Solid Electrolyte Interface in Zn-Based Battery Systems
Corresponding Author: Longtao Ma
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 205
Abstract
Due to its high theoretical capacity (820 mAh g−1), low standard electrode potential (− 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new energy storage devices. In Zn battery system, the battery performance is significantly affected by the solid electrolyte interface (SEI), which is controlled by electrode and electrolyte, and attracts dendrite growth, electrochemical stability window range, metallic Zn anode corrosion and passivation, and electrolyte mutations. Therefore, the design of SEI is decisive for the overall performance of Zn battery systems. This paper summarizes the formation mechanism, the types and characteristics, and the characterization techniques associated with SEI. Meanwhile, we analyze the influence of SEI on battery performance, and put forward the design strategies of SEI. Finally, the future research of SEI in Zn battery system is prospected to seize the nature of SEI, improve the battery performance and promote the large-scale application.
Highlights:
1 The formation mechanism of solid electrolyte interface (SEI) is analyzed based on charge distributions at the electrode/electrolyte interface and molecular orbital theory.
2 The factors affecting the formation of SEI are generalized from four aspects: Zn anode, electrolyte, current density and temperature.
3 The design strategies for SEI layer are proposed from regulating temperature, electric and magnetic fields.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Oh, H. Lee, S. Park, H. Cha, J. Kim et al., Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years. Adv. Energy Mater. 10(24), 2000904 (2020). https://doi.org/10.1002/aenm.202000904
- X.G. Yang, T. Liu, C.Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7
- X.Q. Zeng, M. Li, D.A. El-Hady, W. Alshitari, A.S. Al-Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161
- C. Wang, C. Yang, Z. Zheng, Toward practical high-energy and high-power lithium battery anodes: present and future. Adv. Sci. 9(9), 2105213 (2022). https://doi.org/10.1002/advs.202105213
- Y. Miao, L. Liu, Y. Zhang, Q. Tan, J. Li, An overview of global power lithium-ion batteries and associated critical metal recycling. J. Hazard. Mater. 425, 127900 (2022). https://doi.org/10.1016/j.jhazmat.2021.127900
- Y. Liu, G. Zhou, K. Liu, Y. Cui, Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 50(12), 2895–2905 (2017). https://doi.org/10.1021/acs.accounts.7b00450
- J.M. Kim, J.A. Kim, S.H. Kim, I.S. Uhm, S.J. Kang et al., All-nanomat lithium-ion batteries: a new cell architecture platform for ultrahigh energy density and mechanical flexibility. Adv. Energy Mater. 7(22), 1701099 (2017). https://doi.org/10.1002/aenm.201701099
- M. Diaz-Lopez, P.A. Chater, P. Bordet, M. Freire, C. Jordy et al., Li2O:Li-Mn-O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries. Adv. Energy Mater. 10(7), 1902788 (2020). https://doi.org/10.1002/aenm.201902788
- G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen et al., Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4(3), 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496
- T. Zhao, Q. Wang, P. Jena, Cluster-inspired design of high-capacity anode for Li-ion batteries. ACS Energy Lett. 1(1), 202–208 (2016). https://doi.org/10.1021/acsenergylett.6b00120
- M. Zhang, Z. Huang, Z. Shen, Y. Gong, B. Chi et al., High-performance aqueous rechargeable Li–Ni battery based on Ni(OH)2/NiOOH redox couple with high voltage. Adv. Energy Mater. 7(17), 1700155 (2017). https://doi.org/10.1002/aenm.201700155
- Y. Fu, Q. Wei, G. Zhang, S. Sun, Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8(13), 1702849 (2018). https://doi.org/10.1002/aenm.201702849
- C. Delmas, Battery materials: operating through oxygen. Nat. Chem. 8(7), 641–643 (2016). https://doi.org/10.1038/nchem.2558
- A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc–ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
- Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.Joule2021.10.011
