Inducing Fe 3d Electron Delocalization and Spin-State Transition of FeN4 Species Boosts Oxygen Reduction Reaction for Wearable Zinc–Air Battery
Corresponding Author: Juan Antonio Zapien
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 47
Abstract
Transition metal–nitrogen–carbon materials (M–N–Cs), particularly Fe–N–Cs, have been found to be electroactive for accelerating oxygen reduction reaction (ORR) kinetics. Although substantial efforts have been devoted to design Fe–N–Cs with increased active species content, surface area, and electronic conductivity, their performance is still far from satisfactory. Hitherto, there is limited research about regulation on the electronic spin states of Fe centers for Fe–N–Cs electrocatalysts to improve their catalytic performance. Here, we introduce Ti3C2 MXene with sulfur terminals to regulate the electronic configuration of FeN4 species and dramatically enhance catalytic activity toward ORR. The MXene with sulfur terminals induce the spin-state transition of FeN4 species and Fe 3d electron delocalization with d band center upshift, enabling the Fe(II) ions to bind oxygen in the end-on adsorption mode favorable to initiate the reduction of oxygen and boosting oxygen-containing groups adsorption on FeN4 species and ORR kinetics. The resulting FeN4–Ti3C2Sx exhibits comparable catalytic performance to those of commercial Pt-C. The developed wearable ZABs using FeN4–Ti3C2Sx also exhibit fast kinetics and excellent stability. This study confirms that regulation of the electronic structure of active species via coupling with their support can be a major contributor to enhance their catalytic activity.
Highlights:
1 The strong interaction between Ti3C2Sx and FeN4 species induces the central metal Fe(II) in FeN4 species with intermediate spin state transferred to high spin state, in which the latter is favorable to initiate the reduction of oxygen.
2 This strong interaction induces a remarkable Fe 3d electron delocalization with d band center upshift, boosting oxygen-containing groups adsorption on FeN4 species and oxygen reduction reaction kinetics.
3 The resulting FeN4–Ti3C2Sx with FeN4 moieties in high spin state exhibits high half-wave potential of 0.89 V vs. RHE and high limiting current density of 6.5 mA cm−2, enabling wearable zinc–air battery showing a good discharge performance with a maximum power density of 133.6 mW cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc–air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/nchem.1069
- Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan et al., Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy Environ. Sci. 14(9), 4926–4935 (2021). https://doi.org/10.1039/D1EE01244D
- H. Shen, E. Gracia-Espino, J. Ma, K. Zang, J. Luo et al., Synergistic effects between atomically dispersed Fe−N−C and C−S−C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56(44), 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
- H. Wang, R. Liu, Y. Li, X. Lü, Q. Wang et al., Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2(2), 337–348 (2018). https://doi.org/10.1016/j.joule.2017.11.016
- D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng et al., Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 49(7), 2215–2264 (2020). https://doi.org/10.1039/C9CS00869A
- X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni–N4 and Fe–N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
- F. Li, Y. Yin, C. Zhang, W. Li, K. Maliutina et al., Enhancing oxygen reduction performance of oxide-CNT through in-situ generated nanoalloy bridging. Appl. Catal. B Environ. 263, 118297 (2020). https://doi.org/10.1016/j.apcatb.2019.118297
- X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765
- Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39(6), 2184–2202 (2010). https://doi.org/10.1039/B912552C
- Q. Liu, Z. Li, X. Zhou, J. Xiao, Z. Han et al., Cyanogel-induced PdCu alloy with Pd-enriched surface for formic acid oxidation and oxygen reduction. Adv. Energy Sustain. Res. 3(10), 2200067 (2022). https://doi.org/10.1002/aesr.202200067
- S. Chen, L. Ma, S. Wu, S. Wang, Z. Li et al., Uniform virus-like Co–N–Cs electrocatalyst derived from prussian blue analog for stretchable fiber-shaped Zn–air batteries. Adv. Funct. Mater. 30(10), 1908945 (2020). https://doi.org/10.1002/adfm.201908945
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
- G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1126/science.1200832
