Self-Assembled Nanomicelles of Affibody-Drug Conjugate with Excellent Therapeutic Property to Cure Ovary and Breast Cancers
Corresponding Author: Deyue Yan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 33
Abstract
Affibody molecules are small non-immunoglobulin affinity proteins, which can precisely target to some cancer cells with specific overexpressed molecular signatures. However, the relatively short in vivo half-life of them seriously limited their application in drug targeted delivery for cancer therapy. Here an amphiphilic affibody-drug conjugate is self-assembled into nanomicelles to prolong circulation time for targeted cancer therapy. As an example of the concept, the nanoagent was prepared through molecular self-assembly of the amphiphilic conjugate of ZHER2:342-Cys with auristatin E derivate, where the affibody used is capable of binding to the human epidermal growth factor receptor 2 (HER2). Such a nanodrug not only increased the blood circulation time, but also enhanced the tumor targeting capacity (abundant affibody arms on the nanoagent surface) and the drug accumulation in tumor. As a result, this affibody-based nanoagent showed excellent antitumor activity in vivo to HER2-positive ovary and breast tumor models, which nearly eradicated both small solid tumors (about 100 mm3) and large established tumors (exceed 500 mm3). The relative tumor proliferation inhibition ratio reaches 99.8% for both models.
Highlights:
1 The nanoagent of affibody-drug conjugate made of ZHER2:342 and MMAE was successfully fabricated through molecular self-assembly of the conjugate in aqueous solution for targeted cancer therapy, which is recorded as Z-M ADCN for short.
2 Z-M ADCN shows extraordinary anticancer ability in HER2-positive ovary and breast tumor models with good biosecurity, that nearly eradicated both small solid tumors (about 100 mm3) and large tumors (exceed 500 mm3).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
- K.A. Cronin, L.C. Harlan, K.W. Dodd, J.S. Abrams, R. Ballard-Barbash, Population-based estimate of the prevalence of HER-2 positive breast cancer tumors for early stage patients in the US. Cancer Invest. 28, 963–968 (2010). https://doi.org/10.3109/07357907.2010.496759
- S.M. Swain, D. Miles, S. Kim, Y. Im, S. Im et al., Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 21, 519–530 (2020). https://doi.org/10.1016/S1470-2045(19)30863-0
- J.R. Junutula, H. Raab, S. Clark, S. Bhakta, D.D. Leipold et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008). https://doi.org/10.1038/nbt.1480
- W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
- R.V.J. Chari, M.L. Miller, W.C. Widdison, Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 53, 3796–3827 (2014). https://doi.org/10.1002/anie.201307628
- N. Krall, J. Scheuermann, D. Neri, Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew. Chem. Int. Ed. 52, 1384–1402 (2013). https://doi.org/10.1002/anie.201204631
- G.P. Adams, L.M. Weiner, Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157 (2005). https://doi.org/10.1038/nbt1137
- P. Chames, M.V. Regenmortel, E. Weiss, D. Baty, Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009). https://doi.org/10.1111/j.1476-5381.2009.00190.x
- G.N. Hatzopoulos, T. Kükenshöner, N. Banterle, T. Favez, I. Flückiger et al., Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. Nat. Commun. 12, 3805 (2021). https://doi.org/10.1038/s41467-021-23897-0
- Z. Miao, J. Levi, Z. Cheng, Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 41, 1037–1047 (2011). https://doi.org/10.1007/s00726-010-0503-9
- F. Kast, M. Schwill, J.C. Stüber, S. Pfundstein, G. Nagy-Davidescu et al., Engineering an anti-HER2 biparatopic antibody with a multimodal mechanism of action. Nat. Commun. 12, 3790 (2021). https://doi.org/10.1038/s41467-021-23948-6
- K.T. Xenaki, B. Dorresteijn, J.A. Muns, K. Adamzek, S. Doulkeridou et al., Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics 11, 5525–5538 (2021). https://doi.org/10.7150/thno.57510