- E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126(12), 12620 (1979). https://doi.org/10.1149/1.2128859
- D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
- E. Peled, D. Golodnitsky, G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144(8), L208–L210 (1997). https://doi.org/10.1149/1.1837858
- P. Lu, S.J. Harris, Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13(10), 1035–1037 (2011). https://doi.org/10.1016/j.elecom.2011.06.026
- Y. Xu, Y. He, H. Wu, W. Xu, C. Wang, Atomic structure of electrochemically deposited lithium metal and its solid electrolyte interphases revealed by cryo–electron microscopy. Microsc. Microanal. 25(S2), 2220–2221 (2019). https://doi.org/10.1017/s1431927619011838
- J. Wu, M. Ihsan-Ul-Haq, Y. Chen, J.K. Kim, Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano Energy 89, 106489 (2021). https://doi.org/10.1016/j.nanoen.2021.106489
- S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., N,N-dimethylacetamide-diluted nitrate electrolyte for aqueous Zn//LiMn2O4 hybrid ion batteries. ACS Appl. Mater. Interfaces 13(39), 46634–46643 (2021). https://doi.org/10.1021/acsami.1c12911
- M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc–ion batteries. Energy Storage Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
- Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5(5), 1119–1142 (2021). https://doi.org/10.1016/j.Joule2021.03.024
- Y. Du, Y. Li, B.B. Xu, T.X. Liu, X. Liu et al., Electrolyte salts and additives regulation enables high performance aqueous zinc ion batteries: a mini review. Small (2021). https://doi.org/10.1002/smll.202104640
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- H. Liu, J. Li, X. Zhang, X. Liu, Y. Yan et al., Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31(48), 2106550 (2021). https://doi.org/10.1002/adfm.202106550
- C. Yan, R. Xu, Y. Xiao, J.F. Ding, L. Xu et al., Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30(23), 1909887 (2020). https://doi.org/10.1002/adfm.201909887
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- J. Zheng, L.A. Archer, Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci. Adv. 7(2), eabe0219 (2021). https://doi.org/10.1126/sciadv.abe0219
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn–ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu et al., Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy Environ. Sci. 11(11), 3075–3095 (2018). https://doi.org/10.1039/c8ee01991f
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16(8), 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
- W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10(26), 22059–22066 (2018). https://doi.org/10.1021/acsami.8b04085
- S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
- M. Li, Q. He, Z. Li, Q. Li, Y. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
- S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., Acetate-based ‘oversaturated gel electrolyte’ enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Mater. 42, 240–251 (2021). https://doi.org/10.1016/j.ensm.2021.07.033
- A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna et al., A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 31(36), 1900668 (2019). https://doi.org/10.1002/adma.201900668
- N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- X. Wang, F. Wang, L. Wang, M. Li, Y. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28(24), 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
- D. Bohra, J.H. Chaudhry, T. Burdyny, E.A. Pidko, W.A. Smith, Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12(11), 3380–3389 (2019). https://doi.org/10.1039/c9ee02485a
- K.K. Mahanta, G.C. Mishra, M.L. Kansal, Estimation of electric double layer thickness from linearized and nonlinear solutions of Poisson–Boltzman equation for single type of ions. Appl. Clay Sci. 59–60, 1–7 (2012). https://doi.org/10.1016/j.clay.2012.02.014
- M.A. Brown, A. Goel, Z. Abbas, Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 55(11), 3790–3794 (2016). https://doi.org/10.1002/anie.201512025
