Lead-Free Perovskite Materials for Solar Cells
Corresponding Author: Shufen Chen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 62
Abstract
The toxicity issue of lead hinders large-scale commercial production and photovoltaic field application of lead halide perovskites. Some novel non- or low-toxic perovskite materials have been explored for development of environmentally friendly lead-free perovskite solar cells (PSCs). This review studies the substitution of equivalent/heterovalent metals for Pb based on first-principles calculation, summarizes the theoretical basis of lead-free perovskites, and screens out some promising lead-free candidates with suitable bandgap, optical, and electrical properties. Then, it reports notable achievements for the experimental studies of lead-free perovskites to date, including the crystal structure and material bandgap for all of lead-free materials and photovoltaic performance and stability for corresponding devices. The review finally discusses challenges facing the successful development and commercialization of lead-free PSCs and predicts the prospect of lead-free PSCs in the future.
Highlights:
1 The toxicity issue of lead-based halide perovskites hinders theirs large-scale commercial applications in solar cells.
2 A variety of non- or low-toxic perovskite materials have been used for development of environmentally friendly lead-free perovskite solar cells, some of which show excellent optoelectronic properties and device performances.
3 At present, more new lead-free perovskite materials with tunable optical and electrical properties are urgently required to design highly efficient and stable lead-free perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761–2766 (2013). https://doi.org/10.1038/ncomms3761
- J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7(6), 486–491 (2013). https://doi.org/10.1038/nphoton.2013.80
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h
- O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel et al., Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8(2), 128–132 (2013). https://doi.org/10.1038/nphoton.2013.341
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
- M. Sessolo, H.J. Bolink, Solar cells@ Perovskite solar cells join the major league. Science 350(6263), 917 (2015). https://doi.org/10.1126/science.aad5891
- J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
- M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 46). Prog. Photovolt: Res. Appl. 23(7), 805–812 (2015). https://doi.org/10.1002/pip.2637
- Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
- A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763
- D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2013). https://doi.org/10.1038/nphoton.2013.342
- C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
- D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
- Y. Chen, T. Chen, L. Dai, Layer-by-layer growth of CH3NH3PbI(3−x)Clx for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 27(6), 1053–1059 (2015). https://doi.org/10.1002/adma.201404147
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6420), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- J. Wang, Y. Liu, X. Chen, C. Chen, P. Chen et al., Functional metal oxides in perovskite solar cells. ChemPhysChem 20(20), 2580–2586 (2019). https://doi.org/10.1002/cphc.201900447
- D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016). https://doi.org/10.1126/sciadv.1501170
- K. Meng, S. Gao, L. Wu, G. Wang, X. Liu et al., Two-dimensional organic-inorganic hybrid perovskite photonic films. Nano Lett. 16(7), 4166–4173 (2016). https://doi.org/10.1021/acs.nanolett.6b01046
- N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3(8), 682–689 (2018). https://doi.org/10.1038/s41560-018-0200-6
- B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on methylammonium lead iodide based perovskites: Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1543–1547 (2015). https://doi.org/10.1021/acs.jpclett.5b00504
