Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries
Corresponding Author: Wei Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 51
Abstract
With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
Highlights:
1 The working principle of the asymmetric electrolyte and the long-term-seated contradictory issues were analyzed.
2 The characterization methods for the interfaces of anolyte/catholyte and electrolyte/electrode were summarized for revealing the fundamental mechanism of asymmetric electrolytes.
3 The future research directions for asymmetric electrolyte systems were proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Kohse-Hoinghaus, Combustion, chemistry, and carbon neutrality. Chem. Rev. (2023). https://doi.org/10.1021/acs.chemrev.2c00828
- K.J. Huang, L. Li, E.A. Olivetti, Designing for manufacturing scalability in clean energy research. Joule 2(9), 1642–1647 (2018). https://doi.org/10.1016/j.joule.2018.07.020
- J. Meckling, J.E. Aldy, M.J. Kotchen, S. Carley, D.C. Esty et al., Busting the myths around public investment in clean energy. Nat. Energy 7(7), 563–565 (2022). https://doi.org/10.1038/s41560-022-01081-y
- Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
- Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15(1), 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
- X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
- A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich et al., Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- J.B. Goodenough, Y. Kim, Challenges for rechargeable li batteries. Chem. Mater. 22(3), 587–603 (2009). https://doi.org/10.1021/cm901452z
- Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- Q. Yang, A. Chen, C. Li, G. Zou, H. Li et al., Categorizing wearable batteries: unidirectional and omnidirectional deformable batteries. Matter 4(10), 3146–3160 (2021). https://doi.org/10.1016/j.matt.2021.07.016
- A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang et al., Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47(15), 5919–5945 (2018). https://doi.org/10.1039/c8cs00237a
- J. Zhou, J. Cheng, B. Wang, H. Peng, J. Lu, Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 13(7), 1933–1970 (2020). https://doi.org/10.1039/d0ee00039f
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14(1), 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- L. Ma, S. Chen, W. Yan, G. Zhang, Y. Ying et al., A high-energy aqueous Zn‖NO2 electrochemical cell: a new strategy for NO2 fixation and electric power generation. Energy Environ. Sci. 16(3), 1125–1134 (2023). https://doi.org/10.1039/d2ee03749a
- Y. Shang, D. Kundu, A path forward for the translational development of aqueous zinc-ion batteries. Joule 7(2), 244–250 (2023). https://doi.org/10.1016/j.joule.2023.01.011
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- A. Ponrouch, C. Frontera, F. Barde, M.R. Palacin, Towards a calcium-based rechargeable battery. Nat. Mater. 15(2), 169–172 (2016). https://doi.org/10.1038/nmat4462
- C.S. Li, Y. Sun, F. Gebert, S.L. Chou, Current progress on rechargeable magnesium–air battery. Adv. Energy Mater. 7(24), 1700869 (2017). https://doi.org/10.1002/aenm.201700869
- G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
- X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
- S. Zhao, T. Liu, Y. Dai, Y. Wang, Z. Guo et al., All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 430, 132718 (2022). https://doi.org/10.1016/j.cej.2021.132718
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating zn2+solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/d1ee03377h
- L. Li, S. Liu, W. Liu, D. Ba, W. Liu et al., Electrolyte concentration regulation boosting zinc storage stability of high-capacity K(0.486)V(2)O(5) cathode for bendable quasi-solid-state zinc ion batteries. Nano-Micro Lett. 13(1), 34 (2021). https://doi.org/10.1007/s40820-020-00554-7
- Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience 2(2), 209–218 (2022). https://doi.org/10.1016/j.esci.2022.03.002
- Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
- P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the homo–lumo misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/c8ee01286e