- A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals And Applications (Wiley, New York, 1980). https://doi.org/10.1021/ed060pA25.1
- N. Takenaka, A. Bouibes, Y. Yamada, M. Nagaoka, A. Yamada, Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism. Adv. Mater. 33(37), 2100574 (2021). https://doi.org/10.1002/adma.202100574
- W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- W. Liu, P. Liu, D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10(43), 2002297 (2020). https://doi.org/10.1002/aenm.202002297
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
- Y. Sasaki, K. Yoshida, T. Kawasaki, A. Kuwabara, Y. Ukyo et al., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power Sources 481, 228831 (2021). https://doi.org/10.1016/j.jpowsour.2020.228831
- S. Wang, Z. Wang, Y. Yin, T. Li, N. Chang et al., A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy Environ. Sci. 14(7), 4077–4084 (2021). https://doi.org/10.1039/d1ee00783a
- X. Zhou, Q. Zhang, Z. Hao, Y. Ma, O.A. Drozhzhin et al., Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy. ACS Appl. Mater. Interfaces 13(44), 53227–53234 (2021). https://doi.org/10.1021/acsami.1c16263
- D. Lee, H.I. Kim, W.Y. Kim, S.K. Cho, K. Baek et al., Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv. Funct. Mater. 31(36), 2103850 (2021). https://doi.org/10.1002/adfm.202103850
- Y. Liu, M. Huang, F. Xiong, J. Zhu, Q. An, Improved zinc-ion storage performance of the metal-free organic anode by the effect of binder. Chem. Eng. J. 428, 131092 (2022). https://doi.org/10.1016/j.cej.2021.131092
- A. Kriston, I. Adanouj, V. Ruiz, A. Pfrang, Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis. J. Power Sources 435, 226774 (2019). https://doi.org/10.1016/j.jpowsour.2019.226774
- X. Wang, Y. Li, Y.S. Meng, Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2(11), 2225–2234 (2018). https://doi.org/10.1016/j.Joule2018.10.005
- Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/Scienceaam6014
- P. Cao, J. Tang, A. Wei, Q. Bai, Q. Meng et al., Manipulating uniform nucleation to achieve dendrite-free Zn anodes for aqueous Zn-ion batteries. ACS Appl. Mater. Interfaces 13(41), 48855–48864 (2021). https://doi.org/10.1021/acsami.1c14947
- X. Ma, X. Cao, M. Yao, L. Shan, X. Shi et al., Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 34(6), 2105452 (2022). https://doi.org/10.1002/adma.202105452
- X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/d0ee03898a
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- Y. Zhang, G. Wan, N.H.C. Lewis, J. Mars, S.E. Bone et al., Water or anion? Uncovering the Zn2+ solvation environment in mixed Zn(TFSI)2 and LiTFSI water-in-salt electrolytes. ACS Energy Lett. 6(10), 3458–3463 (2021). https://doi.org/10.1021/acsenergylett.1c01624
- G. Feng, J. Guo, H. Tian, Z. Li, Y. Shi et al., Probe the localized electrochemical environment effects and electrode reaction dynamics for metal batteries using in situ 3D microscopy. Adv. Energy Mater. 12(3), 2103484 (2021). https://doi.org/10.1002/aenm.202103484
- Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), 2105133 (2022). https://doi.org/10.1002/adma.202105133
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5(3), 205–213 (2021). https://doi.org/10.1038/s41893-021-00800-9
- D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6(5), 1103–1120 (2022). https://doi.org/10.1016/j.Joule2022.04.017
- H. Yan, C. Han, S. Li, J. Liu, J. Ren et al., Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high columbic efficiency and stable Zn metal anode. Chem. Eng. J. 442, 136081 (2022). https://doi.org/10.1016/j.cej.2022.136081
- H. Yan, X. Zhang, Z. Yang, M. Xia, C. Xu et al., Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordin. Chem. Rev. 452, 214297 (2022). https://doi.org/10.1016/j.ccr.2021.214297
- L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019). https://doi.org/10.1021/acsami.9b10905
- G. Kasiri, R. Trócoli, A.B. Hashemi, F.L. Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
- Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar et al., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9(22), 1900237 (2019). https://doi.org/10.1002/aenm.201900237
- Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
- G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
- F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dollé, et al., Metal oxides as negative electrode materials in Li-ion cells. Electrochem. Solid State Lett. 5(6), 115 (2002). https://doi.org/10.1149/1.1472303
- Y. Rangom, T.T. Duignan, X.S. Zhao, Lithium-ion transport behavior in thin-film graphite electrodes with SEI layers formed at different current densities. ACS Appl. Mater. Interfaces 13(36), 42662–42669 (2021). https://doi.org/10.1021/acsami.1c09559
- Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937
- J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11(39), 2100676 (2021). https://doi.org/10.1002/aenm.202100676
- X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
- Q. Jian, Y. Wan, Y. Lin, M. Ni, M. Wu et al., A highly reversible zinc anode for rechargeable aqueous batteries. ACS Appl. Mater. Interfaces 13, 52659–52669 (2021). https://doi.org/10.1021/acsami.1c15628
- Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15(7), 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
- K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
- Z. Ye, Z. Cao, M.O.L. Chee, P. Dong, P.M. Ajayan et al., Advances in Zn-ion batteries via regulating liquid electrolyte. Energy Storage Mater. 32, 290–305 (2020). https://doi.org/10.1016/j.ensm.2020.07.011
- Z. Pei, Symmetric is nonidentical: operation history matters for Zn metal anode. Nano Res. Energy 1, 9120023 (2022). https://doi.org/10.26599/nre.2022.9120023
- Z. Qu, M. Zhu, Y. Yin, Y. Huang, H. Tang et al., A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 12(28), 2200714 (2022). https://doi.org/10.1002/aenm.202200714
- S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma et al., Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13(11), 13456–13464 (2019). https://doi.org/10.1021/acsnano.9b07042
- P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), 202200598 (2022). https://doi.org/10.1002/anie.202200598
- L. Ma, N. Li, C. Long, B. Dong, D. Fang et al., Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29(46), 1906142 (2019). https://doi.org/10.1002/adfm.201906142
- Y. Wu, Z. Zhu, Y. Li, D. Shen, L. Chen et al., Aqueous MnV2O6-Zn battery with high operating voltage and energy density. Small 17(28), 2008182 (2021). https://doi.org/10.1002/smll.202008182
- N. Li, G. Li, C. Li, H. Yang, G. Qin et al., Bi-cation electrolyte for a 1.7V aqueous Zn ion battery. ACS Appl. Mater. Interfaces 12(12), 13790–13796 (2020). https://doi.org/10.1021/acsami.9b20531
- X. Shen, X. Wang, Y. Zhou, Y. Shi, L. Zhao et al., Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 31(27), 2101579 (2021). https://doi.org/10.1002/adfm.202101579
- C. Xie, T. Li, C. Deng, Y. Song, H. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13(1), 135–143 (2020). https://doi.org/10.1039/c9ee03702k
- C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
- C. Liu, X. Chi, C. Yang, Y. Liu, High-voltage aqueous zinc batteries achieved by tri-functional metallic bipolar electrodes. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12300
- S. Gu, K. Gong, E.Z. Yan, Y. Yan, A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7(9), 2986–2998 (2014). https://doi.org/10.1039/c4ee00165f
- K. Gong, X. Ma, K.M. Conforti, K.J. Kuttler, J.B. Grunewald et al., A zinc-iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 8(10), 2941–2945 (2015). https://doi.org/10.1039/c5ee02315g
- F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
- C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020). https://doi.org/10.1002/aenm.201903589
- J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li et al., Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143(38), 15475–15489 (2021). https://doi.org/10.1021/jacs.1c06923
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020). https://doi.org/10.1002/adma.202001894
- Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang et al., Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Mater. 47, 98–104 (2022). https://doi.org/10.1016/j.ensm.2022.01.059
