 (2024). https://doi.org/10.1016/j.jallcom.2024.176749
- J. Kumar, J. Tan, R. Ali Soomro, N. Sun, B. Xu, Probing the synergistic effects of amino compounds in mitigating oxidation in 2D Ti3C2Tx MXene nanosheets in aqueous environments. Chem. Sci. 16(4), 1986–1994 (2025). https://doi.org/10.1039/D4SC05097E
- T. Hu, M. Wang, X. Wang, Y. Zhou, C. Li, Unraveling surface functionalization of Cr2B2T2 (T = OH, O, Cl, H) MBene by first-principles calculations. Comput. Mater. Sci. 199, 110810 (2021). https://doi.org/10.1016/j.commatsci.2021.110810
References
N.H. Solangi, F. Hussin, A. Anjum, N. Sabzoi, S.A. Mazari et al., A review of encapsulated ionic liquids for CO2 capture. J. Mol. Liq. 374, 121266 (2023). https://doi.org/10.1016/j.molliq.2023.121266
X. Han, C. Hao, Y. Peng, H. Yu, T. Zhang et al., Novel cellulosic fiber composites with integrated multi-band electromagnetic interference shielding and energy storage functionalities. Nano-Micro Lett. 17(1), 122 (2025). https://doi.org/10.1007/s40820-025-01652-0
N.H. Solangi, N.M. Mubarak, R.R. Karri, S.A. Mazari, A.S. Jatoi et al., MXene-based phase change materials for solar thermal energy storage. Energy Convers. Manag. 273, 116432 (2022). https://doi.org/10.1016/j.enconman.2022.116432
J. Chen, W. Zhang, R. Chen, Y. Dai, J. Zhang et al., From synthesis to energy storage, the microchemistry of MXene and MBene. Adv. Energy Mater. 15(17), 2403757 (2025). https://doi.org/10.1002/aenm.202403757
C.A.F. Nason, A.P. Vijaya Kumar Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16(1), 1 (2023). https://doi.org/10.1007/s40820-023-01222-2
D. Bury, M. Jakubczak, M.A.K. Purbayanto, M. Rybak, M. Birowska et al., Wet-chemical etching and delamination of MoAlB into MBene and its outstanding photocatalytic performance. Adv. Funct. Mater. 33(50), 2308156 (2023). https://doi.org/10.1002/adfm.202308156
I. Hussain, W.U. Arifeen, S.A. Khan, S. Aftab, M.S. Javed et al., M4X3 MXenes: application in energy storage devices. Nano-Micro Lett. 16(1), 215 (2024). https://doi.org/10.1007/s40820-024-01418-0
N.H. Solangi, S. Ali Mazari, N.M. Mubarak, R.R. Karri, N. Rajamohan et al., Recent trends in MXene-based material for biomedical applications. Environ. Res. 222, 115337 (2023). https://doi.org/10.1016/j.envres.2023.115337
R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15(1), 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
B. Zhang, J. Zhou, Z. Sun, MBenes: progress, challenges and future. J. Mater. Chem. A 10(30), 15865–15880 (2022). https://doi.org/10.1039/d2ta03482d
M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54(13), 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
S. Kota, M. Sokol, M.W. Barsoum, A progress report on the MAB phases: atomically laminated, ternary transition metal borides. Int. Mater. Rev. 65(4), 226–255 (2020). https://doi.org/10.1080/09506608.2019.1637090
M. Ozkan, K.A.M. Quiros, J.M. Watkins, T.M. Nelson, N.D. Singh et al., Curbing pollutant CO2 by using two-dimensional MXenes and MBenes. Chem 10(2), 443–483 (2024). https://doi.org/10.1016/j.chempr.2023.09.001
J. Wang, T.-N. Ye, Y. Gong, J. Wu, N. Miao et al., Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 10(1), 2284 (2019). https://doi.org/10.1038/s41467-019-10297-8
N. Miao, Y. Gong, H. Zhang, Q. Shen, R. Yang et al., Discovery of two-dimensional hexagonal MBene HfBO and exploration on its potential for lithium-ion storage. Angew. Chem. Int. Ed. 62(36), e202308436 (2023). https://doi.org/10.1002/anie.202308436
A. Hayat, T. Bashir, A.M. Ahmed, Z. Ajmal, M.M. Alghamdi et al., Novel 2D MBenes-synthesis, structure, properties with excellent performance in energy conversion and storage: a review. Mater. Sci. Eng. R. Rep. 159, 100796 (2024). https://doi.org/10.1016/j.mser.2024.100796
Z. Liu, W. Gao, L. Liu, Y. Gao, C. Zhang et al., Spin polarization induced by atomic strain of MBene promotes the O2− production for groundwater disinfection. Nat. Commun. 16(1), 197 (2025). https://doi.org/10.1038/s41467-024-55626-8
V.G. Nair, M. Birowska, D. Bury, M. Jakubczak, A. Rosenkranz et al., 2D mbenes: a novel member in the flatland. Adv. Mater. 34(23), 2108840 (2022). https://doi.org/10.1002/adma.202108840
A. Mockute, A. Kostka, L. Abdellaoui, O. Krysiak, W. Schuhmann et al., Structural and hydrogen evolution electrocatalysis properties of Cr–Al–B MAB phase thin films. Adv. Eng. Mater. 26(23), 2401063 (2024). https://doi.org/10.1002/adem.202401063
D.B. Tripathy, Novel two-dimensional MBenes: synthesis, properties, and energy storage and electrocatalytic applications of two-dimensional metal borides. ACS Appl. Eng. Mater. 2(5), 1209–1224 (2024). https://doi.org/10.1021/acsaenm.4c00211
Y. Guo, Z. Du, Z. Cao, B. Li, S. Yang, MXene derivatives for energy storage and conversions. Small Meth. 7(8), 2201559 (2023). https://doi.org/10.1002/smtd.202201559
S. Javaid, A. Hussain, R.T.A. Khan, Adsorption of noble fission gas atoms Xe and Kr on Ti- and V-based bare MXenes: an ab-initio DFT investigation. Surf. Sci. 739, 122387 (2024). https://doi.org/10.1016/j.susc.2023.122387
M. Wu, Z. Wang, G. Chen, M. Zhang, T. Sun et al., Synergistic effects and products distribution during co-pyrolysis of biomass and plastics. J. Energy Inst. 111, 101392 (2023). https://doi.org/10.1016/j.joei.2023.101392
Z. Guo, J. Zhou, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5(45), 23530–23535 (2017). https://doi.org/10.1039/C7TA08665B