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4(9), 1846–1851 (2020). https://doi.org/10.1016/j.joule.2020.07.023
- X. Li, X. Wang, L. Ma, W. Huang, Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12(37), 2202068 (2022). https://doi.org/10.1002/aenm.202202068
- L. Chen, Z. Guo, Y. Xia, Y. Wang, High-voltage aqueous battery approaching 3 v using an acidic-alkaline double electrolyte. Chem. Commun. 49(22), 2204–2206 (2013). https://doi.org/10.1039/c3cc00064h
- Y.-F. Cui, Y.-H. Zhu, J.-Y. Du, Y.-L. Zhang, K. Li et al., A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding. Joule 6(7), 1617–1631 (2022). https://doi.org/10.1016/j.joule.2022.05.019
- W.-Y. Kim, H.-I. Kim, K.M. Lee, E. Shin, X. Liu et al., Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ. Sci. 15(12), 5217–5228 (2022). https://doi.org/10.1039/d2ee03077b
- K.W. Leong, Y. Wang, W. Pan, S. Luo, X. Zhao et al., Doubling the power output of a mg-air battery with an acid-salt dual-electrolyte configuration. J. Power. Sources 506, 230144 (2021). https://doi.org/10.1016/j.jpowsour.2021.230144
- L. Li, H. Chen, E. He, L. Wang, T. Ye et al., High-energy-density magnesium-air battery based on dual-layer gel electrolyte. Angew. Chem. Int. Ed. 60(28), 15317–15322 (2021). https://doi.org/10.1002/anie.202104536
- M. Liu, Q. Zhang, J. Gao, Q. Liu, E. Wang et al., Nabf4-dimethyl sulfoxide/nacl-h2o biphasic electrolytes for magnesium–air batteries. Ionics 28(11), 5243–5250 (2022). https://doi.org/10.1007/s11581-022-04741-x
- J. Meng, Q. Tang, L. Zhou, C. Zhao, M. Chen et al., A stirred self-stratified battery for large-scale energy storage. Joule 4(4), 953–966 (2020). https://doi.org/10.1016/j.joule.2020.03.011
- P. Navalpotro, C. Neves, J. Palma, M.G. Freire, J.A.P. Coutinho et al., Pioneering use of ionic liquid-based aqueous biphasic systems as membrane-free batteries. Adv. Sci. 5(10), 1800576 (2018). https://doi.org/10.1002/advs.201800576
- E. Sheha, F. Liu, T. Wang, M. Farrag, J. Liu et al., Dual polymer/liquid electrolyte with batio3 electrode for magnesium batteries. ACS Appl. Energy Mater. 3(6), 5882–5892 (2020). https://doi.org/10.1021/acsaem.0c00810
- C. Yan, Y. Wang, Z. Chen, X. Deng, Hygroscopic double-layer gel polymer electrolyte toward high-performance low-temperature zinc hybrid batteries. Batter. Supercaps 4(10), 1627–1635 (2021). https://doi.org/10.1002/batt.202100113
- Q. Zhao, P. Wu, D. Sun, H. Wang, Y. Tang, A dual-electrolyte system for highly efficient al-air batteries. Chem. Commun. 58(20), 3282–3285 (2022). https://doi.org/10.1039/d1cc07044d
- S. Chen, Y. Ying, L. Ma, D. Zhu, H. Huang et al., An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 14(1), 2925 (2023). https://doi.org/10.1038/s41467-023-38492-8
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-d) for the 94 elements h-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- Z.A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn–graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/d1ta10122f
- L. Chen, W. Sun, K. Xu, Q. Dong, L. Zheng et al., How prussian blue analogues can be stable in concentrated aqueous electrolytes. ACS Energy Lett. 7(5), 1672–1678 (2022). https://doi.org/10.1021/acsenergylett.2c00292
- F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji et al., How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57(37), 11978–11981 (2018). https://doi.org/10.1002/anie.201806748
- Z. Liu, L. Qin, X. Cao, J. Zhou, A. Pan et al., Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog. Mater. Sci. 125, 100911 (2022). https://doi.org/10.1016/j.pmatsci.2021.100911
- J. Huang, X. Xie, K. Liu, S. Liang, G. Fang, Perspectives in electrochemical in situ structural reconstruction of cathode materials for multivalent-ion storage. Energy Environ. Mater. 6(1), 12309 (2022). https://doi.org/10.1002/eem2.12309
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient beta-mno(2)@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
- Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121(11), 6654–6695 (2021). https://doi.org/10.1021/acs.chemrev.1c00191
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