- R. Wang, J. Wang, S. Tan, Y. Duan, Z.-K. Wang et al., Opportunities and challenges of lead-free perovskite optoelectronic devices. Trends in Chem. 1(4), 368–379 (2019). https://doi.org/10.1016/j.trechm.2019.04.004
- F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016). https://doi.org/10.1021/acsenergylett.6b00499
- Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan et al., Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005 (2017). https://doi.org/10.1002/adma.201605005
- S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5(23), 11462–11482 (2017). https://doi.org/10.1039/c7ta00366h
- P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(2), 6068–6073 (2014). https://doi.org/10.1021/cm503122j
- S.F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh. Chem. 148(5), 795–826 (2017). https://doi.org/10.1007/s00706-017-1933-9
- M. Lyu, J.-H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7(15), 1602512–1602537 (2017). https://doi.org/10.1002/aenm.201602512
- W. Ming, H. Shi, M.-H. Du, Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 4(13), 13852–13875 (2016). https://doi.org/10.1039/C6TA04685A
- F. Hong, B. Saparov, W. Meng, Z. Xiao, D.B. Mitzi et al., Viability of lead-free perovskites with mixed chalcogen and halogen anions for photovoltaic applications. J. Phys. Chem. C 120(12), 6435–6441 (2016). https://doi.org/10.1021/acs.jpcc.6b00920
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–989 (2014). https://doi.org/10.1039/c3ee43822h
- P. Sun, Q. Li, L. Yang, Z. Li, Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+. Nanoscale 8(3), 1503–1513 (2016). https://doi.org/10.1039/c5nr05337d
- Y. Zhao, K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45(3), 655–689 (2016). https://doi.org/10.1039/c4cs00458b
- N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin et al., Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
- N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6(3), 1501420–1501456 (2016). https://doi.org/10.1002/aenm.201501420
- Y. Zhang, J. Yin, M.R. Parida, G.H. Ahmed, J. Pan et al., Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 8(1), 3173–3188 (2017). https://doi.org/10.1021/acs.jpclett.7b01381
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- D.E. Starr, G. Sadoughi, E. Handick, R.G. Wilks, J.H. Alsmeier et al., Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment. Energy Environ. Sci. 8(5), 1609–1615 (2015). https://doi.org/10.1039/c5ee00403a
- S. Dharani, H.A. Dewib, R.R. Prabhakarb, T. Baikieb, C. Shic et al., Incorporation of Cl in sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale 6(22), 13854–13860 (2014). https://doi.org/10.1039/C4NR04007D
- W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142–6151 (2015). https://doi.org/10.1038/ncomms7142
- J. Qing, H.-T. Chandran, Y.-H. Cheng, X.-K. Liu, H.-W. Li et al., Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces. 7(41), 23110–23116 (2015). https://doi.org/10.1021/acsami.5b06819
- X. Lu, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo et al., Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28(39), 8663–8668 (2016). https://doi.org/10.1002/adma.201600771
- M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao et al., Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3(3), 963–967 (2015). https://doi.org/10.1039/c4ta05373g
- L. Huang, Z. Hu, G. Yue, J. Liu, X. Cui et al., CH3NH3PbI3−xClx films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Phys. Chem. Chem. Phys. 17(34), 22015–22022 (2015). https://doi.org/10.1039/c5cp03934g
- T.G. Kim, S.W. Seo, H. Kwon, J. Hahn, J.W. Kim, Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. Phys. Chem. Chem. Phys. 17(37), 24342–24348 (2015). https://doi.org/10.1039/c5cp04207k
- J. Albero, A.M. Asiri, H. Garcia, Influence of the composition of hybrid perovskites on their performance in solar cells. J. Mater. Chem. A 4(12), 4353–4364 (2016). https://doi.org/10.1039/c6ta00334f