- K. Nord, E. Gunneriusson, J. Ringdahl, S. Ståhl, M. Uhlén et al., Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15, 772–777 (1997). https://doi.org/10.1038/nbt0897-772
- A. Orlova, M. Magnusson, T. Eriksson, M. Nilsson, B. Larsson et al., Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 66, 4339–4348 (2006). https://doi.org/10.1158/0008-5472.CAN-05-3521
- S. Ståhl, T. Gräslund, A. Karlström, F. Frejd, P. Nygren et al., Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 35, 691–712 (2017). https://doi.org/10.1016/j.tibtech.2017.04.007
- R.N. Gilbreth, S. Koide, Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr. Opin. Struct. Biol. 22, 413–420 (2012). https://doi.org/10.1016/j.sbi.2012.06.001
- M. Gebauer, A. Skerra, Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13, 245–255 (2009). https://doi.org/10.1016/j.cbpa.2009.04.627
- J. Lindgren, C. Ekblad, L. Abrahmsén, A.E. Karlström, A native chemical ligation approach for combinatorial assembly of affibody molecules. ChemBioChem 13, 1024–1031 (2012). https://doi.org/10.1002/cbic.201200052
- A. Perols, H. Honarvar, J. Strand, R. Selvaraju, A. Orlova et al., Influence of DOTA chelator position on biodistribution and targeting properties of 111In-labeled synthetic anti-HER2 affibody molecules. Bioconjugate Chem. 23, 1661–1770 (2012). https://doi.org/10.1021/bc3002369
- M. Rosestedt, K. Andersson, B. Mitran, V. Tolmachev, J. Löfblom et al., Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci. Rep. 5, 15226 (2015). https://doi.org/10.1038/srep15226
- H. Honarvar, C. Müller, S. Cohrs, S. Haller, K. Westerlund et al., Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors. Nucl. Med. Biol. 45, 15–21 (2017). https://doi.org/10.1016/j.nucmedbio.2016.10.004
- A.L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong et al., A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016). https://doi.org/10.1038/nmat4476
- A. Nomani, G. Li, S. Yousefi, S. Wu, O.M. Malekshah et al., Gadolinium-labeled affibody-XTEN recombinant vector for detection of HER2+ lesions of ovarian cancer lung metastasis using quantitative MRI. J. Control. Release 337, 132–143 (2021). https://doi.org/10.1016/j.jconrel.2021.07.022
- A.L.R. de Souza, K. Marra, J. Gunn, K. Samkoe, P. Hoopes et al., Fluorescent affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions. Mol. Imaging Biol. 19, 41–48 (2017). https://doi.org/10.1007/s11307-016-0980-7
- R. Sun, Y. Zhao, Y. Wang, Q. Zhang, P. Zhao, An affibody-conjugated nanoprobe for IGF-1R targeted cancer fluorescent and photoacoustic dual-modality imaging. Nanotechnology 32, 205103 (2021). https://doi.org/10.1088/1361-6528/abe437
- G. Casi, D. Neri, Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem. 58, 8751–8761 (2015). https://doi.org/10.1021/acs.jmedchem.5b00457
- A.M. Sochaj-Gregorczyk, A.M. Serwotka-Suszczak, J. Otlewski, A novel affibody-auristatin E conjugate with a potent and selective activity against HER2+ cell lines. J. Immunother. 39, 223–232 (2016). https://doi.org/10.1097/CJI.0000000000000125
- A.M. Serwotka-Suszczak, A.M. Sochaj-Gregorczyk, J. Pieczykolan, D. Krowarsch, F. Jelen et al., A conjugate based on anti-HER2 diaffibody and auristatin E targets HER2-positive cancer cells. Int. J. Mol. Sci. 18, 401 (2017). https://doi.org/10.3390/ijms18020401
- M. Altai, H. Liu, H. Ding, B. Mitran, P. Edqvist et al., Affibody-derived drug conjugates: potent cytotoxic molecules for treatment of HER2 over-expressing tumors. J. Control. Release 288, 84–95 (2018). https://doi.org/10.1016/j.jconrel.2018.08.040
- J. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan et al., Nanomaterials: applications in cancer imaging and therapy. Adv. Mater. 23, H18–H40 (2011). https://doi.org/10.1002/adma.201100140
- D. Xu, Z. Hu, J. Su, F. Wu, W. Yuan, Micro and nanotechnology for intracellular delivery therapy protein. Nano-Micro Lett. 4, 118–123 (2012). https://doi.org/10.1007/BF03353702