- C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020). https://doi.org/10.1002/aenm.201903589
- R. Epsztein, E. Shaulsky, M. Qin, M. Elimelech, Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport. J. Membr. Sci. 580, 316–326 (2019). https://doi.org/10.1016/j.memsci.2019.02.009
- F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Stor. Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
- Y.-H. Zhu, Y.-F. Cui, Z.-L. Xie, Z.-B. Zhuang, G. Huang et al., Decoupled aqueous batteries using ph-decoupling electrolytes. Nat. Rev. Chem. 6(7), 505–517 (2022). https://doi.org/10.1038/s41570-022-00397-3
- X. Wang, Y. Ying, X. Li, S. Chen, G. Gao et al., Preferred planar crystal growth and uniform solid electrolyte interface enabled by anion receptor for stable aqueous Zn batteries. Energy Environ. Sci. 16, 4572 (2023). https://doi.org/10.1039/d3ee01580g
- Z. Liu, X. Luo, L. Qin, G. Fang, S. Liang, Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. 1(2), 100011 (2022). https://doi.org/10.1016/j.apmate.2021.10.002
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- P. Navalpotro, J. Palma, M. Anderson, R. Marcilla, A membrane-free redox flow battery with two immiscible redox electrolytes. Angew. Chem. Int. Ed. 56(41), 12460–12465 (2017). https://doi.org/10.1002/anie.201704318
- L. Miao, R. Wang, S. Di, Z. Qian, L. Zhang et al., Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano 16(6), 9667–9678 (2022). https://doi.org/10.1021/acsnano.2c02996
- F. Wang, O. Borodin, M.S. Ding, M. Gobet, J. Vatamanu et al., Hybrid aqueous/non-aqueous electrolyte for safe and high-energy li-ion batteries. Joule 2(5), 927–937 (2018). https://doi.org/10.1016/j.joule.2018.02.011
- C. Xu, C. Lei, J. Li, X. He, P. Jiang et al., Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte. Nat. Commun. 14(1), 2349 (2023). https://doi.org/10.1038/s41467-023-37642-2
- H.B. Yi, F.F. Xia, Q. Zhou, D. Zeng, [CuCl3]- and [CuCl4]2- hydrates in concentrated aqueous solution: a density functional theory and ab initio study. J. Phys. Chem. A 115(17), 4416–4426 (2011). https://doi.org/10.1021/jp109723v
- M. Uchikoshi, K. Shinoda, Determination of structures of cupric-chloro complexes in hydrochloric acid solutions by UV-vis and x-ray absorption spectroscopy. Struct. Chem. 30(1), 61–74 (2018). https://doi.org/10.1007/s11224-018-1164-7
- N. Zhang, D. Zeng, G. Hefter, Q. Chen, Chemical speciation in concentrated aqueous solutions of CuCl2 using thin-film Uv–visible spectroscopy combined with dft calculations. J. Mol. Liq. 198, 200–203 (2014). https://doi.org/10.1016/j.molliq.2014.06.025
- H. Yu, C. Deng, H. Yan, M. Xia, X. Zhang et al., Cu(3)(po(4))(2): novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13(1), 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
- A. Chen, Y. Zhang, Q. Li, G. Liang, S. Yang et al., Immiscible phase-separation electrolyte and interface ion transfer electrochemistry enable zinc/lithium hybrid batteries with 3.5 v-class operating voltage. Energy Environ. Sci. 16, 4054 (2023). https://doi.org/10.1039/d3ee01362f
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
- X. Wang, R.S. Chandrabose, Z. Jian, Z. Xing, X. Ji, A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163(9), A1853–A1858 (2016). https://doi.org/10.1149/2.0311609jes
- Z. Zhong, J. Li, L. Li, X. Xi, Z. Luo et al., Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry. Energy Storage Mater. 46, 165–174 (2022). https://doi.org/10.1016/j.ensm.2022.01.006
- A. Calborean, T. Murariu, C. Morari, Optimized lead-acid grid architectures for automotive lead-acid batteries: an electrochemical analysis. Electrochim. Acta 372, 137880 (2021). https://doi.org/10.1016/j.electacta.2021.137880
- A. Du, H. Zhang, Z. Zhang, J. Zhao, Z. Cui et al., A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater. 31(11), e1805930 (2019). https://doi.org/10.1002/adma.201805930
- F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma et al., High-voltage aqueous magnesium ion batteries. ACS Cent. Sci. 3(10), 1121–1128 (2017). https://doi.org/10.1021/acscentsci.7b00361