- B. Ghosh, S. Chakraborty, H. Wei, C. Guet, S. Li et al., Poor photovoltaic performance of Cs3Bi2I9: an insight through first-principles calculations. J. Phys. Chem. C 121(32), 17062–17081 (2017). https://doi.org/10.1021/acs.jpcc.7b03501
- Y. Sun, J. Shi, J. Lian, W. Gao, M.L. Agiorgousis et al., Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale 8(12), 6284–6290 (2016). https://doi.org/10.1039/c5nr04310g
- G.E. Eperon, C.E. Beck, H.J. Snaith, Cation exchange for thin film lead iodide perovskite interconversion. Mater. Horiz. 3(1), 63–71 (2016). https://doi.org/10.1039/c5mh00170f
- J.H. Heo, S.H. Im, Highly reproducible, efficient hysteresis-less CH3NH3PbI3−xClx planar hybrid solar cells without requiring heat-treatment. Nanoscale 8(5), 2554–2560 (2016). https://doi.org/10.1039/c5nr08458j
- T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007–15023 (2015). https://doi.org/10.1038/natrevmats.2015.7
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
- N. Leblanc, N. Mercier, L. Zorina, S. Simonov, P. Auban-Senzier et al., Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide BiI3Cl2 polar chains and methylviologen dication. J. Am. Chem. Soc. 133(38), 14924–14927 (2011). https://doi.org/10.1021/ja206171s
- W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, C. Pasquier, Thermally induced Bi(III) lone pair stereoactivity: ferroelectric phase transition and semiconducting properties of (MV)BiBr 5(MV = methylviologen). Chem. Mater. 21(18), 4099–4101 (2009). https://doi.org/10.1021/cm9016003
- B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo et al., Bismuth based hybrid perovskites A3Bi2I9 (a: methylammonium or cesium) for solar cell application. Adv. Mater. 27(43), 6806–6813 (2015). https://doi.org/10.1002/adma.201501978
- T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie et al., Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015). https://doi.org/10.1039/c5ta05741h
- C.C. Stoumpos, L. Frazer, D.J. Clark, Y.S. Kim, S.H. Rhim et al., Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137(21), 6804–6819 (2015). https://doi.org/10.1021/jacs.5b01025
- B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng et al., Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater. 27(16), 5622–5632 (2015). https://doi.org/10.1021/acs.chemmater.5b01989
- D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen et al., Lead-free MA2CuClxBr 4–x hybrid perovskites. Inorg. Chem. 55(3), 1044–1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896
- G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4(24), 4213–4216 (2013). https://doi.org/10.1021/jz4023865
- J. Feng, B. Xiao, Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 5(7), 1278–1282 (2014). https://doi.org/10.1021/jz500480m
- M.R. Filip, F. Giustino, Computational screening of homovalent lead substitution in organic-inorganic halide perovskites. J. Phys. Chem. C 120(1), 166–173 (2015). https://doi.org/10.1021/acs.jpcc.5b11845
- Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31(47), 1803792–1803813 (2019). https://doi.org/10.1002/adma.201803792
- P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467–4473 (2014). https://doi.org/10.1038/srep04467
- F. Li, C. Zhang, J.H. Huang, H. Fan, H. Wang et al., A cation-exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angew. Chem. Int. Ed. 58(20), 6688–6692 (2019). https://doi.org/10.1002/anie.201902418
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photon. 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
- M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
- T. Yokoyama, D.H. Cao, C.C. Stoumpos, T.B. Song, Y. Sato et al., Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J. Phys. Chem. Lett. 7(5), 776–782 (2016). https://doi.org/10.1021/acs.jpclett.6b00118
- F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks et al., Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445–11452 (2015). https://doi.org/10.1021/jacs.5b06658
- M. Weiss, J. Horn, C. Richter, D. Schlettwein, Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Phys. Status Solidi A 213(4), 975–981 (2016). https://doi.org/10.1002/pssa.201532594