- C. Eigenbrot, M. Ultsch, A. Dubnovitsky, L. Abrahmsén, T. Härd, Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Natl. Acad. Sci. USA 107, 15039–15044 (2010). https://doi.org/10.1073/pnas.1005025107
- P. Senter, E. Sievers, The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol. 30, 631–637 (2012). https://doi.org/10.1038/nbt.2289
- G. Pettit, Y. Kamano, C. Herald, A. Tuinman, F. Boettner et al., The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J. Am. Chem. Soc. 109, 6883–6885 (1987). https://doi.org/10.1021/ja00256a070
- J. Choi, M.K. Shim, S. Yang, H.S. Hwang, H. Cho et al., Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. ACS Nano 15, 12086–12098 (2021). https://doi.org/10.1021/acsnano.1c03416
- S. Doronina, B. Toki, M. Torgov, B. Mendelsohn, C. Cerveny et al., Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003). https://doi.org/10.1038/nbt832
- V. Dincbas-Renqvist, C. Lendel, J. Dogan, E. Wahlberg, T. Härd, Thermodynamics of folding, stabilization, and binding in an engineered protein−protein complex. J. Am. Chem. Soc. 126, 11220–11230 (2004). https://doi.org/10.1021/ja047727y
- A. Orlova, V. Tolmachev, R. Pehrson, M. Lindborg, T. Tran et al., Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res. 67, 2178–2186 (2007). https://doi.org/10.1158/0008-5472.CAN-06-2887
- M. Srinivasarao, C.V. Galliford, P.S. Low, Principles in the design of ligand targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14, 203–219 (2015). https://doi.org/10.1038/nrd4519
- R. Zielinski, I. Lyakhov, M. Hassan, M. Kuban, K. Shafer-Weaver et al., HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin. Cancer Res. 17, 5071–5081 (2011). https://doi.org/10.1158/1078-0432.CCR-10-2887
- S. Hoppmann, Z. Miao, S. Liu, H. Liu, G. Ren et al., Radiolabeled affibody-albumin bioconjugates for HER2-positive cancer targeting. Bioconjugate Chem. 22, 413–421 (2011). https://doi.org/10.1021/bc100432h
- D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13, 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
- J. Seijsing, M. Lindborg, I. Höidén-Guthenberg, H. Bönisch, E. Guneriusson et al., An engineered affibody molecule with pH-dependent binding to FcRn mediates extended circulatory half-life of a fusion protein. Proc. Natl. Acad. Sci. USA 111, 17110–17115 (2014). https://doi.org/10.1073/pnas.1417717111
- P. Huang, D. Wang, Y. Su, W. Huang, Y. Zhou et al., Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 136, 11748–11756 (2014). https://doi.org/10.1021/ja505212y
- Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang et al., Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z
- A. Wushou, X. Miao, Tumor size predicts prognosis of head and neck synovial cell sarcoma. Oncol. Lett. 9, 381–386 (2015). https://doi.org/10.3892/ol.2014.2634
References
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca-Cancer J. Clin. 68, 394–424 (2018). https://doi.org/10.3322/caac.21492
K.A. Cronin, L.C. Harlan, K.W. Dodd, J.S. Abrams, R. Ballard-Barbash, Population-based estimate of the prevalence of HER-2 positive breast cancer tumors for early stage patients in the US. Cancer Invest. 28, 963–968 (2010). https://doi.org/10.3109/07357907.2010.496759
S.M. Swain, D. Miles, S. Kim, Y. Im, S. Im et al., Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 21, 519–530 (2020). https://doi.org/10.1016/S1470-2045(19)30863-0
J.R. Junutula, H. Raab, S. Clark, S. Bhakta, D.D. Leipold et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008). https://doi.org/10.1038/nbt.1480
W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
R.V.J. Chari, M.L. Miller, W.C. Widdison, Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 53, 3796–3827 (2014). https://doi.org/10.1002/anie.201307628
N. Krall, J. Scheuermann, D. Neri, Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew. Chem. Int. Ed. 52, 1384–1402 (2013). https://doi.org/10.1002/anie.201204631