- J. Luo, Y. Li, H. Zhang, A. Wang, W.S. Lo et al., A metal-organic framework thin film for selective Mg2+ transport. Angew. Chem. Int. Ed. 58(43), 15313–15317 (2019). https://doi.org/10.1002/anie.201908706
- R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3(1), 27–52 (2019). https://doi.org/10.1016/j.joule.2018.10.028
- S. He, J. Wang, X. Zhang, J. Chen, Z. Wang et al., A high-energy aqueous aluminum-manganese battery. Adv. Funct. Mater. 29(45), 1905228 (2019). https://doi.org/10.1002/adfm.201905228
- C. Lv, Y. Zhang, J. Ma, Y. Zhu, D. Huang et al., Regulating solvation and interface chemistry to inhibit corrosion of the aluminum anode in aluminum–air batteries. J. Mater. Chem. A 10(17), 9506–9514 (2022). https://doi.org/10.1039/d2ta01064j
- R. Mori, Recent developments for aluminum–air batteries. Electrochem. Energy Rev. 3(2), 344–369 (2020). https://doi.org/10.1007/s41918-020-00065-4
- N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ. Sci. 11(12), 3491–3499 (2018). https://doi.org/10.1039/c8ee02456a
- C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
- Y. Zhang, Y.-P. Deng, J. Wang, Y. Jiang, G. Cui et al., Recent progress on flexible Zn-air batteries. Energy Stor. Mater. 35, 538–549 (2021). https://doi.org/10.1016/j.ensm.2020.09.008
- H. Liu, W. Xie, Z. Huang, C. Yao, Y. Han et al., Recent advances in flexible Zn-air batteries: materials for electrodes and electrolytes. Small Methods 6(1), e2101116 (2022). https://doi.org/10.1002/smtd.202101116
- N. Wang, W. Li, Y. Huang, G. Wu, M. Hu et al., Wrought Mg-Al-Pb-Re alloy strips as the anodes for Mg-air batteries. J. Power. Sources 436, 226855 (2019). https://doi.org/10.1016/j.jpowsour.2019.226855
- R. Mohtadi, O. Tutusaus, T.S. Arthur, Z. Zhao-Karger, M. Fichtner, The metamorphosis of rechargeable magnesium batteries. Joule 5(3), 581–617 (2021). https://doi.org/10.1016/j.joule.2020.12.021
- W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 w h kg−1 and 506 w h l−1. Energy Environ. Sci. 13(11), 4157–4167 (2020). https://doi.org/10.1039/d0ee01221a
- X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li et al., A universal strategy towards high-energy aqueous multivalent-ion batteries. Nat. Commun. 12(1), 2857 (2021). https://doi.org/10.1038/s41467-021-23209-6
- L. Ma, Y. Ying, S. Chen, Z. Chen, H. Li et al., Electrocatalytic selenium redox reaction for high-mass-loading zinc-selenium batteries with improved kinetics and selenium utilization. Adv. Energy Mater. 12(26), 2201322 (2022). https://doi.org/10.1002/aenm.202201322
- H. Zhang, L. Qiao, H. Kühnle, E. Figgemeier, M. Armand et al., From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives. Energy Environ. Sci. 16(1), 11–52 (2023). https://doi.org/10.1039/d2ee02998g
- X. Deng, L. Li, G. Zhang, X. Zhao, J. Hao et al., Anode chemistry in calcium ion batteries: a review. Energy Stor. Mater. 53, 467–481 (2022). https://doi.org/10.1016/j.ensm.2022.09.033
- M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu et al., High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1(2), 178–185 (2021). https://doi.org/10.1016/j.esci.2021.11.002
- S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
- S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
- L. Ma, C. Zhi, Zn electrode/electrolyte interfaces of Zn batteries: a mini review. Electrochem. Commun. 122, 106898 (2021). https://doi.org/10.1016/j.elecom.2020.106898
- Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang et al., A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 25, 2214538 (2023). https://doi.org/10.1002/adfm.202214538
- Y. Chen, S. Guo, L. Qin, Q. Wan, Y. Pan et al., Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte. Batter. Supercaps 5(5), 2200001 (2022). https://doi.org/10.1002/batt.202200001
- J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15(1), 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO(2) electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), e2001894 (2020). https://doi.org/10.1002/adma.202001894
References
K. Kohse-Hoinghaus, Combustion, chemistry, and carbon neutrality. Chem. Rev. (2023). https://doi.org/10.1021/acs.chemrev.2c00828