- S. Chen, A. Walsh, X.G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25(11), 1522–1539 (2013). https://doi.org/10.1002/adma.201203146
- M.C. Jung, S.R. Raga, Y. Qi, Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition. RSC Adv. 6(4), 2819–2825 (2016). https://doi.org/10.1039/c5ra21291j
- D.E. Scaife, P.F. Weller, W.G. Fisher, Crystal preparation and properties of cesium tin(ii) trihalides. J. Solid State Chem. 9(3), 308–314 (1974). https://doi.org/10.1016/0022-4596(74)90088-7
- Z. Chen, J.J. Wang, Y. Ren, C. Yu, K. Shum, Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 101(9), 093901–093904 (2012). https://doi.org/10.1063/1.4748888
- D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie et al., Impact of anionic Br- substitution on open circuit voltage in lead free perovskite (CsSnI3−xBrx) solar cells. J. Phys. Chem. C 119(4), 1763–1767 (2015). https://doi.org/10.1021/jp5126624
- Y. Zhou, H.F. Garces, B.S. Senturk, A.L. Ortiz, N.P. Padture, Roomtemperature “one-pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films andparticles. Mater. Lett. 110, 127–129 (2013). https://doi.org/10.1016/j.matlet.2013.08.011
- S. Dharani, H.K. Mulmudi, N. Yantara, P.T. Thu-Trang, N.G. Park et al., High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale 6(3), 1675–1679 (2014). https://doi.org/10.1039/c3nr04857h
- K. Shum, Z. Chen, J. Qureshi, C. Yu, J.J. Wang et al., Synthesis and characterization of CsSNi3 thin films. Appl. Phys. Lett. 96(22), 221903 (2010). https://doi.org/10.1063/1.3442511
- I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas et al., CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134(20), 8579–8587 (2012). https://doi.org/10.1021/ja301539s
- K.P. Marshall, R.I. Walton, R.A. Hatton, Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 3(21), 11631–11640 (2015). https://doi.org/10.1039/c5ta02950c
- L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. 5(2), 1700331–1700364 (2018). https://doi.org/10.1002/advs.201700331
- S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
- Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye et al., Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12. Adv. Sci. 4(11), 1700204–1700210 (2017). https://doi.org/10.1002/advs.201700204
- W. Ke, C.C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos et al., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3(8), e1701293–e1701301 (2017). https://doi.org/10.1126/sciadv.1701293
- K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 16178–16186 (2016). https://doi.org/10.1038/nenergy.2016.178
- M. Zhang, M. Lyu, J.H. Yun, M. Noori, X. Zhou et al., Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 9(6), 1570–1577 (2016). https://doi.org/10.1007/s12274-016-1051-8
- R.L. Milot, G.E. Eperon, T. Green, H.J. Snaith, M.B. Johnston et al., Radiative monomolecular recombination boosts amplified spontaneous emission in HC(NH2)2SnI3 perovskite films. J. Phys. Chem. Lett. 7(20), 4178–4184 (2016). https://doi.org/10.1021/acs.jpclett.6b02030
- Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. 55(10), 3447–3450 (2016). https://doi.org/10.1002/anie.201511792
- D.B. Mitzi, K. Liang, Synthesis, resistivity, and thermal properties of the cubic perovskite NH2CH5NH2SnI3 and related systems. J. Solid State Chem. 134(2), 376–381 (1997). https://doi.org/10.1006/jssc.1997.7593
- Z. Zhu, C.C. Chueh, N. Li, C. Mao, A.K.-Y. Jen, Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv. Mater. 30(6), 1703800–1703808 (2018). https://doi.org/10.1002/adma.201703800
- W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 622. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
- W. Ke, C.C. Stoumpos, J.L. Logsdon, M.R. Wasielewski, Y. Yan et al., Tio2-zns cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138(45), 14998–15003 (2016). https://doi.org/10.1021/jacs.6b08790
- F. Wang, J. Ma, F. Xie, L. Li, J. Chen et al., Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv. Funct. Mater. 26(20), 3417–3423 (2016). https://doi.org/10.1002/adfm.201505127