G.P. Adams, L.M. Weiner, Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157 (2005). https://doi.org/10.1038/nbt1137
P. Chames, M.V. Regenmortel, E. Weiss, D. Baty, Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009). https://doi.org/10.1111/j.1476-5381.2009.00190.x
G.N. Hatzopoulos, T. Kükenshöner, N. Banterle, T. Favez, I. Flückiger et al., Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. Nat. Commun. 12, 3805 (2021). https://doi.org/10.1038/s41467-021-23897-0
Z. Miao, J. Levi, Z. Cheng, Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 41, 1037–1047 (2011). https://doi.org/10.1007/s00726-010-0503-9
F. Kast, M. Schwill, J.C. Stüber, S. Pfundstein, G. Nagy-Davidescu et al., Engineering an anti-HER2 biparatopic antibody with a multimodal mechanism of action. Nat. Commun. 12, 3790 (2021). https://doi.org/10.1038/s41467-021-23948-6
K.T. Xenaki, B. Dorresteijn, J.A. Muns, K. Adamzek, S. Doulkeridou et al., Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice. Theranostics 11, 5525–5538 (2021). https://doi.org/10.7150/thno.57510
K. Nord, E. Gunneriusson, J. Ringdahl, S. Ståhl, M. Uhlén et al., Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15, 772–777 (1997). https://doi.org/10.1038/nbt0897-772
A. Orlova, M. Magnusson, T. Eriksson, M. Nilsson, B. Larsson et al., Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 66, 4339–4348 (2006). https://doi.org/10.1158/0008-5472.CAN-05-3521
S. Ståhl, T. Gräslund, A. Karlström, F. Frejd, P. Nygren et al., Affibody molecules in biotechnological and medical applications. Trends Biotechnol. 35, 691–712 (2017). https://doi.org/10.1016/j.tibtech.2017.04.007
R.N. Gilbreth, S. Koide, Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr. Opin. Struct. Biol. 22, 413–420 (2012). https://doi.org/10.1016/j.sbi.2012.06.001
M. Gebauer, A. Skerra, Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13, 245–255 (2009). https://doi.org/10.1016/j.cbpa.2009.04.627
J. Lindgren, C. Ekblad, L. Abrahmsén, A.E. Karlström, A native chemical ligation approach for combinatorial assembly of affibody molecules. ChemBioChem 13, 1024–1031 (2012). https://doi.org/10.1002/cbic.201200052
A. Perols, H. Honarvar, J. Strand, R. Selvaraju, A. Orlova et al., Influence of DOTA chelator position on biodistribution and targeting properties of 111In-labeled synthetic anti-HER2 affibody molecules. Bioconjugate Chem. 23, 1661–1770 (2012). https://doi.org/10.1021/bc3002369
M. Rosestedt, K. Andersson, B. Mitran, V. Tolmachev, J. Löfblom et al., Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci. Rep. 5, 15226 (2015). https://doi.org/10.1038/srep15226
H. Honarvar, C. Müller, S. Cohrs, S. Haller, K. Westerlund et al., Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors. Nucl. Med. Biol. 45, 15–21 (2017). https://doi.org/10.1016/j.nucmedbio.2016.10.004
A.L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong et al., A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016). https://doi.org/10.1038/nmat4476
A. Nomani, G. Li, S. Yousefi, S. Wu, O.M. Malekshah et al., Gadolinium-labeled affibody-XTEN recombinant vector for detection of HER2+ lesions of ovarian cancer lung metastasis using quantitative MRI. J. Control. Release 337, 132–143 (2021). https://doi.org/10.1016/j.jconrel.2021.07.022
A.L.R. de Souza, K. Marra, J. Gunn, K. Samkoe, P. Hoopes et al., Fluorescent affibody molecule administered in vivo at a microdose level labels EGFR expressing glioma tumor regions. Mol. Imaging Biol. 19, 41–48 (2017). https://doi.org/10.1007/s11307-016-0980-7
R. Sun, Y. Zhao, Y. Wang, Q. Zhang, P. Zhao, An affibody-conjugated nanoprobe for IGF-1R targeted cancer fluorescent and photoacoustic dual-modality imaging. Nanotechnology 32, 205103 (2021). https://doi.org/10.1088/1361-6528/abe437
G. Casi, D. Neri, Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem. 58, 8751–8761 (2015). https://doi.org/10.1021/acs.jmedchem.5b00457