K.J. Huang, L. Li, E.A. Olivetti, Designing for manufacturing scalability in clean energy research. Joule 2(9), 1642–1647 (2018). https://doi.org/10.1016/j.joule.2018.07.020
J. Meckling, J.E. Aldy, M.J. Kotchen, S. Carley, D.C. Esty et al., Busting the myths around public investment in clean energy. Nat. Energy 7(7), 563–565 (2022). https://doi.org/10.1038/s41560-022-01081-y
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu et al., Electrochromic-induced rechargeable aqueous batteries: an integrated multifunctional system for cross-domain applications. Nano-Micro Lett. 15(1), 87 (2023). https://doi.org/10.1007/s40820-023-01056-y
X. Yang, H. Fan, F. Hu, S. Chen, K. Yan et al., Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 15(1), 126 (2023). https://doi.org/10.1007/s40820-023-01093-7
A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich et al., Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
J.B. Goodenough, Y. Kim, Challenges for rechargeable li batteries. Chem. Mater. 22(3), 587–603 (2009). https://doi.org/10.1021/cm901452z
Y. Feng, L. Zhou, H. Ma, Z. Wu, Q. Zhao et al., Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 15(5), 1711–1759 (2022). https://doi.org/10.1039/d1ee03292e
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
Q. Yang, A. Chen, C. Li, G. Zou, H. Li et al., Categorizing wearable batteries: unidirectional and omnidirectional deformable batteries. Matter 4(10), 3146–3160 (2021). https://doi.org/10.1016/j.matt.2021.07.016
A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang et al., Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47(15), 5919–5945 (2018). https://doi.org/10.1039/c8cs00237a
J. Zhou, J. Cheng, B. Wang, H. Peng, J. Lu, Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 13(7), 1933–1970 (2020). https://doi.org/10.1039/d0ee00039f
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14(1), 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
L. Ma, S. Chen, W. Yan, G. Zhang, Y. Ying et al., A high-energy aqueous Zn‖NO2 electrochemical cell: a new strategy for NO2 fixation and electric power generation. Energy Environ. Sci. 16(3), 1125–1134 (2023). https://doi.org/10.1039/d2ee03749a
Y. Shang, D. Kundu, A path forward for the translational development of aqueous zinc-ion batteries. Joule 7(2), 244–250 (2023). https://doi.org/10.1016/j.joule.2023.01.011
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
A. Ponrouch, C. Frontera, F. Barde, M.R. Palacin, Towards a calcium-based rechargeable battery. Nat. Mater. 15(2), 169–172 (2016). https://doi.org/10.1038/nmat4462
C.S. Li, Y. Sun, F. Gebert, S.L. Chou, Current progress on rechargeable magnesium–air battery. Adv. Energy Mater. 7(24), 1700869 (2017). https://doi.org/10.1002/aenm.201700869
G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016). https://doi.org/10.1002/adma.201601357
X. Li, F. Chen, B. Zhao, S. Zhang, X. Zheng et al., Ultrafast synthesis of metal-layered hydroxides in a dozen seconds for high-performance aqueous Zn (micro-) battery. Nano-Micro Lett. 15(1), 32 (2023). https://doi.org/10.1007/s40820-022-01004-2
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 5(6), 440–449 (2020). https://doi.org/10.1038/s41560-020-0584-y
S. Zhao, T. Liu, Y. Dai, Y. Wang, Z. Guo et al., All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chem. Eng. J. 430, 132718 (2022). https://doi.org/10.1016/j.cej.2021.132718
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating zn2+solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/d1ee03377h
L. Li, S. Liu, W. Liu, D. Ba, W. Liu et al., Electrolyte concentration regulation boosting zinc storage stability of high-capacity K(0.486)V(2)O(5) cathode for bendable quasi-solid-state zinc ion batteries. Nano-Micro Lett. 13(1), 34 (2021). https://doi.org/10.1007/s40820-020-00554-7
Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience 2(2), 209–218 (2022). https://doi.org/10.1016/j.esci.2022.03.002
Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the homo–lumo misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/c8ee01286e
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
D. Chao, S.-Z. Qiao, Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? Joule 4(9), 1846–1851 (2020). https://doi.org/10.1016/j.joule.2020.07.023