W. Cao, J. Nie, Y. Cao, C. Gao, M. Wang et al., A review of how to improve Ti3C2Tx MXene stability. Chem. Eng. J. 496, 154097 (2024). https://doi.org/10.1016/j.cej.2024.154097
R. Xu, Y. Kang, W. Zhang, B. Pan, X. Zhang, Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving. Nat. Commun. 14(1), 4907 (2023). https://doi.org/10.1038/s41467-023-40742-8
Z. Jiang, P. Wang, X. Jiang, J. Zhao, MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz. 3(3), 335–341 (2018). https://doi.org/10.1039/C7NH00197E
S. Zhou, X. Yang, W. Pei, Z. Jiang, J. Zhao, MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. J. Phys. Energy 3(1), 012002 (2021). https://doi.org/10.1088/2515-7655/abb6d1
H. Zhou, Z. Chen, E. Kountoupi, A. Tsoukalou, P.M. Abdala et al., Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nat. Commun. 12(1), 5510 (2021). https://doi.org/10.1038/s41467-021-25784-0
I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31(2), 1805472 (2019). https://doi.org/10.1002/adma.201805472
M. Ozkan, MXenes vs MBenes: demystifying the materials of tomorrow’s carbon capture revolution. MRS Energy Sustain 11(1), 181–190 (2024). https://doi.org/10.1557/s43581-024-00082-6
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Z. Zhang, Y. Li, F. Mo, J. Wang, W. Ling et al., MBene with redox-active terminal groups for an energy-dense cascade aqueous battery. Adv. Mater. 36(16), 2311914 (2024). https://doi.org/10.1002/adma.202311914
Y. Yang, H. Wang, C. Wang, J. Liu, H. Wu et al., Novel 2D material of MBenes: structures, synthesis, properties, and applications in energy conversion and storage. Small 20(51), 2405870 (2024). https://doi.org/10.1002/smll.202405870
T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo et al., All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci. Rep. 6, 23289 (2016). https://doi.org/10.1038/srep23289
I.M. Arias-Camacho, N. Gonzalez Szwacki, Exploring the structural, electronic, magnetic, and transport properties of 2D Cr, Fe, and Zr monoborides. Materials 16(14), 5104 (2023). https://doi.org/10.3390/ma16145104
H. Gunda, L.E. Klebanoff, P.A. Sharma, A.K. Varma, V. Dolia et al., Progress, challenges, and opportunities in the synthesis, characterization, and application of metal-boride-derived two-dimensional nanostructures. ACS Mater. Lett. 3(5), 535–556 (2021). https://doi.org/10.1021/acsmaterialslett.1c00086
M. Dahlqvist, Q. Tao, J. Zhou, J. Palisaitis, P.O.Å. Persson et al., Theoretical prediction and synthesis of a family of atomic laminate metal borides with in-plane chemical ordering. J. Am. Chem. Soc. 142(43), 18583–18591 (2020). https://doi.org/10.1021/jacs.0c08113
T. Bo, P.-F. Liu, J. Zhang, F. Wang, B.-T. Wang, Tetragonal and trigonal Mo2B2 monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 21(9), 5178–5188 (2019). https://doi.org/10.1039/C9CP00012G
M. Jakubczak, A. Szuplewska, A. Rozmysłowska-Wojciechowska, A. Rosenkranz, A.M. Jastrzębska, Novel 2D mbenes: synthesis, structure, and biotechnological potential. Adv. Funct. Mater. 31(38), 2103048 (2021). https://doi.org/10.1002/adfm.202103048
H. Zhang, F.-Z. Dai, H. Xiang, X. Wang, Z. Zhang et al., Phase pure and well crystalline Cr2AlB2: a key precursor for two-dimensional CrB. J. Mater. Sci. Technol. 35(8), 1593–1600 (2019). https://doi.org/10.1016/j.jmst.2019.03.031
L. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140(28), 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705
Z. Jin, D. Chen, P. Zhao, Y. Wen, M. Fan et al., Coordination-induced exfoliation to monolayer bi-anchored MnB2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 10(4), 1861–1872 (2020). https://doi.org/10.7150/thno.39715
H. Li, J. Lei, L. Zhu, Y. Yao, Y. Li et al., MOF synthesis using waste PET for applications of adsorption, catalysis and energy storage. Green Energy Environ. 9(11), 1650–1665 (2024). https://doi.org/10.1016/j.gee.2024.06.003
N. Miao, Z. Duan, S. Wang, Y. Cui, S. Feng et al., H-MBenes: promising two-dimensional material family for room-temperature antiferromagnetic and hydrogen evolution reaction applications. ACS Appl. Mater. Interfaces 16(5), 5792–5802 (2024). https://doi.org/10.1021/acsami.3c15360
H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Fan, Y. Wen, D. Ye, Z. Jin, P. Zhao et al., Hydrogen therapy: acid-responsive H2-releasing 2D MgB2 nanosheet for therapeutic synergy and side effect attenuation of gastric cancer chemotherapy. Adv. Healthc. Mater. 8(13), 1970054 (2019). https://doi.org/10.1002/adhm.201970054
R. Sahu, D. Bogdanovski, J.-O. Achenbach, S. Zhang, M. Hans et al., Direct MoB MBene domain formation in magnetron sputtered MoAlB thin films. Nanoscale 13(43), 18077–18083 (2021). https://doi.org/10.1039/D1NR05712J
S. Jin, Z. Shi, R. Wang, Y. Guo, L. Wang et al., 2D MoB MBene: an efficient co-catalyst for photocatalytic hydrogen production under visible light. ACS Nano 18(19), 12524–12536 (2024). https://doi.org/10.1021/acsnano.4c02642
L. Alameda, R.W. Lord, J.A. Barr, P. Moradifar, Z.P. Metzger et al., Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures. J. Am. Chem. Soc. 141(27), 10852–10861 (2019). https://doi.org/10.1021/jacs.9b04726
R. Khaledialidusti, M. Khazaei, V. Wang, N. Miao, C. Si et al., Exploring structural, electronic, and mechanical properties of 2D hexagonal MBenes. J. Phys. Condens. Matter 33(15), 155503 (2021). https://doi.org/10.1088/1361-648x/abbb0e
S. Liu, L. Bai, J. Wang, M. Zhang, L. Niu, A first-principles study of functionalization effects on mechanical stability and electronic structure of Mo2B2 monolayers. Mater. Lett. 351, 135068 (2023). https://doi.org/10.1016/j.matlet.2023.135068