- M. Li, J. Meng, Q. Li, M. Huang, X. Liu et al., Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries. Adv. Funct. Mater. 28(32), 1802016 (2018). https://doi.org/10.1002/adfm.201802016
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- H. Li, C. Guo, T. Zhang, P. Xue, R. Zhao et al., Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 22(10), 4223–4231 (2022). https://doi.org/10.1021/acs.nanolett.2c01235
- Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy. (2022). https://doi.org/10.26599/nre.2022.9120025
References
P. Oh, H. Lee, S. Park, H. Cha, J. Kim et al., Improvements to the overpotential of all-solid-state lithium-ion batteries during the past ten years. Adv. Energy Mater. 10(24), 2000904 (2020). https://doi.org/10.1002/aenm.202000904
X.G. Yang, T. Liu, C.Y. Wang, Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6(2), 176–185 (2021). https://doi.org/10.1038/s41560-020-00757-7
X.Q. Zeng, M. Li, D.A. El-Hady, W. Alshitari, A.S. Al-Bogami et al., Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161
C. Wang, C. Yang, Z. Zheng, Toward practical high-energy and high-power lithium battery anodes: present and future. Adv. Sci. 9(9), 2105213 (2022). https://doi.org/10.1002/advs.202105213
Y. Miao, L. Liu, Y. Zhang, Q. Tan, J. Li, An overview of global power lithium-ion batteries and associated critical metal recycling. J. Hazard. Mater. 425, 127900 (2022). https://doi.org/10.1016/j.jhazmat.2021.127900
Y. Liu, G. Zhou, K. Liu, Y. Cui, Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 50(12), 2895–2905 (2017). https://doi.org/10.1021/acs.accounts.7b00450
J.M. Kim, J.A. Kim, S.H. Kim, I.S. Uhm, S.J. Kang et al., All-nanomat lithium-ion batteries: a new cell architecture platform for ultrahigh energy density and mechanical flexibility. Adv. Energy Mater. 7(22), 1701099 (2017). https://doi.org/10.1002/aenm.201701099
M. Diaz-Lopez, P.A. Chater, P. Bordet, M. Freire, C. Jordy et al., Li2O:Li-Mn-O disordered rock-salt nanocomposites as cathode prelithiation additives for high-energy density Li-ion batteries. Adv. Energy Mater. 10(7), 1902788 (2020). https://doi.org/10.1002/aenm.201902788
G. Qian, X. Liao, Y. Zhu, F. Pan, X. Chen et al., Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4(3), 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496
T. Zhao, Q. Wang, P. Jena, Cluster-inspired design of high-capacity anode for Li-ion batteries. ACS Energy Lett. 1(1), 202–208 (2016). https://doi.org/10.1021/acsenergylett.6b00120
M. Zhang, Z. Huang, Z. Shen, Y. Gong, B. Chi et al., High-performance aqueous rechargeable Li–Ni battery based on Ni(OH)2/NiOOH redox couple with high voltage. Adv. Energy Mater. 7(17), 1700155 (2017). https://doi.org/10.1002/aenm.201700155
Y. Fu, Q. Wei, G. Zhang, S. Sun, Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8(13), 1702849 (2018). https://doi.org/10.1002/aenm.201702849
C. Delmas, Battery materials: operating through oxygen. Nat. Chem. 8(7), 641–643 (2016). https://doi.org/10.1038/nchem.2558
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc–ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018). https://doi.org/10.1021/acsenergylett.8b01552
Y. Liu, X. Lu, F. Lai, T. Liu, P.R. Shearing et al., Rechargeable aqueous Zn-based energy storage devices. Joule 5(11), 2845–2903 (2021). https://doi.org/10.1016/j.Joule2021.10.011
E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126(12), 12620 (1979). https://doi.org/10.1149/1.2128859
D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
E. Peled, D. Golodnitsky, G. Ardel, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144(8), L208–L210 (1997). https://doi.org/10.1149/1.1837858
P. Lu, S.J. Harris, Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13(10), 1035–1037 (2011). https://doi.org/10.1016/j.elecom.2011.06.026
Y. Xu, Y. He, H. Wu, W. Xu, C. Wang, Atomic structure of electrochemically deposited lithium metal and its solid electrolyte interphases revealed by cryo–electron microscopy. Microsc. Microanal. 25(S2), 2220–2221 (2019). https://doi.org/10.1017/s1431927619011838