A.M. Sochaj-Gregorczyk, A.M. Serwotka-Suszczak, J. Otlewski, A novel affibody-auristatin E conjugate with a potent and selective activity against HER2+ cell lines. J. Immunother. 39, 223–232 (2016). https://doi.org/10.1097/CJI.0000000000000125
A.M. Serwotka-Suszczak, A.M. Sochaj-Gregorczyk, J. Pieczykolan, D. Krowarsch, F. Jelen et al., A conjugate based on anti-HER2 diaffibody and auristatin E targets HER2-positive cancer cells. Int. J. Mol. Sci. 18, 401 (2017). https://doi.org/10.3390/ijms18020401
M. Altai, H. Liu, H. Ding, B. Mitran, P. Edqvist et al., Affibody-derived drug conjugates: potent cytotoxic molecules for treatment of HER2 over-expressing tumors. J. Control. Release 288, 84–95 (2018). https://doi.org/10.1016/j.jconrel.2018.08.040
J. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan et al., Nanomaterials: applications in cancer imaging and therapy. Adv. Mater. 23, H18–H40 (2011). https://doi.org/10.1002/adma.201100140
D. Xu, Z. Hu, J. Su, F. Wu, W. Yuan, Micro and nanotechnology for intracellular delivery therapy protein. Nano-Micro Lett. 4, 118–123 (2012). https://doi.org/10.1007/BF03353702
C. Eigenbrot, M. Ultsch, A. Dubnovitsky, L. Abrahmsén, T. Härd, Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Natl. Acad. Sci. USA 107, 15039–15044 (2010). https://doi.org/10.1073/pnas.1005025107
P. Senter, E. Sievers, The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol. 30, 631–637 (2012). https://doi.org/10.1038/nbt.2289
G. Pettit, Y. Kamano, C. Herald, A. Tuinman, F. Boettner et al., The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J. Am. Chem. Soc. 109, 6883–6885 (1987). https://doi.org/10.1021/ja00256a070
J. Choi, M.K. Shim, S. Yang, H.S. Hwang, H. Cho et al., Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. ACS Nano 15, 12086–12098 (2021). https://doi.org/10.1021/acsnano.1c03416
S. Doronina, B. Toki, M. Torgov, B. Mendelsohn, C. Cerveny et al., Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21, 778–784 (2003). https://doi.org/10.1038/nbt832
V. Dincbas-Renqvist, C. Lendel, J. Dogan, E. Wahlberg, T. Härd, Thermodynamics of folding, stabilization, and binding in an engineered protein−protein complex. J. Am. Chem. Soc. 126, 11220–11230 (2004). https://doi.org/10.1021/ja047727y
A. Orlova, V. Tolmachev, R. Pehrson, M. Lindborg, T. Tran et al., Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res. 67, 2178–2186 (2007). https://doi.org/10.1158/0008-5472.CAN-06-2887
M. Srinivasarao, C.V. Galliford, P.S. Low, Principles in the design of ligand targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14, 203–219 (2015). https://doi.org/10.1038/nrd4519
R. Zielinski, I. Lyakhov, M. Hassan, M. Kuban, K. Shafer-Weaver et al., HER2-affitoxin: a potent therapeutic agent for the treatment of HER2-overexpressing tumors. Clin. Cancer Res. 17, 5071–5081 (2011). https://doi.org/10.1158/1078-0432.CCR-10-2887
S. Hoppmann, Z. Miao, S. Liu, H. Liu, G. Ren et al., Radiolabeled affibody-albumin bioconjugates for HER2-positive cancer targeting. Bioconjugate Chem. 22, 413–421 (2011). https://doi.org/10.1021/bc100432h
D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13, 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
J. Seijsing, M. Lindborg, I. Höidén-Guthenberg, H. Bönisch, E. Guneriusson et al., An engineered affibody molecule with pH-dependent binding to FcRn mediates extended circulatory half-life of a fusion protein. Proc. Natl. Acad. Sci. USA 111, 17110–17115 (2014). https://doi.org/10.1073/pnas.1417717111
P. Huang, D. Wang, Y. Su, W. Huang, Y. Zhou et al., Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 136, 11748–11756 (2014). https://doi.org/10.1021/ja505212y
Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang et al., Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z
A. Wushou, X. Miao, Tumor size predicts prognosis of head and neck synovial cell sarcoma. Oncol. Lett. 9, 381–386 (2015). https://doi.org/10.3892/ol.2014.2634