S. Li, W. Sun, T. Zhu, S. Wang, J. Zhang et al., Top-down design of high-performance V-based MBene anode for Li/Na-ion batteries. Phys. Chem. Chem. Phys. 26(7), 6396–6409 (2024). https://doi.org/10.1039/d3cp05743g
N. Miao, J. Wang, Y. Gong, J. Wu, H. Niu et al., Computational prediction of boron-based MAX phases and MXene derivatives. Chem. Mater. 32(16), 6947–6957 (2020). https://doi.org/10.1021/acs.chemmater.0c02139
M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5(10), 2488–2503 (2017). https://doi.org/10.1039/c7tc00140a
M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, S. Yunoki, Recent advances in MXenes: from fundamentals to applications. Curr. Opin. Solid State Mater. Sci. 23(3), 164–178 (2019). https://doi.org/10.1016/j.cossms.2019.01.002
N.H. Solangi, R.R. Karri, N.M. Mubarak, S.A. Mazari, A.S. Jatoi et al., Emerging 2D MXene-based adsorbents for hazardous pollutants removal. Desalination 549, 116314 (2023). https://doi.org/10.1016/j.desal.2022.116314
N.H. Solangi, R.R. Karri, N.M. Mubarak, S.A. Mazari, A.K. Azad, Emerging 2D MXenes as next-generation materials for energy storage applications. J. Energy Storage 70, 108004 (2023). https://doi.org/10.1016/j.est.2023.108004
Y. Liu, K.T.E. Chua, T.C. Sum, C.K. Gan, First-principles study of the lattice dynamics of Sb2S3. Phys. Chem. Chem. Phys. 16(1), 345–350 (2014). https://doi.org/10.1039/c3cp53879f
Z. Guo, J. Zhou, C. Si, Z. Sun, Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 17(23), 15348–15354 (2015). https://doi.org/10.1039/C5CP00775E
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4(6), eaat0491 (2018). https://doi.org/10.1126/sciadv.aat0491
M.K. Masood, J. Wang, J. Song, Y. Liu, Exploring the potential of MB4 (M = Cr, Mo, and W) Mbenes as high-capacity anode materials for Ca-ion batteries: a DFT approach. J. Mater. Chem. A 12(34), 22945–22959 (2024). https://doi.org/10.1039/D4TA02176B
Y. Yue, W. Xie, J. Ren, M. Wang, Room-temperature ferromagnetism in two-dimensional Mn2B. Vacuum 220, 112825 (2024). https://doi.org/10.1016/j.vacuum.2023.112825
B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017). https://doi.org/10.1038/nature22391
Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao et al., Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19(5), 3138–3142 (2019). https://doi.org/10.1021/acs.nanolett.9b00553
C. Gong, L. Li, Z. Li, H. Ji, A. Stern et al., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546(7657), 265–269 (2017). https://doi.org/10.1038/nature22060
T. Li, R. Liu, Q. Wang, J. Rao, Y. Liu et al., A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. J. Hazard. Mater. 468, 133831 (2024). https://doi.org/10.1016/j.jhazmat.2024.133831
Y. Zhang, Y. Zhang, Z. Guo, Y. Fang, C. Tang et al., Establishing theoretical landscapes for identifying basal plane active sites in MBene toward multifunctional HER, OER, and ORR catalysts. J. Colloid Interface Sci. 652, 1954–1964 (2023). https://doi.org/10.1016/j.jcis.2023.09.006
T. Bashir, S.A. Ismail, J. Wang, W. Zhu, J. Zhao et al., MXene terminating groups O, –F or–OH, –F or O, –OH, –F, or O, –OH, –Cl? J. Energy Chem. 76, 90–104 (2023). https://doi.org/10.1016/j.jechem.2022.08.032
B. Miao, T. Bashir, H. Zhang, T. Ali, S. Raza et al., Impact of various 2D MXene surface terminating groups in energy conversion. Renew. Sustain. Energy Rev. 199, 114506 (2024). https://doi.org/10.1016/j.rser.2024.114506
J. Cai, J. Huang, A. Cao, Y. Wei, H. Wang et al., Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene. Appl. Catal. B Environ. 328, 122473 (2023). https://doi.org/10.1016/j.apcatb.2023.122473
H. Li, Y. Chen, Q. Tang, Surface termination (–O, –F or –OH) and metal doping on the HER activity of Mo2CTx MXene. ChemPhysChem 25(18), e202400255 (2024). https://doi.org/10.1002/cphc.202400255
V. Burtsev, E. Miliutina, V. Shilenko, K. Kukrálová, A. Chumakov et al., Covalent surface grafting of Ti3C2T flakes for enhancement of symmetric supercapacitor performance. J. Power. Sources 609, 234710 (2024). https://doi.org/10.1016/j.jpowsour.2024.234710
S.W. Koh, L. Rekhi, A. Arramel, M.D. Birowosuto, Q.T. Trinh et al., Tuning the work function of MXene via surface functionalization. ACS Appl. Mater. Interfaces 16(49), 66826–66836 (2024). https://doi.org/10.1021/acsami.3c11857
S.K. De, T.K. Aparna, K.R. Gopi Krishna, S. Bhattacharyya, Enhancing the electrochemical performance of TiVCTx MXene by tuning termination groups through different synthesis routes. Chem. Eng. J. 504, 158882 (2025). https://doi.org/10.1016/j.cej.2024.158882
E. Rems, Y.-J. Hu, Y. Gogotsi, R. Dominko, Pivotal role of surface terminations in MXene thermodynamic stability. Chem. Mater. 36(20), 10295–10306 (2024). https://doi.org/10.1021/acs.chemmater.4c02274
V. Buravets, A. Olshtrem, V. Burtsev, O. Gorin, S. Chertopalov et al., Plasmon assisted Ti3C2Tx grafting and surface termination tuning for enhancement of flake stability and humidity sensing performance. Nanoscale Adv. 5(24), 6837–6846 (2023). https://doi.org/10.1039/d3na00429e
C. Gao, Q. You, J. Huang, J. Sun, X. Yao et al., Ultraconformable integrated wireless charging micro-supercapacitor skin. Nano-Micro Lett. 16(1), 123 (2024). https://doi.org/10.1007/s40820-024-01352-1
S. Gong, F. Zhao, H. Xu, M. Li, J. Qi et al., Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. J. Colloid Interface Sci. 615, 643–649 (2022). https://doi.org/10.1016/j.jcis.2022.02.013