J. Wu, M. Ihsan-Ul-Haq, Y. Chen, J.K. Kim, Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano Energy 89, 106489 (2021). https://doi.org/10.1016/j.nanoen.2021.106489
S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., N,N-dimethylacetamide-diluted nitrate electrolyte for aqueous Zn//LiMn2O4 hybrid ion batteries. ACS Appl. Mater. Interfaces 13(39), 46634–46643 (2021). https://doi.org/10.1021/acsami.1c12911
M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc–ion batteries. Energy Storage Mater. 45, 618–646 (2022). https://doi.org/10.1016/j.ensm.2021.12.011
Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5(5), 1119–1142 (2021). https://doi.org/10.1016/j.Joule2021.03.024
Y. Du, Y. Li, B.B. Xu, T.X. Liu, X. Liu et al., Electrolyte salts and additives regulation enables high performance aqueous zinc ion batteries: a mini review. Small (2021). https://doi.org/10.1002/smll.202104640
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
H. Liu, J. Li, X. Zhang, X. Liu, Y. Yan et al., Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31(48), 2106550 (2021). https://doi.org/10.1002/adfm.202106550
C. Yan, R. Xu, Y. Xiao, J.F. Ding, L. Xu et al., Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30(23), 1909887 (2020). https://doi.org/10.1002/adfm.201909887
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
J. Zheng, L.A. Archer, Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci. Adv. 7(2), eabe0219 (2021). https://doi.org/10.1126/sciadv.abe0219
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn–ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu et al., Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries. Energy Environ. Sci. 11(11), 3075–3095 (2018). https://doi.org/10.1039/c8ee01991f
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16(8), 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10(26), 22059–22066 (2018). https://doi.org/10.1021/acsami.8b04085
S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Mater. 28, 205–215 (2020). https://doi.org/10.1016/j.ensm.2020.03.011
M. Li, Q. He, Z. Li, Q. Li, Y. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
S. Chen, P. Sun, J. Humphreys, P. Zou, M. Zhang et al., Acetate-based ‘oversaturated gel electrolyte’ enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Mater. 42, 240–251 (2021). https://doi.org/10.1016/j.ensm.2021.07.033
A. Naveed, H. Yang, Y. Shao, J. Yang, N. Yanna et al., A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 31(36), 1900668 (2019). https://doi.org/10.1002/adma.201900668
N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020). https://doi.org/10.1039/d0ee01538e
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
X. Wang, F. Wang, L. Wang, M. Li, Y. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28(24), 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
D. Bohra, J.H. Chaudhry, T. Burdyny, E.A. Pidko, W.A. Smith, Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12(11), 3380–3389 (2019). https://doi.org/10.1039/c9ee02485a
K.K. Mahanta, G.C. Mishra, M.L. Kansal, Estimation of electric double layer thickness from linearized and nonlinear solutions of Poisson–Boltzman equation for single type of ions. Appl. Clay Sci. 59–60, 1–7 (2012). https://doi.org/10.1016/j.clay.2012.02.014
M.A. Brown, A. Goel, Z. Abbas, Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 55(11), 3790–3794 (2016). https://doi.org/10.1002/anie.201512025
A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals And Applications (Wiley, New York, 1980). https://doi.org/10.1021/ed060pA25.1
N. Takenaka, A. Bouibes, Y. Yamada, M. Nagaoka, A. Yamada, Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism. Adv. Mater. 33(37), 2100574 (2021). https://doi.org/10.1002/adma.202100574
W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
W. Liu, P. Liu, D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10(43), 2002297 (2020). https://doi.org/10.1002/aenm.202002297
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
Y. Sasaki, K. Yoshida, T. Kawasaki, A. Kuwabara, Y. Ukyo et al., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power Sources 481, 228831 (2021). https://doi.org/10.1016/j.jpowsour.2020.228831