- T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong et al., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k
- F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2(10), 1870217 (2018). https://doi.org/10.1002/solr.201870217
- Z. Lin, C. Liu, G. Liu, J. Yang, X. Duan et al., Efficient inverted tin-based perovskite solar cells via bidentate coordination effect of 8-Hydroxyquinoline. Chem. Commun. 56(28), 4007–4010 (2020). https://doi.org/10.1039/d0cc01106a
- J. Cao, Q. Tai, P. You, G. Tang, T. Wang et al., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A 7(46), 26580–26585 (2019). https://doi.org/10.1039/c9ta08679j
- T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base. Sci. China Chem. 63(1), 107–115 (2019). https://doi.org/10.1007/s11426-019-9653-8
- X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923
- M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
- N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(ii) iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
- W. Ke, C.C. Stoumpos, I. Spanopoulos, L. Mao, M. Chen et al., Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites. J. Am. Chem. Soc. 139(41), 14800–14806 (2017). https://doi.org/10.1021/jacs.7b09018
- W. Ke, C.C. Stoumpos, I. Spanopoulos, M. Chen, M.R. Wasielewski et al., Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells. ACS Energy Lett. 3(7), 1470–1476 (2018). https://doi.org/10.1021/acsenergylett.8b00687
- X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016). https://doi.org/10.1126/science.aaf8060
- F. Xu, T. Zhang, G. Li, Y. Zhao, Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J. Mater. Chem. A 5(23), 11450–11461 (2017). https://doi.org/10.1039/c7ta00042a
- H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
- W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
- X. Liu, Z. Yang, C.C. Chueh, A. Rajagopal, S.T. Williams et al., Improved efficiency and stability of Pb-Sn binary perovskite solar cells by cs substitution. J. Mater. Chem. A 4(46), 17939–17945 (2016). https://doi.org/10.1039/c6ta07712a
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De Bastiani et al., Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17(8), 4759–4767 (2017). https://doi.org/10.1021/acs.nanolett.7b01475
- Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng et al., Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2(7), 1571–1572 (2017). https://doi.org/10.1021/acsenergylett.7b00442
- C.-M. Tsai, Y.-P. Lin, M.K. Pola, S. Narra, E. Jokar et al., Control of crystal structures and optical properties with hybrid formamidinium and 2-hydroxyethylammonium cations for mesoscopic carbon-electrode tin-based perovskite solar cells. ACS Energy Lett. 3(9), 2077–2085 (2018). https://doi.org/10.1021/acsenergylett.8b01046
- E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31(2), e1804835 (2019). https://doi.org/10.1002/adma.201804835
- D.H. Cao, C.C. Stoumpos, T. Yokoyama, J.L. Logsdon, T.-B. Song et al., Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett. 2(5), 982–990 (2017). https://doi.org/10.1021/acsenergylett.7b00202
- K. Yao, X. Wang, Y. Xu, F. Li, L. Zhou, Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem. Mater. 28(9), 3131–3138 (2016). https://doi.org/10.1021/acs.chemmater.6b00711
- C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun et al., 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8(43), 18309–18314 (2016). https://doi.org/10.1039/c6nr04741f
- F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu et al., 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2(12), 2732–2743 (2018). https://doi.org/10.1016/j.joule.2018.09.012
- X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 1702498 (2018). https://doi.org/10.1002/aenm.201702498
- A.Z. Chen, M. Shiu, J.H. Ma, M.R. Alpert, D. Zhang et al., Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9(1), 1336 (2018). https://doi.org/10.1038/s41467-018-03757-0