L. Liu, E. Raymundo-Piñero, S. Sunny, P.-L. Taberna, P. Simon, Role of surface terminations for charge storage of Ti3C2Tx MXene electrodes in aqueous acidic electrolyte. Angew. Chem. Int. Ed. 63(14), e202319238 (2024). https://doi.org/10.1002/anie.202319238
A. Olshtrem, I. Panov, S. Chertopalov, K. Zaruba, B. Vokata et al., Chiral plasmonic response of 2D Ti3C2Tx flakes: realization and applications. Adv. Funct. Mater. 33(30), 2212786 (2023). https://doi.org/10.1002/adfm.202212786
A. Zabelina, E. Miliutina, J. Dedek, A. Trelin, D. Zabelin et al., Nitrogen photoelectrochemical reduction on TiB2 surface plasmon coupling allows us to reach enhanced efficiency of ammonia production. ACS Catal. 13(16), 10916–10926 (2023). https://doi.org/10.1021/acscatal.3c03210
V. Neubertova, O. Guselnikova, Y. Yamauchi, A. Olshtrem, S. Rimpelova et al., Covalent functionalization of Ti3C2T MXene flakes with Gd-DTPA complex for stable and biocompatible MRI contrast agent. Chem. Eng. J. 446, 136939 (2022). https://doi.org/10.1016/j.cej.2022.136939
Y. Cao, S. Wei, Q. Zhou, P. Zhang, C. Wang et al., Ti–Cl bonds decorated Ti2NTxMXene towards high-performance lithium-ion batteries. 2D Mater. 10(1), 014001 (2023). https://doi.org/10.1088/2053-1583/ac953b
Y. Xiang, L. Lu, Y. Luo, R.-G. Xu, G. Zeng et al., Understanding the termination effect of Ti3C2Tx MXene membrane on water structure and interaction with alginate foulants: a molecular dynamics study. Langmuir 41(1), 975–985 (2025). https://doi.org/10.1021/acs.langmuir.4c04258
Y. Wang, N. Ma, B. Liang, J. Fan, Exploring the potential of Ti2BT2 (T = F, Cl, Br, I, O, S, Se and Te) monolayers as anode materials for lithium and sodium ion batteries. Appl. Surf. Sci. 596, 153619 (2022). https://doi.org/10.1016/j.apsusc.2022.153619
J. Wang, L. Bai, L. Wu, L. Niu, Ordered double transition metal mbene: the hexagonal ScTiB2 monolayer as a superior anode material for lithium-ion batteries. Comput. Mater. Sci. 214, 111736 (2022). https://doi.org/10.1016/j.commatsci.2022.111736
S. Qi, Y. Fan, L. Zhao, W. Li, M. Zhao, Two-dimensional transition metal borides as highly efficient N2 fixation catalysts. Appl. Surf. Sci. 536, 147742 (2021). https://doi.org/10.1016/j.apsusc.2020.147742
B. Zhang, J. Zhou, Z. Sun, New horizons of MBenes: highly active catalysts for the CO oxidation reaction. Nanoscale 15(2), 483–489 (2023). https://doi.org/10.1039/D2NR05705K
Z. Li, Q. Zeng, Y. Yu, Y. Liu, A. Chen et al., Application of transition metal boride nanosheet as sulfur host in high loading Li-S batteries. Chem. Eng. J. 452, 139366 (2023). https://doi.org/10.1016/j.cej.2022.139366
X. Liu, Z. Liu, H. Deng, Theoretical evaluation of mbenes as catalysts for the CO2 reduction reaction. J. Phys. Chem. C 125(35), 19183–19189 (2021). https://doi.org/10.1021/acs.jpcc.1c02749
C. Tewari, M. Pathak, G. Tatrari, S. Kumar, S. Dhali et al., Waste plastics derived reduced graphene oxide-based nanocomposite with Fe3O4 for water purification and supercapacitor applications. J. Ind. Eng. Chem. 130, 346–356 (2024). https://doi.org/10.1016/j.jiec.2023.09.038
B. Padha, S. Verma, A. Ahmed, S.P. Patole, S. Arya, Plastic turned into MXene–based pyro-piezoelectric hybrid nanogenerator-driven self-powered wearable symmetric supercapacitor. Appl. Energy 356, 122402 (2024). https://doi.org/10.1016/j.apenergy.2023.122402
S. Mazzotta, S. Lettieri, G. Ferraro, M. Bartoli, M. Etzi et al., A concise overview of ultrasound-assisted techniques for the production of 2D materials. Processes 12(4), 759 (2024). https://doi.org/10.3390/pr12040759
I. Ozdemir, Y. Kadioglu, O.Ü. Aktürk, Y. Yuksel, Ü. Akıncı et al., A new single-layer structure of MBene family: Ti2B. J. Phys. Condens. Matter 31(50), 505401 (2019). https://doi.org/10.1088/1361-648X/ab3d1d
E.T. Akgul, O.C. Altıncı, A. Umay, P. Aghamohammadi, A.A. Farghaly et al., Nanoengineering of 2D MBenes for energy storage applications: a review. J. Energy Storage 84, 110882 (2024). https://doi.org/10.1016/j.est.2024.110882
A.J. Khan, S.S. Shah, S. Khan, A. Mateen, B. Iqbal et al., 2D metal borides (mbenes): synthesis methods for energy storage applications. Chem. Eng. J. 497, 154429 (2024). https://doi.org/10.1016/j.cej.2024.154429
H. Yuan, Z. Li, J. Yang, Transition-metal diboride: a new family of two-dimensional materials designed for selective CO2 electroreduction. J. Phys. Chem. C 123(26), 16294–16299 (2019). https://doi.org/10.1021/acs.jpcc.9b04221
H. Yuan, Z. Li, X.C. Zeng, J. Yang, Descriptor-based design principle for two-dimensional single-atom catalysts: carbon dioxide electroreduction. J. Phys. Chem. Lett. 11(9), 3481–3487 (2020). https://doi.org/10.1021/acs.jpclett.0c00676
Z. Hu, Y. Yang, X.-F. Zhang, C. Xu, J. Yao, Integrating two-dimensional MXene fillers into nanocellulose for the fabrication of CO2 separation membranes. Sep. Purif. Technol. 326, 124704 (2023). https://doi.org/10.1016/j.seppur.2023.124704
Z. Li, Y. Cheng, Y. Wang, J. Cheng, J. Qiu et al., Exploring the potential of Mbenes in energy storage. Colloids Surf. A, Physicochem. Eng. Aspects 696, 134317 (2024). https://doi.org/10.1016/j.colsurfa.2024.134317
P. Lin, J. Xie, Y. He, X. Lu, W. Li et al., MXene aerogel-based phase change materials toward solar energy conversion. Sol. Energy Mater. Sol. Cells 206, 110229 (2020). https://doi.org/10.1016/j.solmat.2019.110229