- X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- X. Wang, J. Wang, P. Wang, L. Li, X. Zhang et al., Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 34(42), 2206540 (2022). https://doi.org/10.1002/adma.202206540
- Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei et al., A flexible rechargeable zinc–air battery with excellent low-temperature adaptability. Angew. Chem. Int. Ed. 59(12), 4793–4799 (2020). https://doi.org/10.1002/anie.201915836
- K. Xu, H. Bao, C. Tang, K. Maliutina, F. Li et al., Engineering hierarchical MOFs-derived Fe–N–C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Mater. Today Energy 18, 100500 (2020). https://doi.org/10.1016/j.mtener.2020.100500
- Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
- K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang et al., Synergetic contribution of boron and Fe–Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 3(1), 252–260 (2018). https://doi.org/10.1021/acsenergylett.7b01188
- L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou et al., Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 34(5), 2105410 (2022). https://doi.org/10.1002/adma.202105410
- X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu et al., Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 9(11), 1803737 (2019). https://doi.org/10.1002/aenm.201803737
- Y.J. Sa, D.J. Seo, J. Woo, J.T. Lim, J.Y. Cheon et al., A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 138(45), 15046–15056 (2016). https://doi.org/10.1021/jacs.6b09470
- U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefèvre et al., Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in pem fuel cells. Phys. Chem. Chem. Phys. 14(33), 11673–11688 (2012). https://doi.org/10.1039/C2CP41957B
- U.I. Koslowski, I. Abs-Wurmbach, S. Fiechter, P. Bogdanoff, Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe−N4 centers. J. Phys. Chem. C 112(39), 15356–15366 (2008). https://doi.org/10.1021/jp802456e
- J. Li, S. Ghoshal, W. Liang, M.T. Sougrati, F. Jaouen et al., Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9(7), 2418–2432 (2016). https://doi.org/10.1039/C6EE01160H
- Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12), 12496–12505 (2015). https://doi.org/10.1021/acsnano.5b05984
- Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/adma.201803220
- L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
- J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
- S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic et al., Self-assembly of noble metal monolayers on transition metal carbide nanop catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
- C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017). https://doi.org/10.1002/adma.201604103
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
- Y. Guo, S. Yao, L. Gao, A. Chen, M. Jiao et al., Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn–air batteries. J. Mater. Chem. A 8(8), 4386–4395 (2020). https://doi.org/10.1039/C9TA12762C
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- W. Ren, X. Tan, X. Chen, G. Zhang, K. Zhao et al., Confinement of ionic liquids at single-Ni-sites boost electroreduction of CO2 in aqueous electrolytes. ACS Catal. 10(22), 13171–13178 (2020). https://doi.org/10.1021/acscatal.0c03873
- S. Wang, D. Yu, L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133(14), 5182–5185 (2011). https://doi.org/10.1021/ja1112904
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
- K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel et al., Reproducibility in density functional theory calculations of solids. Science 351(6280), aad3000 (2016). https://doi.org/10.1126/science.aad3000
- A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang et al., Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ. Sci. 10(3), 742–749 (2017). https://doi.org/10.1039/C6EE03265F
- Q. Zuo, P. Zhao, W. Luo, G. Cheng, Hierarchically porous Fe–N–C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 8(29), 14271–14277 (2016). https://doi.org/10.1039/C6NR03273G
- X. Liu, H. Liu, C. Chen, L. Zou, Y. Li et al., Fe2N nanops boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe–N–C porous catalyst. Nano Res. 12(7), 1651–1657 (2019). https://doi.org/10.1007/s12274-019-2415-7
- S. Cao, T. Qu, Y. Li, A. Zhang, L. Xue et al., Electrocatalytically active hollow carbon nanospheres derived from PS–B–P4VP micelles. Part. Part. Syst. Charact. 35(4), 1700404 (2018). https://doi.org/10.1002/ppsc.201700404
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