- J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu et al., 2D intermediate suppression for efficient ruddlesden-popper (RP) phase lead-free perovskite solar cells. ACS Energy Lett. 4(7), 1513–1520 (2019). https://doi.org/10.1021/acsenergylett.9b00954
- Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang et al., Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139(19), 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815
- H. Xu, Y. Jiang, T. He, S. Li, H. Wang et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics. Adv. Funct. Mater. 29(47), 1807696 (2019). https://doi.org/10.1002/adfm.201807696
- J. Wang, H. Shen, W. Li, S. Wang, J. Li et al., The role of chloride incorporation in lead-free 2D perovskite (BA)2SnI4: morphology, photoluminescence, phase transition, and charge transport. Adv. Sci. 6(5), 1802019 (2019). https://doi.org/10.1002/advs.201802019
- M. Chen, M.G. Ju, M.Y. Hu, Z.H. Dai, Y. Hu et al., Lead-free dion-jacobson tin halide perovskites for photovoltaics. ACS Energy Lett. 4(1), 276–277 (2019). https://doi.org/10.1021/acsenergylett.8b02051
- B.E. Cohen, Y. Li, Q. Meng, L. Etgar, Dion-jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett. 19(4), 2588–2597 (2019). https://doi.org/10.1021/acs.nanolett.9b00387
- C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), 1800710–1800715 (2018). https://doi.org/10.1002/adma.201800710
- C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure-bandgap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56(1), 56–73 (2017). https://doi.org/10.1021/acs.inorgchem.6b02764
- G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014). https://doi.org/10.1039/c4sc02211d
- X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang et al., Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11(1), 1245–1251 (2020). https://doi.org/10.1038/s41467-020-15078-2
- C. Wang, F. Gu, Z. Zhao, H. Rao, Y. Qiu et al., Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11. Adv. Mater. 32(31), e1907623–e1907631 (2020). https://doi.org/10.1002/adma.201907623
- F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous bandgap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094–8099 (2014). https://doi.org/10.1021/ja5033259
- H.D. Kim, Y. Miyamoto, H. Kubota, T. Yamanari, H. Ohkita, Open-circuit voltage loss in CH3NH3SnI3 perovskite solar cells. Chem. Lett. 46, 253–256 (2017). https://doi.org/10.1246/cl.160994
- T. Handa, T. Yamada, H. Kubota, S. Ise, Y. Miyamoto et al., Photocarrier recombination and injection dynamics in long-term stable lead-free CH3NH3SnI3 perovskite thin films and solar cells. J. Phys. Chem. C 121(30), 16158–16165 (2017). https://doi.org/10.1021/acs.jpcc.7b06199
- W. Ke, P. Priyanka, S. Vegiraju, C.C. Stoumpos, I. Spanopoulos et al., Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 140(1), 388–393 (2018). https://doi.org/10.1021/jacs.7b10898
- T. Yokoyama, T.-B. Song, D.H. Cao, C.C. Stoumpos, S. Aramaki et al., The origin of lower hole carrier concentration in methylammonium tin halide films grown by a vapor-assisted solution process. ACS Energy Lett. 2(1), 22–28 (2016). https://doi.org/10.1021/acsenergylett.6b00513
- S.A. Moyez, S. Roy, Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. J. Nanopart. Res. 20(1), 5–17 (2017). https://doi.org/10.1007/s11051-017-4108-z
- N. Wang, Y. Zhou, M.-G. Ju, H.F. Garces, T. Ding et al., Heterojunction-depleted lead-free perovskite solar cells with coarse-grained b-γ-CsSnI3 thin films. Adv. Energy Mater. 6(24), 1601130–1601139 (2016). https://doi.org/10.1002/aenm.201601130
- T.B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao et al., Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139(2), 836–842 (2017). https://doi.org/10.1021/jacs.6b10734
- B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj et al., High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv. Mater. 29(2), 1604744–1604751 (2017). https://doi.org/10.1002/adma.201604744
- S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8(4), 1702019–1702028 (2018). https://doi.org/10.1002/aenm.201702019