S. Sagadevan, I. Fatimah, J.A. Lett, B. Kakavandi, T. Soga et al., Exploring the potential of MXene-based aerogels and hybrid nanocomposites for supercapacitor applications. J. Energy Storage 99, 113269 (2024). https://doi.org/10.1016/j.est.2024.113269
C. Wei, Q. Zhang, Z. Wang, W. Yang, H. Lu et al., Recent advances in MXene-based aerogels: fabrication, performance and application. Adv. Funct. Mater. 33(9), 2211889 (2023). https://doi.org/10.1002/adfm.202211889
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
Y. Hou, Z. Chen, X. Li, Y. Wang, P. Li et al., MBene promoted Zn peroxide chemistry in rechargeable near-neutral Zn–air batteries. Energy Environ. Sci. 16(8), 3407–3415 (2023). https://doi.org/10.1039/d3ee01297b
J. Zhao, M. Zhou, J. Chen, L. Wang, Q. Zhang et al., Two birds one stone: graphene assisted reaction kinetics and ionic conductivity in phthalocyanine-based covalent organic framework anodes for lithium-ion batteries. Small 19(44), 2303353 (2023). https://doi.org/10.1002/smll.202303353
X. Zheng, G. Cai, J. Guo, W. Gao, Y. Huang et al., Combustion characteristics and thermal decomposition mechanism of the flame-retardant cable in urban utility tunnel. Case Stud. Therm. Eng. 44, 102887 (2023). https://doi.org/10.1016/j.csite.2023.102887
M. Zheng, H. Salim, T. Liu, R.A. Stewart, J. Lu et al., Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy Environ. Sci. 14(11), 5801–5815 (2021). https://doi.org/10.1039/D1EE01812D
W. Xiong, X. Feng, Y. Xiao, T. Huang, X. Li et al., Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance. Chem. Eng. J. 446, 137466 (2022). https://doi.org/10.1016/j.cej.2022.137466
Y. Wang, R. Huang, Q. Zhang, Y. Ma, B. Gao et al., Theoretical investigation of the V2BX2 (X = S, Se, and Te) monolayers as anode materials for Na-ion batteries. Mater. Today Commun. 35, 105923 (2023). https://doi.org/10.1016/j.mtcomm.2023.105923
P. Sang, Q. Chen, D.-Y. Wang, W. Guo, Y. Fu, Organosulfur materials for rechargeable batteries: structure, mechanism, and application. Chem. Rev. 123(4), 1262–1326 (2023). https://doi.org/10.1021/acs.chemrev.2c00739
C. Yuan, D.-D. Liu, Y.-J. Zhu, T. Zeng, B.-X. Jiang et al., Effect of charge transport on electrical degradation in polypropylene/organic molecular semiconductor composites for HVDC cable insulation. Appl. Phys. Lett. 122(11), 112904 (2023). https://doi.org/10.1063/5.0133417
X. Li, S. Aftab, A. Abbas, S. Hussain, M. Aslam et al., Advances in mixed 2D and 3D perovskite heterostructure solar cells: a comprehensive review. Nano Energy 118, 108979 (2023). https://doi.org/10.1016/j.nanoen.2023.108979
J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium–sulfur batteries: a critical review. Adv. Mater. 35(29), 2211168 (2023). https://doi.org/10.1002/adma.202211168
Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium–sulfur batteries. Nano Lett. 21(15), 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
X. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao et al., Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 14(1), 291 (2023). https://doi.org/10.1038/s41467-022-35736-x
H. Hao, T. Hutter, B.L. Boyce, J. Watt, P. Liu et al., Review of multifunctional separators: stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries. Chem. Rev. 122(9), 8053–8125 (2022). https://doi.org/10.1021/acs.chemrev.1c00838
Y. Xiao, Y. Li, Z. Guo, C. Tang, B. Sa et al., Functionalized Mo2B2 MBenes: Promising anchoring and electrocatalysis materials for Lithium-Sulfur battery. Appl. Surf. Sci. 566, 150634 (2021). https://doi.org/10.1016/j.apsusc.2021.150634
W. Zhang, P. Sun, S. Sun, A theoretical method to predict novel organic electrode materials for Na-ion batteries. Comput. Mater. Sci. 134, 42–47 (2017). https://doi.org/10.1016/j.commatsci.2017.03.031
K. Huang, Z. Zhao, H. Du, P. Du, H. Wang et al., Rapid thermal annealing toward high-quality 2D cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustainable Chem. Eng. 8(18), 6905–6913 (2020). https://doi.org/10.1021/acssuschemeng.0c00830
R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11), 639–642 (2001). https://doi.org/10.1016/S1388-2481(01)00244-2
W. Xiong, X. Feng, T. Huang, Z. Huang, X. He et al., Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries. J. Mater. Sci. Technol. 212, 67–76 (2025). https://doi.org/10.1016/j.jmst.2024.05.060
B. Liang, N. Ma, Y. Wang, T. Wang, J. Fan, N-functionalized Ti2B MBene as high-performance anode materials for sodium-ion batteries: a DFT study. Appl. Surf. Sci. 599, 153927 (2022). https://doi.org/10.1016/j.apsusc.2022.153927
S. Gao, J. Hao, X. Zhang, L. Li, C. Zhang et al., Two dimension transition metal boride Y2B2 as a promising anode in Li-ion and Na-ion batteries. Comput. Mater. Sci. 200, 110776 (2021). https://doi.org/10.1016/j.commatsci.2021.110776
W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou et al., Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: modeling and applications. Acta Mater. 159, 16–30 (2018). https://doi.org/10.1016/j.actamat.2018.08.008
M.K. Masood, J. Wang, J. Song, Y. Liu, A novel two-dimensional monolayer MB4(M = Cr, Mo, W) mbenes as a high-performance anode material for Mg-ion batteries. J. Energy Storage 86, 111370 (2024). https://doi.org/10.1016/j.est.2024.111370
T. Mei, J. Wu, S. Lu, B. Wang, X. Zhao et al., First-principles investigations to evaluate Mo2B monolayers as promising two-dimensional anode materials for Mg-ion batteries. J. Phys. Energy 4(3), 035002 (2022). https://doi.org/10.1088/2515-7655/ac71cb