- G. Wang, M. Liu, J. Jia, H. Xu, B. Zhao et al., Nitrogen and sulfur co-doped carbon nanosheets for electrochemical reduction of CO2. Chem. Cat. Chem. 12(8), 2203–2208 (2020). https://doi.org/10.1002/cctc.201902326
- W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
- K. Mao, L. Yang, X. Wang, Q. Wu, Z. Hu, Identifying iron–nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11(8), 2896–2901 (2020). https://doi.org/10.1021/acs.jpclett.0c00428
- N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 135(41), 15443–15449 (2013). https://doi.org/10.1021/ja405149m
- N. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan et al., High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13(1), 111–118 (2020). https://doi.org/10.1039/C9EE03027A
- A.G. Saputro, A.L. Maulana, F. Fathurrahman, M.H. Mahyuddin, M.K. Agusta et al., Formation of tilted FeN4 configuration as the origin of oxygen reduction reaction activity enhancement on a pyrolyzed Fe–N–C catalyst with FeN4-edge active sites. J. Phys. Chem. C 125(36), 19682–19696 (2021). https://doi.org/10.1021/acs.jpcc.1c04094
- K. Wu, X. Chen, S. Liu, Y. Pan, W.C. Cheong et al., Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 11(12), 6260–6269 (2018). https://doi.org/10.1007/s12274-018-2149-y
References
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc–air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/nchem.1069
Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan et al., Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy Environ. Sci. 14(9), 4926–4935 (2021). https://doi.org/10.1039/D1EE01244D
H. Shen, E. Gracia-Espino, J. Ma, K. Zang, J. Luo et al., Synergistic effects between atomically dispersed Fe−N−C and C−S−C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed. 56(44), 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
H. Wang, R. Liu, Y. Li, X. Lü, Q. Wang et al., Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2(2), 337–348 (2018). https://doi.org/10.1016/j.joule.2017.11.016
D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng et al., Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 49(7), 2215–2264 (2020). https://doi.org/10.1039/C9CS00869A
X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni–N4 and Fe–N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
F. Li, Y. Yin, C. Zhang, W. Li, K. Maliutina et al., Enhancing oxygen reduction performance of oxide-CNT through in-situ generated nanoalloy bridging. Appl. Catal. B Environ. 263, 118297 (2020). https://doi.org/10.1016/j.apcatb.2019.118297
X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765
Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39(6), 2184–2202 (2010). https://doi.org/10.1039/B912552C
Q. Liu, Z. Li, X. Zhou, J. Xiao, Z. Han et al., Cyanogel-induced PdCu alloy with Pd-enriched surface for formic acid oxidation and oxygen reduction. Adv. Energy Sustain. Res. 3(10), 2200067 (2022). https://doi.org/10.1002/aesr.202200067
S. Chen, L. Ma, S. Wu, S. Wang, Z. Li et al., Uniform virus-like Co–N–Cs electrocatalyst derived from prussian blue analog for stretchable fiber-shaped Zn–air batteries. Adv. Funct. Mater. 30(10), 1908945 (2020). https://doi.org/10.1002/adfm.201908945
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011). https://doi.org/10.1126/science.1200832
X. Wang, Z. Li, Y. Qu, T. Yuan, W. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
X. Wang, J. Wang, P. Wang, L. Li, X. Zhang et al., Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 34(42), 2206540 (2022). https://doi.org/10.1002/adma.202206540
Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei et al., A flexible rechargeable zinc–air battery with excellent low-temperature adaptability. Angew. Chem. Int. Ed. 59(12), 4793–4799 (2020). https://doi.org/10.1002/anie.201915836
K. Xu, H. Bao, C. Tang, K. Maliutina, F. Li et al., Engineering hierarchical MOFs-derived Fe–N–C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Mater. Today Energy 18, 100500 (2020). https://doi.org/10.1016/j.mtener.2020.100500
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017). https://doi.org/10.1002/anie.201702473
K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang et al., Synergetic contribution of boron and Fe–Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 3(1), 252–260 (2018). https://doi.org/10.1021/acsenergylett.7b01188
L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou et al., Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 34(5), 2105410 (2022). https://doi.org/10.1002/adma.202105410
X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu et al., Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 9(11), 1803737 (2019). https://doi.org/10.1002/aenm.201803737