- L.-J. Chen, C.-R. Lee, Y.-J. Chuang, Z.-H. Wu, C. Chen, Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. J. Phys. Chem. Lett. 7(24), 5028–5035 (2016). https://doi.org/10.1021/acs.jpclett.6b02344
- J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran et al., Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv. Mater. 29(23), 1606964–1606970 (2017). https://doi.org/10.1002/adma.201606964
- D. Moghe, L. Wang, C.J. Traverse, A. Redoute, M. Sponseller et al., All vapor-deposited lead-free doped CsSnBr 3 planar solar cells. Nano Energy 28, 469–474 (2016). https://doi.org/10.1016/j.nanoen.2016.09.009
- C. Ran, J. Xi, W. Gao, F. Yuan, T. Lei et al., Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells. ACS Energy Lett. 3(3), 713–721 (2018). https://doi.org/10.1021/acsenergylett.8b00085
- Y. Yu, D. Zhao, C.R. Grice, W. Meng, C. Wang et al., Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Adv. 6(93), 90248–90254 (2016). https://doi.org/10.1039/c6ra19476a
- C.-M. Tsai, N. Mohanta, C.-Y. Wang, Y.-P. Lin, Y.-W. Yang et al., Formation of stable tin perovskites co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angew. Chem. Int. Ed. 56(44), 13819–13823 (2017). https://doi.org/10.1002/anie.201707037
- W. Li, J. Li, J. Li, J. Fan, Y. Maib et al., Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4, 17104–17110 (2016). https://doi.org/10.1039/c6ta08332c
- K. Chen, P. Wu, W. Yang, R. Su, D. Luo et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006
- E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, C.-Y. Hao et al., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11(9), 1–12 (2018). https://doi.org/10.1039/C8EE00956B
- X.Y. Meng, Y.B. Wang, J.B. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4, 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007
- L.-C. Tang, C.-S. Chang, J.Y. Huang, Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J. Phys.: Condens. Matter 12(43), 9129–9143 (2000). https://doi.org/10.1088/0953-8984/12/43/303
- I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank et al., Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater. 1(2), 343–347 (2018). https://doi.org/10.1021/acsaem.8b00007
- M.F. Mostafa, R.D. Willett, Magnetic properties of ferrous chloride complexes with two-dimensional structures. Phys. Rev. B 4(7), 2213–2215 (1971). https://doi.org/10.1103/PhysRevB.4.2213
- S.N. Ruddlesden, P. Popper, New compounds of the K2NiF4 type. Acta Cryst. 10(8), 538–539 (1957). https://doi.org/10.1107/S0365110X57001929
- X.-P. Cui, K.-J. Jiang, J.-H. Huang, Q.-Q. Zhang, M.-J. Su et al., Cupric bromide hybrid perovskite heterojunction solar cells. Synth. Met. 209, 247–250 (2015). https://doi.org/10.1016/j.synthmet.2015.07.013
- X. Li, B. Li, J. Chang, B. Ding, S. Zheng et al., (C6H5CH2NH3)2CuBr 4: a lead-free, highly stable two-dimensional perovskite for solar cell applications. ACS Appl. Energy Mater. 1(6), 2709–2716 (2018). https://doi.org/10.1021/acsaem.8b00372
- M. Abulikemu, S. Ould-Chikh, X. Miao, E. Alarousu, B. Murali et al., Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A 4(32), 12504–12515 (2016). https://doi.org/10.1039/c6ta04657f
- R.L.Z. Hoye, R.E. Brandt, A. Osherov, V. Stevanović, S.D. Stranks et al., Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chem. Eur. J. 22(8), 2605–2610 (2016). https://doi.org/10.1002/chem.201505055
- Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang et al., High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64. J. Phys. Chem. Lett. 8(17), 4300–4307 (2017). https://doi.org/10.1021/acs.jpclett.7b01952
- C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong et al., Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V. J. Phys. Chem. Lett. 8(2), 394–400 (2017). https://doi.org/10.1021/acs.jpclett.6b02578
- M.B. Johansson, H. Zhu, E.M. Johansson, Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J. Phys. Chem. Lett. 7(17), 3467–3471 (2016). https://doi.org/10.1021/acs.jpclett.6b01452