Y. Wang, S. Wang, N. Song, X. Wu, J. Xu et al., On two-dimensional metal borides (MBenes) as anode materials for metal-ion batteries: a first-principles study. Comput. Mater. Sci. 233, 112710 (2024). https://doi.org/10.1016/j.commatsci.2023.112710
M. Chotsawat, L. Ngamwongwan, I. Fongkaew, A. Junkaew, S. Suthirakun, Exploring Mo2B MBene as a high-capacity anode material for multi-valent metal-ion batteries: insights from first-principles calculations. Colloids Surf. A, Physicochem. Eng. Aspects 704, 135531 (2025). https://doi.org/10.1016/j.colsurfa.2024.135531
Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li et al., Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 27(42), 6598–6605 (2015). https://doi.org/10.1002/adma.201502378
Y. Jin, J. Geng, Y. Wang, Z. Zhao, Z. Chen et al., Flexible all-solid-state asymmetric supercapacitor based on Ti3C2Tx MXene/graphene/carbon nanotubes. Surf. Interfaces 53, 104999 (2024). https://doi.org/10.1016/j.surfin.2024.104999
Y. Zou, C. Chen, Y. Sun, S. Gan, L. Dong et al., Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 418, 128616 (2021). https://doi.org/10.1016/j.cej.2021.128616
H. Zhang, Y. Qiao, Z. Lu, Fully printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Appl. Mater. Interfaces 8(47), 32317–32323 (2016). https://doi.org/10.1021/acsami.6b11172
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
C. Qiu, L. Jiang, Y. Gao, L. Sheng, Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater. Des. 230, 111952 (2023). https://doi.org/10.1016/j.matdes.2023.111952
A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, E.T. Sayed, Application of graphene in energy storage device–a review. Renew. Sustain. Energy Rev. 135, 110026 (2021). https://doi.org/10.1016/j.rser.2020.110026
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao et al., Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 60(39), 21310–21318 (2021). https://doi.org/10.1002/anie.202104167
S. Wei, X. Lai, G.M. Kale, Exploring the potential of MBenes supercapacitors: fluorine-free synthesized MoAl1–xB with ultrahigh conductivity and open space. ACS Appl. Mater. Interfaces 15(28), 33560–33570 (2023). https://doi.org/10.1021/acsami.3c04301
Y. Shi, G. Song, B. Yang, Y. Tang, Z. Liu et al., Prussian blue analogues “dressed” in MXene nanosheets tightly for high performance lithium-ion batteries. Adv. Mater. 37(8), e2416665 (2025). https://doi.org/10.1002/adma.202416665
B. Zhao, L. Song, Z. Zou, Z. Xiong, Y. Zhang et al., Electrospun Ti3C2 MXene fiber-decorated interlayer for synchronous sulfur activation and lithium stabilization. Adv. Funct. Mater. 35(28), 2500079 (2025). https://doi.org/10.1002/adfm.202500079
S. Vinoth, H.T. Das, M. Govindasamy, S.-F. Wang, N.S. Alkadhi et al., Facile solid-state synthesis of layered molybdenum boride-based electrode for efficient electrochemical aqueous asymmetric supercapacitor. J. Alloys Compd. 877, 160192 (2021). https://doi.org/10.1016/j.jallcom.2021.160192
A.J. Khan, H. Ding, Y. Zhang, D. Zhang, L. Gao et al., NiCo2O4@MXene composite electrodes: unveiling high-performance asymmetric supercapacitor capabilities through enhanced redox activity. Chem. Eng. J. 506, 160287 (2025). https://doi.org/10.1016/j.cej.2025.160287
S. Wei, G. Kale, X. Lai, Unlocking enhanced electrochemical performance of MBene-MoB through controlled aluminum dissipation from MoAlB. Small 20(38), 2401573 (2024). https://doi.org/10.1002/smll.202401573
S. Wang, Y. Gao, Z. Yang, H. Zhou, D. Ni et al., Heterostructured CoO/MoB mbene composites for high performance lithium-ion batteries anode. iScience 28(4), 112133 (2025). https://doi.org/10.1016/j.isci.2025.112133
D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/am501144q
N.H. Solangi, L.P. Lingamdinne, R.R. Karri, N.M. Mubarak, S.A. Mazari et al., Emerging 2D MXene quantum dots for catalytic conversion of CO2. Carbon 232, 119758 (2025). https://doi.org/10.1016/j.carbon.2024.119758
S.H. Mir, V.K. Yadav, J.K. Singh, Efficient CO2 capture and activation on novel two-dimensional transition metal borides. ACS Appl. Mater. Interfaces 14(26), 29703–29710 (2022). https://doi.org/10.1021/acsami.2c02469
A. Thakur, A. Rasyotra, K. Jasuja, Review and perspectives of electrochemical energy conversion and storage in metal diborides and XBenes. Energy Fuels 37(23), 18310–18329 (2023). https://doi.org/10.1021/acs.energyfuels.3c02785
K.A. Papadopoulou, A. Chroneos, D. Parfitt, S.G. Christopoulos, A perspective on MXenes: their synthesis, properties, and recent applications. J. Appl. Phys. 128(17), 170902 (2020). https://doi.org/10.1063/5.0021485
A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater. Appl. 5, 61 (2021). https://doi.org/10.1038/s41699-021-00239-8
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
M. van der Spek, C. Banet, C. Bauer, P. Gabrielli, W. Goldthorpe et al., Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 15(3), 1034–1077 (2022). https://doi.org/10.1039/D1EE02118D
C. Kim, J.C. Bui, X. Luo, J.K. Cooper, A. Kusoglu et al., Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6(11), 1026–1034 (2021). https://doi.org/10.1038/s41560-021-00920-8
Y. Xiao, C. Shen, N. Hadaeghi, Quantum mechanical screening of 2D MBenes for the electroreduction of CO2 to C1 hydrocarbon fuels. J. Phys. Chem. Lett. 12(27), 6370–6382 (2021). https://doi.org/10.1021/acs.jpclett.1c01499
X. Lu, Y. Hu, S. Cao, J. Li, C. Yang et al., Two-dimensional MBene: a comparable catalyst to MXene for effective CO2RR towards C1 products. Phys. Chem. Chem. Phys. 25(28), 18952–18959 (2023). https://doi.org/10.1039/D2CP05449C