S. Wang, Z. Wang, Y. Yin, T. Li, N. Chang et al., A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy Environ. Sci. 14(7), 4077–4084 (2021). https://doi.org/10.1039/d1ee00783a
X. Zhou, Q. Zhang, Z. Hao, Y. Ma, O.A. Drozhzhin et al., Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy. ACS Appl. Mater. Interfaces 13(44), 53227–53234 (2021). https://doi.org/10.1021/acsami.1c16263
D. Lee, H.I. Kim, W.Y. Kim, S.K. Cho, K. Baek et al., Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv. Funct. Mater. 31(36), 2103850 (2021). https://doi.org/10.1002/adfm.202103850
Y. Liu, M. Huang, F. Xiong, J. Zhu, Q. An, Improved zinc-ion storage performance of the metal-free organic anode by the effect of binder. Chem. Eng. J. 428, 131092 (2022). https://doi.org/10.1016/j.cej.2021.131092
A. Kriston, I. Adanouj, V. Ruiz, A. Pfrang, Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis. J. Power Sources 435, 226774 (2019). https://doi.org/10.1016/j.jpowsour.2019.226774
X. Wang, Y. Li, Y.S. Meng, Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2(11), 2225–2234 (2018). https://doi.org/10.1016/j.Joule2018.10.005
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/Scienceaam6014
P. Cao, J. Tang, A. Wei, Q. Bai, Q. Meng et al., Manipulating uniform nucleation to achieve dendrite-free Zn anodes for aqueous Zn-ion batteries. ACS Appl. Mater. Interfaces 13(41), 48855–48864 (2021). https://doi.org/10.1021/acsami.1c14947
X. Ma, X. Cao, M. Yao, L. Shan, X. Shi et al., Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 34(6), 2105452 (2022). https://doi.org/10.1002/adma.202105452
X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/d0ee03898a
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
Y. Zhang, G. Wan, N.H.C. Lewis, J. Mars, S.E. Bone et al., Water or anion? Uncovering the Zn2+ solvation environment in mixed Zn(TFSI)2 and LiTFSI water-in-salt electrolytes. ACS Energy Lett. 6(10), 3458–3463 (2021). https://doi.org/10.1021/acsenergylett.1c01624
G. Feng, J. Guo, H. Tian, Z. Li, Y. Shi et al., Probe the localized electrochemical environment effects and electrode reaction dynamics for metal batteries using in situ 3D microscopy. Adv. Energy Mater. 12(3), 2103484 (2021). https://doi.org/10.1002/aenm.202103484
Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), 2105133 (2022). https://doi.org/10.1002/adma.202105133
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
D. Han, C. Cui, K. Zhang, Z. Wang, J. Gao et al., A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 5(3), 205–213 (2021). https://doi.org/10.1038/s41893-021-00800-9
D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6(5), 1103–1120 (2022). https://doi.org/10.1016/j.Joule2022.04.017
H. Yan, C. Han, S. Li, J. Liu, J. Ren et al., Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high columbic efficiency and stable Zn metal anode. Chem. Eng. J. 442, 136081 (2022). https://doi.org/10.1016/j.cej.2022.136081
H. Yan, X. Zhang, Z. Yang, M. Xia, C. Xu et al., Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordin. Chem. Rev. 452, 214297 (2022). https://doi.org/10.1016/j.ccr.2021.214297
L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019). https://doi.org/10.1021/acsami.9b10905
G. Kasiri, R. Trócoli, A.B. Hashemi, F.L. Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar et al., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9(22), 1900237 (2019). https://doi.org/10.1002/aenm.201900237
Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 47, 203–210 (2022). https://doi.org/10.1016/j.ensm.2022.02.019
F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dollé, et al., Metal oxides as negative electrode materials in Li-ion cells. Electrochem. Solid State Lett. 5(6), 115 (2002). https://doi.org/10.1149/1.1472303
Y. Rangom, T.T. Duignan, X.S. Zhao, Lithium-ion transport behavior in thin-film graphite electrodes with SEI layers formed at different current densities. ACS Appl. Mater. Interfaces 13(36), 42662–42669 (2021). https://doi.org/10.1021/acsami.1c09559
Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). https://doi.org/10.1002/adma.202106937