X. Li, X. Wang, L. Ma, W. Huang, Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 12(37), 2202068 (2022). https://doi.org/10.1002/aenm.202202068
L. Chen, Z. Guo, Y. Xia, Y. Wang, High-voltage aqueous battery approaching 3 v using an acidic-alkaline double electrolyte. Chem. Commun. 49(22), 2204–2206 (2013). https://doi.org/10.1039/c3cc00064h
Y.-F. Cui, Y.-H. Zhu, J.-Y. Du, Y.-L. Zhang, K. Li et al., A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding. Joule 6(7), 1617–1631 (2022). https://doi.org/10.1016/j.joule.2022.05.019
W.-Y. Kim, H.-I. Kim, K.M. Lee, E. Shin, X. Liu et al., Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ. Sci. 15(12), 5217–5228 (2022). https://doi.org/10.1039/d2ee03077b
K.W. Leong, Y. Wang, W. Pan, S. Luo, X. Zhao et al., Doubling the power output of a mg-air battery with an acid-salt dual-electrolyte configuration. J. Power. Sources 506, 230144 (2021). https://doi.org/10.1016/j.jpowsour.2021.230144
L. Li, H. Chen, E. He, L. Wang, T. Ye et al., High-energy-density magnesium-air battery based on dual-layer gel electrolyte. Angew. Chem. Int. Ed. 60(28), 15317–15322 (2021). https://doi.org/10.1002/anie.202104536
M. Liu, Q. Zhang, J. Gao, Q. Liu, E. Wang et al., Nabf4-dimethyl sulfoxide/nacl-h2o biphasic electrolytes for magnesium–air batteries. Ionics 28(11), 5243–5250 (2022). https://doi.org/10.1007/s11581-022-04741-x
J. Meng, Q. Tang, L. Zhou, C. Zhao, M. Chen et al., A stirred self-stratified battery for large-scale energy storage. Joule 4(4), 953–966 (2020). https://doi.org/10.1016/j.joule.2020.03.011
P. Navalpotro, C. Neves, J. Palma, M.G. Freire, J.A.P. Coutinho et al., Pioneering use of ionic liquid-based aqueous biphasic systems as membrane-free batteries. Adv. Sci. 5(10), 1800576 (2018). https://doi.org/10.1002/advs.201800576
E. Sheha, F. Liu, T. Wang, M. Farrag, J. Liu et al., Dual polymer/liquid electrolyte with batio3 electrode for magnesium batteries. ACS Appl. Energy Mater. 3(6), 5882–5892 (2020). https://doi.org/10.1021/acsaem.0c00810
C. Yan, Y. Wang, Z. Chen, X. Deng, Hygroscopic double-layer gel polymer electrolyte toward high-performance low-temperature zinc hybrid batteries. Batter. Supercaps 4(10), 1627–1635 (2021). https://doi.org/10.1002/batt.202100113
Q. Zhao, P. Wu, D. Sun, H. Wang, Y. Tang, A dual-electrolyte system for highly efficient al-air batteries. Chem. Commun. 58(20), 3282–3285 (2022). https://doi.org/10.1039/d1cc07044d
S. Chen, Y. Ying, L. Ma, D. Zhu, H. Huang et al., An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode. Nat. Commun. 14(1), 2925 (2023). https://doi.org/10.1038/s41467-023-38492-8
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-d) for the 94 elements h-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
Z.A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn–graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/d1ta10122f
L. Chen, W. Sun, K. Xu, Q. Dong, L. Zheng et al., How prussian blue analogues can be stable in concentrated aqueous electrolytes. ACS Energy Lett. 7(5), 1672–1678 (2022). https://doi.org/10.1021/acsenergylett.2c00292
F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji et al., How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57(37), 11978–11981 (2018). https://doi.org/10.1002/anie.201806748
Z. Liu, L. Qin, X. Cao, J. Zhou, A. Pan et al., Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog. Mater. Sci. 125, 100911 (2022). https://doi.org/10.1016/j.pmatsci.2021.100911
J. Huang, X. Xie, K. Liu, S. Liang, G. Fang, Perspectives in electrochemical in situ structural reconstruction of cathode materials for multivalent-ion storage. Energy Environ. Mater. 6(1), 12309 (2022). https://doi.org/10.1002/eem2.12309
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient beta-mno(2)@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13(1), 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121(11), 6654–6695 (2021). https://doi.org/10.1021/acs.chemrev.1c00191
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020). https://doi.org/10.1038/s41563-020-0667-y
C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020). https://doi.org/10.1002/aenm.201903589