M. Melchionna, P. Fornasiero, M. Prato, M. Bonchio, Electrocatalytic CO2 reduction: role of the cross-talk at nano-carbon interfaces. Energy Environ. Sci. 14(11), 5816–5833 (2021). https://doi.org/10.1039/d1ee00228g
Y. Ren, S. Li, C. Yu, Y. Zheng, C. Wang et al., NH3 electrosynthesis from N2 molecules: progresses, challenges, and future perspectives. J. Am. Chem. Soc. 146(10), 6409–6421 (2024). https://doi.org/10.1021/jacs.3c11676
B. Lee, L.R. Winter, H. Lee, D. Lim, H. Lim et al., Pathways to a green ammonia future. ACS Energy Lett. 7(9), 3032–3038 (2022). https://doi.org/10.1021/acsenergylett.2c01615
H. Iriawan, S.Z. Andersen, X. Zhang, B.M. Comer, J. Barrio et al., Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021). https://doi.org/10.1038/s43586-021-00053-y
C.S. Wang, H. Wang, R. Wu, R. Ragan, Evaluating the stability of single-atom catalysts with high chemical activity. J. Phys. Chem. C 122(38), 21919–21926 (2018). https://doi.org/10.1021/acs.jpcc.8b06621
L. Zeng, C. Xue, Single metal atom decorated photocatalysts: progress and challenges. Nano Res. 14(4), 934–944 (2021). https://doi.org/10.1007/s12274-020-3099-8
Z.-H. Xue, D. Luan, H. Zhang, X.W.( Lou, Single-atom catalysts for photocatalytic energy conversion. Joule 6(1), 92–133 (2022). https://doi.org/10.1016/j.joule.2021.12.011
W. Zhao, L. Zhang, Q. Luo, Z. Hu, W. Zhang et al., Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 9(4), 3419–3425 (2019). https://doi.org/10.1021/acscatal.8b05061
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock et al., Beyond fossil fuel–driven nitrogen transformations. Science 360(6391), eaar6611 (2018)
Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
C. Gu, J.L. Zhang, J.Q. Zhong, Q. Shen, X. Zhou et al., Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine. Nano Res. 13(9), 2393–2398 (2020). https://doi.org/10.1007/s12274-020-2863-0
Y. Li, L. Li, R. Huang, Y. Wen, Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction. Nanoscale 13(35), 15002–15009 (2021). https://doi.org/10.1039/D1NR04652G
Y. Zhang, Z. Guo, Y. Fang, C. Tang, F. Meng et al., Rational design of bimetallic MBene for efficient electrocatalytic nitrogen reduction. J. Colloid Interface Sci. 670, 687–697 (2024). https://doi.org/10.1016/j.jcis.2024.05.145
K. Cheng, S. Li, Q. Cheng, L. Zhang, Y. Jiang et al., The electron-rich interface regulated MBene by S-bridge guided to enhance nitrogen fixation under environmental conditions. Adv. Funct. Mater. 35(13), 2417914 (2025). https://doi.org/10.1002/adfm.202417914
L. Liu, H. Li, T. Yuan, J. Zhang, K. Xue et al., Copper anchored MXene regulated metal-oxide interfaces for the CO2 electrocatalytic conversion. J. Mater. Sci. Technol. 250, 17–24 (2026). https://doi.org/10.1016/j.jmst.2025.04.087
A. Vijayaprabhakaran, M. Kathiresan, Ag/Zn-Ta2C MXene composite as an efficient electrocatalyst for aqueous and non-aqueous CO2 reduction reactions. Adv. Compos. Hybrid Mater. 8(3), 239 (2025). https://doi.org/10.1007/s42114-025-01266-5
Z. Han, Y. Chang, H. Liu, Y. Wei, S. Hao et al., Efficient electrocatalytic CO2 reduction to formate via continuous microfluidic synthesis of Bi2O3/MXene-based composite catalysts with tunable metal oxide interfaces. Adv. Energy Mater. 15(32), 2501761 (2025). https://doi.org/10.1002/aenm.202501761
T. Yu, P. Zhao, Z. Cui, H. Liu, R. Guo et al., Built-in electric field synergizes tandem catalysis boosting Co2B@MXene heterostructure for electrochemical nitrate reduction. Chem. Eng. J. 515, 163663 (2025). https://doi.org/10.1016/j.cej.2025.163663
L. Sun, Z. Liu, Y. Wu, Y. Zhu, S. Shao et al., MXene laminar membrane functionalized with Pd-Cu for efficient and selective nitrate reduction to ammonia. Sep. Purif. Technol. 355, 129638 (2025). https://doi.org/10.1016/j.seppur.2024.129638
Q. Zhou, X. Wang, S. Rong, G. Li, H. Pang et al., Anderson-type polyoxometalate/MXene heterostructures for efficient electrochemical nitrate reduction to ammonia. Appl. Surf. Sci. 708, 163675 (2025). https://doi.org/10.1016/j.apsusc.2025.163675
T. Chen, Y. Gao, Z. Guo, E. Wang, J. Zhou et al., Vacancy induced dissociation of hydrogenized CO2 for promoted CH4 production in MBenes. J. Mater. Chem. A 13(11), 7929–7938 (2025). https://doi.org/10.1039/D4TA08000A
V. Sharma, R. Dhiman, A. Mahajan, Ti2+ and Ti4+ species enriched MXene electrocatalyst for highly efficient hydrogen evolution and oxygen evolution reaction kinetics. Appl. Surf. Sci. 612, 155883 (2023). https://doi.org/10.1016/j.apsusc.2022.155883
X. Zhao, W.-P. Li, Y. Cao, A. Portniagin, B. Tang et al., Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano 18(5), 4256–4268 (2024). https://doi.org/10.1021/acsnano.3c09639
P. Wan, Q. Tang, Theoretical progress of MXenes as electrocatalysts for the hydrogen evolution reaction. Mater. Chem. Front. 8(2), 507–527 (2024). https://doi.org/10.1039/D3QM00783A
X. Zhao, X. Zheng, Q. Lu, Y. Li, F. Xiao et al., Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat 5(2), e12293 (2023). https://doi.org/10.1002/eom2.12293
C. Ling, L. Shi, Y. Ouyang, J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem. Mater. 28(24), 9026–9032 (2016). https://doi.org/10.1021/acs.chemmater.6b03972
P. Li, J. Zhu, A.D. Handoko, R. Zhang, H. Wang et al., High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. J. Mater. Chem. A 6(10), 4271–4278 (2018). https://doi.org/10.1039/C8TA00173A
T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun, Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9(1), 433–441 (2021). https://doi.org/10.1039/d0ta08630d