J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim et al., Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries. Adv. Energy Mater. 11(39), 2100676 (2021). https://doi.org/10.1002/aenm.202100676
X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/d1ee00308a
Q. Jian, Y. Wan, Y. Lin, M. Ni, M. Wu et al., A highly reversible zinc anode for rechargeable aqueous batteries. ACS Appl. Mater. Interfaces 13, 52659–52669 (2021). https://doi.org/10.1021/acsami.1c15628
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15(7), 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
Z. Ye, Z. Cao, M.O.L. Chee, P. Dong, P.M. Ajayan et al., Advances in Zn-ion batteries via regulating liquid electrolyte. Energy Storage Mater. 32, 290–305 (2020). https://doi.org/10.1016/j.ensm.2020.07.011
Z. Pei, Symmetric is nonidentical: operation history matters for Zn metal anode. Nano Res. Energy 1, 9120023 (2022). https://doi.org/10.26599/nre.2022.9120023
Z. Qu, M. Zhu, Y. Yin, Y. Huang, H. Tang et al., A sub-square-millimeter microbattery with milliampere-hour-level footprint capacity. Adv. Energy Mater. 12(28), 2200714 (2022). https://doi.org/10.1002/aenm.202200714
S. Guo, S. Liang, B. Zhang, G. Fang, D. Ma et al., Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 13(11), 13456–13464 (2019). https://doi.org/10.1021/acsnano.9b07042
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), 202200598 (2022). https://doi.org/10.1002/anie.202200598
L. Ma, N. Li, C. Long, B. Dong, D. Fang et al., Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29(46), 1906142 (2019). https://doi.org/10.1002/adfm.201906142
Y. Wu, Z. Zhu, Y. Li, D. Shen, L. Chen et al., Aqueous MnV2O6-Zn battery with high operating voltage and energy density. Small 17(28), 2008182 (2021). https://doi.org/10.1002/smll.202008182
N. Li, G. Li, C. Li, H. Yang, G. Qin et al., Bi-cation electrolyte for a 1.7V aqueous Zn ion battery. ACS Appl. Mater. Interfaces 12(12), 13790–13796 (2020). https://doi.org/10.1021/acsami.9b20531
X. Shen, X. Wang, Y. Zhou, Y. Shi, L. Zhao et al., Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 31(27), 2101579 (2021). https://doi.org/10.1002/adfm.202101579
C. Xie, T. Li, C. Deng, Y. Song, H. Zhang et al., A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ. Sci. 13(1), 135–143 (2020). https://doi.org/10.1039/c9ee03702k
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
C. Liu, X. Chi, C. Yang, Y. Liu, High-voltage aqueous zinc batteries achieved by tri-functional metallic bipolar electrodes. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12300
S. Gu, K. Gong, E.Z. Yan, Y. Yan, A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7(9), 2986–2998 (2014). https://doi.org/10.1039/c4ee00165f
K. Gong, X. Ma, K.M. Conforti, K.J. Kuttler, J.B. Grunewald et al., A zinc-iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ. Sci. 8(10), 2941–2945 (2015). https://doi.org/10.1039/c5ee02315g
F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Storage Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020). https://doi.org/10.1002/aenm.201903589
J. Liu, W. Zhou, R. Zhao, Z. Yang, W. Li et al., Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143(38), 15475–15489 (2021). https://doi.org/10.1021/jacs.1c06923
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58(23), 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020). https://doi.org/10.1002/adma.202001894
Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang et al., Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Mater. 47, 98–104 (2022). https://doi.org/10.1016/j.ensm.2022.01.059
M. Li, J. Meng, Q. Li, M. Huang, X. Liu et al., Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries. Adv. Funct. Mater. 28(32), 1802016 (2018). https://doi.org/10.1002/adfm.201802016
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
H. Li, C. Guo, T. Zhang, P. Xue, R. Zhao et al., Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 22(10), 4223–4231 (2022). https://doi.org/10.1021/acs.nanolett.2c01235
Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy. (2022). https://doi.org/10.26599/nre.2022.9120025