R. Epsztein, E. Shaulsky, M. Qin, M. Elimelech, Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport. J. Membr. Sci. 580, 316–326 (2019). https://doi.org/10.1016/j.memsci.2019.02.009
F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Stor. Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
Y.-H. Zhu, Y.-F. Cui, Z.-L. Xie, Z.-B. Zhuang, G. Huang et al., Decoupled aqueous batteries using ph-decoupling electrolytes. Nat. Rev. Chem. 6(7), 505–517 (2022). https://doi.org/10.1038/s41570-022-00397-3
X. Wang, Y. Ying, X. Li, S. Chen, G. Gao et al., Preferred planar crystal growth and uniform solid electrolyte interface enabled by anion receptor for stable aqueous Zn batteries. Energy Environ. Sci. 16, 4572 (2023). https://doi.org/10.1039/d3ee01580g
Z. Liu, X. Luo, L. Qin, G. Fang, S. Liang, Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. 1(2), 100011 (2022). https://doi.org/10.1016/j.apmate.2021.10.002
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13(1), 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
P. Navalpotro, J. Palma, M. Anderson, R. Marcilla, A membrane-free redox flow battery with two immiscible redox electrolytes. Angew. Chem. Int. Ed. 56(41), 12460–12465 (2017). https://doi.org/10.1002/anie.201704318
L. Miao, R. Wang, S. Di, Z. Qian, L. Zhang et al., Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS Nano 16(6), 9667–9678 (2022). https://doi.org/10.1021/acsnano.2c02996
F. Wang, O. Borodin, M.S. Ding, M. Gobet, J. Vatamanu et al., Hybrid aqueous/non-aqueous electrolyte for safe and high-energy li-ion batteries. Joule 2(5), 927–937 (2018). https://doi.org/10.1016/j.joule.2018.02.011
C. Xu, C. Lei, J. Li, X. He, P. Jiang et al., Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte. Nat. Commun. 14(1), 2349 (2023). https://doi.org/10.1038/s41467-023-37642-2
H.B. Yi, F.F. Xia, Q. Zhou, D. Zeng, [CuCl3]- and [CuCl4]2- hydrates in concentrated aqueous solution: a density functional theory and ab initio study. J. Phys. Chem. A 115(17), 4416–4426 (2011). https://doi.org/10.1021/jp109723v
M. Uchikoshi, K. Shinoda, Determination of structures of cupric-chloro complexes in hydrochloric acid solutions by UV-vis and x-ray absorption spectroscopy. Struct. Chem. 30(1), 61–74 (2018). https://doi.org/10.1007/s11224-018-1164-7
N. Zhang, D. Zeng, G. Hefter, Q. Chen, Chemical speciation in concentrated aqueous solutions of CuCl2 using thin-film Uv–visible spectroscopy combined with dft calculations. J. Mol. Liq. 198, 200–203 (2014). https://doi.org/10.1016/j.molliq.2014.06.025
H. Yu, C. Deng, H. Yan, M. Xia, X. Zhang et al., Cu(3)(po(4))(2): novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13(1), 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
A. Chen, Y. Zhang, Q. Li, G. Liang, S. Yang et al., Immiscible phase-separation electrolyte and interface ion transfer electrochemistry enable zinc/lithium hybrid batteries with 3.5 v-class operating voltage. Energy Environ. Sci. 16, 4054 (2023). https://doi.org/10.1039/d3ee01362f
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
X. Wang, R.S. Chandrabose, Z. Jian, Z. Xing, X. Ji, A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163(9), A1853–A1858 (2016). https://doi.org/10.1149/2.0311609jes
Z. Zhong, J. Li, L. Li, X. Xi, Z. Luo et al., Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry. Energy Storage Mater. 46, 165–174 (2022). https://doi.org/10.1016/j.ensm.2022.01.006
A. Calborean, T. Murariu, C. Morari, Optimized lead-acid grid architectures for automotive lead-acid batteries: an electrochemical analysis. Electrochim. Acta 372, 137880 (2021). https://doi.org/10.1016/j.electacta.2021.137880
A. Du, H. Zhang, Z. Zhang, J. Zhao, Z. Cui et al., A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater. 31(11), e1805930 (2019). https://doi.org/10.1002/adma.201805930
F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma et al., High-voltage aqueous magnesium ion batteries. ACS Cent. Sci. 3(10), 1121–1128 (2017). https://doi.org/10.1021/acscentsci.7b00361
J. Luo, Y. Li, H. Zhang, A. Wang, W.S. Lo et al., A metal-organic framework thin film for selective Mg2+ transport. Angew. Chem. Int. Ed. 58(43), 15313–15317 (2019). https://doi.org/10.1002/anie.201908706