Y. Wang, W. Tian, J. Wan, Y. Zheng, H. Zhang et al., Tuning coordination microenvironment of V2CTx MXene for anchoring single-atom toward efficient multifunctional electrocatalysis. J. Colloid Interface Sci. 645, 833–840 (2023). https://doi.org/10.1016/j.jcis.2023.05.015
N. Kumar, K. Naveen, M. Kumar, T.C. Nagaiah, R. Sakla et al., Multifunctionality exploration of Ca2FeRuO6: an efficient trifunctional electrocatalyst toward OER/ORR/HER and photocatalyst for water splitting. ACS Appl. Energy Mater. 4(2), 1323–1334 (2021). https://doi.org/10.1021/acsaem.0c02579
P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng et al., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 10, 1711 (2019). https://doi.org/10.1038/s41467-019-09666-0
K. Zhang, W. Guo, Z. Liang, R. Zou, Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Sci. China Chem. 62(4), 417–429 (2019). https://doi.org/10.1007/s11426-018-9441-4
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
Y. Wei, H. Huang, F. Gao, G. Jiang, 2D transitional-metal nickel compounds monolayer: highly efficient multifunctional electrocatalysts for the HER, OER and ORR. Int. J. Hydrog. Energy 48(11), 4242–4252 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.250
J. Yang, Y. Fan, P.-F. Liu, Theoretical insights into heterogeneous single-atom Fe1 catalysts supported by graphene-based substrates for water splitting. Appl. Surf. Sci. 540, 148245 (2021). https://doi.org/10.1016/j.apsusc.2020.148245
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin et al., Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165
H. Park, A. Encinas, J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56(20), 5575–5578 (2017). https://doi.org/10.1002/anie.201611756
F. Li, Q. Tang, First-principles calculations of TiB MBene monolayers for hydrogen evolution. ACS Appl. Nano Mater. 2(11), 7220–7229 (2019). https://doi.org/10.1021/acsanm.9b01718
Y. Xiao, C. Shen, Predicted electrocatalyst properties on metal insulator MoTe2 for hydrogen evolution reaction and oxygen reduction reaction application in fuel cells. Energy Fuels 35(9), 8275–8285 (2021). https://doi.org/10.1021/acs.energyfuels.1c00814
B. Zhang, J. Zhou, Z. Guo, Q. Peng, Z. Sun, Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500, 144248 (2020). https://doi.org/10.1016/j.apsusc.2019.144248
A. Shukla, G. Sharma, S. Krishnamurty, Single-atom-catalyst-implanted MBenes as efficient electrocatalysts for hydrogen evolution reaction as realized through computational screening. ACS Appl. Eng. Mater. 2(2), 422–430 (2024). https://doi.org/10.1021/acsaenm.3c00732
L. Chen, G. Pilania, R. Batra, T.D. Huan, C. Kim et al., Polymer informatics: current status and critical next steps. Mater. Sci. Eng. R. Rep. 144, 100595 (2021). https://doi.org/10.1016/j.mser.2020.100595
T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Årén, A. Gallo-Bueno et al., Artificial intelligence applied to battery research: hype or reality? Chem. Rev. 122(12), 10899–10969 (2022). https://doi.org/10.1021/acs.chemrev.1c00108
A. Trelin, A. Skvortsova, A. Olshtrem, S. Chertopalov, D. Mares et al., Surface-enhanced raman spectroscopy and artificial neural networks for detection of MXene flakes’ surface terminations. J. Phys. Chem. C 128(16), 6780–6787 (2024). https://doi.org/10.1021/acs.jpcc.4c01273
S.K. Jameer Basha, E. Ajith Jubilson, Stability assessment of mbene materials using scikit-learn inspired application programming interface: gplearn and p swarm optimization. ES Mater. Manuf. 24, 1166 (2024). https://doi.org/10.30919/esmm1166
A.N. Kolmogorov, S. Curtarolo, Theoretical study of metal borides stability. Phys. Rev. B 74(22), 224507 (2006). https://doi.org/10.1103/physrevb.74.224507
M. Khazaei, J. Wang, M. Estili, A. Ranjbar, S. Suehara et al., Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale 11(23), 11305–11314 (2019). https://doi.org/10.1039/c9nr01267b
L. Lan, X. Fan, C. Zhao, J. Gao, Z. Qu et al., Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering. Nanoscale 15(6), 2779–2787 (2023). https://doi.org/10.1039/d2nr06280a
V. Sharma, D. Datta, Developing potential energy surfaces for graphene-based 2D–3D interfaces from modified high-dimensional neural networks for applications in energy storage. J. Electrochem. Energy Convers. Storage 19(4), 041006 (2022). https://doi.org/10.1115/1.4054781
R.R. Neiber, J. Kumar, B.P. Sharma, W.-L. Ding, X. Lu, Ultra stable ink with promising areal capacitance as advanced micro-supercapacitor and unique metal absorptivity enabled by surface functionalization of titanium carbide (MXene). Adv. Funct. Mater. 34(49), 2406481 (2024). https://doi.org/10.1002/adfm.202406481
J. Kumar, R.A. Soomro, B. Fan, J. Tan, N. Sun et al., Butanedioic acid unlock shelf-stable Ti3C2Tx (MXene) dispersions and their electrochemical performance in supercapacitor. J. Alloys Compd. 1009, 176749 (2024). https://doi.org/10.1016/j.jallcom.2024.176749
J. Kumar, J. Tan, R. Ali Soomro, N. Sun, B. Xu, Probing the synergistic effects of amino compounds in mitigating oxidation in 2D Ti3C2Tx MXene nanosheets in aqueous environments. Chem. Sci. 16(4), 1986–1994 (2025). https://doi.org/10.1039/D4SC05097E
T. Hu, M. Wang, X. Wang, Y. Zhou, C. Li, Unraveling surface functionalization of Cr2B2T2 (T = OH, O, Cl, H) MBene by first-principles calculations. Comput. Mater. Sci. 199, 110810 (2021). https://doi.org/10.1016/j.commatsci.2021.110810