Y.J. Sa, D.J. Seo, J. Woo, J.T. Lim, J.Y. Cheon et al., A general approach to preferential formation of active Fe–Nx sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 138(45), 15046–15056 (2016). https://doi.org/10.1021/jacs.6b09470
U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefèvre et al., Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in pem fuel cells. Phys. Chem. Chem. Phys. 14(33), 11673–11688 (2012). https://doi.org/10.1039/C2CP41957B
U.I. Koslowski, I. Abs-Wurmbach, S. Fiechter, P. Bogdanoff, Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe−N4 centers. J. Phys. Chem. C 112(39), 15356–15366 (2008). https://doi.org/10.1021/jp802456e
J. Li, S. Ghoshal, W. Liang, M.T. Sougrati, F. Jaouen et al., Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy Environ. Sci. 9(7), 2418–2432 (2016). https://doi.org/10.1039/C6EE01160H
Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9(12), 12496–12505 (2015). https://doi.org/10.1021/acsnano.5b05984
Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/adma.201803220
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic et al., Self-assembly of noble metal monolayers on transition metal carbide nanop catalysts. Science 352(6288), 974–978 (2016). https://doi.org/10.1126/science.aad8471
C. Tang, Q. Zhang, Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29(13), 1604103 (2017). https://doi.org/10.1002/adma.201604103
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
Y. Guo, S. Yao, L. Gao, A. Chen, M. Jiao et al., Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn–air batteries. J. Mater. Chem. A 8(8), 4386–4395 (2020). https://doi.org/10.1039/C9TA12762C
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
W. Ren, X. Tan, X. Chen, G. Zhang, K. Zhao et al., Confinement of ionic liquids at single-Ni-sites boost electroreduction of CO2 in aqueous electrolytes. ACS Catal. 10(22), 13171–13178 (2020). https://doi.org/10.1021/acscatal.0c03873
S. Wang, D. Yu, L. Dai, Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133(14), 5182–5185 (2011). https://doi.org/10.1021/ja1112904
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel et al., Reproducibility in density functional theory calculations of solids. Science 351(6280), aad3000 (2016). https://doi.org/10.1126/science.aad3000
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28(41), 1803938 (2018). https://doi.org/10.1002/adfm.201803938
Z. Pei, H. Li, Y. Huang, Q. Xue, Y. Huang et al., Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ. Sci. 10(3), 742–749 (2017). https://doi.org/10.1039/C6EE03265F
Q. Zuo, P. Zhao, W. Luo, G. Cheng, Hierarchically porous Fe–N–C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 8(29), 14271–14277 (2016). https://doi.org/10.1039/C6NR03273G
X. Liu, H. Liu, C. Chen, L. Zou, Y. Li et al., Fe2N nanops boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe–N–C porous catalyst. Nano Res. 12(7), 1651–1657 (2019). https://doi.org/10.1007/s12274-019-2415-7
S. Cao, T. Qu, Y. Li, A. Zhang, L. Xue et al., Electrocatalytically active hollow carbon nanospheres derived from PS–B–P4VP micelles. Part. Part. Syst. Charact. 35(4), 1700404 (2018). https://doi.org/10.1002/ppsc.201700404
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
G. Wang, M. Liu, J. Jia, H. Xu, B. Zhao et al., Nitrogen and sulfur co-doped carbon nanosheets for electrochemical reduction of CO2. Chem. Cat. Chem. 12(8), 2203–2208 (2020). https://doi.org/10.1002/cctc.201902326
W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
K. Mao, L. Yang, X. Wang, Q. Wu, Z. Hu, Identifying iron–nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11(8), 2896–2901 (2020). https://doi.org/10.1021/acs.jpclett.0c00428
N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 135(41), 15443–15449 (2013). https://doi.org/10.1021/ja405149m
N. Zhang, T. Zhou, M. Chen, H. Feng, R. Yuan et al., High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 13(1), 111–118 (2020). https://doi.org/10.1039/C9EE03027A
A.G. Saputro, A.L. Maulana, F. Fathurrahman, M.H. Mahyuddin, M.K. Agusta et al., Formation of tilted FeN4 configuration as the origin of oxygen reduction reaction activity enhancement on a pyrolyzed Fe–N–C catalyst with FeN4-edge active sites. J. Phys. Chem. C 125(36), 19682–19696 (2021). https://doi.org/10.1021/acs.jpcc.1c04094
K. Wu, X. Chen, S. Liu, Y. Pan, W.C. Cheong et al., Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 11(12), 6260–6269 (2018). https://doi.org/10.1007/s12274-018-2149-y