R. Attias, M. Salama, B. Hirsch, Y. Goffer, D. Aurbach, Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3(1), 27–52 (2019). https://doi.org/10.1016/j.joule.2018.10.028
S. He, J. Wang, X. Zhang, J. Chen, Z. Wang et al., A high-energy aqueous aluminum-manganese battery. Adv. Funct. Mater. 29(45), 1905228 (2019). https://doi.org/10.1002/adfm.201905228
C. Lv, Y. Zhang, J. Ma, Y. Zhu, D. Huang et al., Regulating solvation and interface chemistry to inhibit corrosion of the aluminum anode in aluminum–air batteries. J. Mater. Chem. A 10(17), 9506–9514 (2022). https://doi.org/10.1039/d2ta01064j
R. Mori, Recent developments for aluminum–air batteries. Electrochem. Energy Rev. 3(2), 344–369 (2020). https://doi.org/10.1007/s41918-020-00065-4
N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps et al., The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ. Sci. 11(12), 3491–3499 (2018). https://doi.org/10.1039/c8ee02456a
C. Yan, Y. Wang, X. Deng, Y. Xu, Cooperative chloride hydrogel electrolytes enabling ultralow-temperature aqueous zinc ion batteries by the hofmeister effect. Nano-Micro Lett. 14(1), 98 (2022). https://doi.org/10.1007/s40820-022-00836-2
Y. Zhang, Y.-P. Deng, J. Wang, Y. Jiang, G. Cui et al., Recent progress on flexible Zn-air batteries. Energy Stor. Mater. 35, 538–549 (2021). https://doi.org/10.1016/j.ensm.2020.09.008
H. Liu, W. Xie, Z. Huang, C. Yao, Y. Han et al., Recent advances in flexible Zn-air batteries: materials for electrodes and electrolytes. Small Methods 6(1), e2101116 (2022). https://doi.org/10.1002/smtd.202101116
N. Wang, W. Li, Y. Huang, G. Wu, M. Hu et al., Wrought Mg-Al-Pb-Re alloy strips as the anodes for Mg-air batteries. J. Power. Sources 436, 226855 (2019). https://doi.org/10.1016/j.jpowsour.2019.226855
R. Mohtadi, O. Tutusaus, T.S. Arthur, Z. Zhao-Karger, M. Fichtner, The metamorphosis of rechargeable magnesium batteries. Joule 5(3), 581–617 (2021). https://doi.org/10.1016/j.joule.2020.12.021
W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 w h kg−1 and 506 w h l−1. Energy Environ. Sci. 13(11), 4157–4167 (2020). https://doi.org/10.1039/d0ee01221a
X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li et al., A universal strategy towards high-energy aqueous multivalent-ion batteries. Nat. Commun. 12(1), 2857 (2021). https://doi.org/10.1038/s41467-021-23209-6
L. Ma, Y. Ying, S. Chen, Z. Chen, H. Li et al., Electrocatalytic selenium redox reaction for high-mass-loading zinc-selenium batteries with improved kinetics and selenium utilization. Adv. Energy Mater. 12(26), 2201322 (2022). https://doi.org/10.1002/aenm.202201322
H. Zhang, L. Qiao, H. Kühnle, E. Figgemeier, M. Armand et al., From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives. Energy Environ. Sci. 16(1), 11–52 (2023). https://doi.org/10.1039/d2ee02998g
X. Deng, L. Li, G. Zhang, X. Zhao, J. Hao et al., Anode chemistry in calcium ion batteries: a review. Energy Stor. Mater. 53, 467–481 (2022). https://doi.org/10.1016/j.ensm.2022.09.033
M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu et al., High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1(2), 178–185 (2021). https://doi.org/10.1016/j.esci.2021.11.002
S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
S.D. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
L. Ma, C. Zhi, Zn electrode/electrolyte interfaces of Zn batteries: a mini review. Electrochem. Commun. 122, 106898 (2021). https://doi.org/10.1016/j.elecom.2020.106898
Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang et al., A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 25, 2214538 (2023). https://doi.org/10.1002/adfm.202214538
Y. Chen, S. Guo, L. Qin, Q. Wan, Y. Pan et al., Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte. Batter. Supercaps 5(5), 2200001 (2022). https://doi.org/10.1002/batt.202200001
J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15(1), 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO(2) electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), e2001894 (2020). https://doi.org/10.1002/adma.202001894