- A.K. Baranwal, H. Masutani, H. Sugita, H. Kanda, S. Kanaya et al., Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Converg. 4(1), 26–39 (2017). https://doi.org/10.1186/s40580-017-0120-3
- M. Lyu, J.-H. Yun, M. Cai, Y. Jiao, P.V. Bernhardt et al., Organic-inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9(3), 692–702 (2016). https://doi.org/10.1007/s12274-015-0948-y
- S.S. Shin, O.P.C. Baena, O.C. Kurchin, O. Polizzotti, O.J. Yoo et al., Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics. Chem. Mater. 30(2), 336–343 (2018). https://doi.org/10.1021/acs.chemmater.7b03227
- S.M. Jain, D. Phuyal, M.L. Davies, M. Li, B. Philippe et al., An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49, 614–624 (2018). https://doi.org/10.1016/j.nanoen.2018.05.003
- F. Bai, Y. Hu, Y. Hu, T. Qiu, X. Miao et al., Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 184, 15–21 (2018). https://doi.org/10.1016/j.solmat.2018.04.032
- J.-C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1(1), 309–314 (2016). https://doi.org/10.1021/acsenergylett.6b00170
- P.C. Harikesh, H.K. Mulmudi, B. Ghosh, T.W. Goh, Y.T. Teng et al., Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater. 28(20), 7496–7504 (2016). https://doi.org/10.1021/acs.chemmater.6b03310
- C. Zuo, L. Ding, Lead-free perovskite materials (NH4)3Sb2IxBr 9–x. Angew. Chem. Int. Ed. 56(23), 6528–6532 (2017). https://doi.org/10.1002/anie.201702265
- F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao et al., Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140(3), 1019–1027 (2018). https://doi.org/10.1021/jacs.7b10739
- W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034
- T. Li, X. Wang, Y. Yan, D.B. Mitzi, Phase stability and electronic structure of prospective sb-based mixed sulfide and iodide 3D perovskite (CH3NH3)SbSI2. J. Phys. Chem. Lett. 9(14), 3829–3833 (2018). https://doi.org/10.1021/acs.jpclett.8b01641
- A. Antonio, Perovskite solar cells go lead free. Joule 1(4), 659–664 (2017). https://doi.org/10.1016/j.joule.2017.09.007
- Y. Cai, W. Xie, H. Ding, Y. Chen, T. Krishnamoorthy et al., Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. Chem. Mater. 29(18), 7740 (2017). https://doi.org/10.1021/acs.chemmater.7b02013
- A.E. Maughan, J.A. Kurzman, J.R. Neilson, Hybrid inorganic-organic materials with an optoelectronically active aromatic cation: (C7H7)2SnI6 and C7H7PbI3. Inorg. Chem. 54(1), 370–378 (2015). https://doi.org/10.1021/ic5025795
- M.M. Elsenety, A. Kaltzoglou, M. Antoniadou, I. Koutselas, A.G. Kontos et al., Synthesis, characterization and use of highly stable trimethyl sulfonium tin(IV) halide defect perovskites in dye sensitized solar cells. Polyhedron 150, 83–91 (2018). https://doi.org/10.1016/j.poly.2018.05.001
- X. Qiu, Y. Jiang, H. Zhang, Z. Qiu, S. Yuan et al., Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys. Status Solid. RRL 10(8), 587–591 (2016). https://doi.org/10.1002/pssr.201600166
- B. Lee, A. Krenselewski, S. Il-Baik, D. Seidman, R.P.H. Chang, Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6−xBrx, for potential solar cell applications. Sustain. Energy Fuels 1(4), 710–724 (2017). https://doi.org/10.1039/c7se00100b
- A.E. Maughan, A.M. Ganose, M.M. Bordelon, E.M. Miller, D.O. Scanlon et al., Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138(27), 8453–8464 (2016). https://doi.org/10.1021/jacs.6b03207
- M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm et al., Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
- E. Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, Highly stable, phase pure Cs2AgBiBr 6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5(37), 19972–19981 (2017). https://doi.org/10.1039/c7ta06816f
- C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo et al., The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr 6 film. Adv. Sci. 5(3), 1700759–1700766 (2018). https://doi.org/10.1002/advs.201700759
- W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang et al., High-quality Cs2AgBiBr 6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2@2% efficiency. ChemPhysChem 19(14), 1696–1700 (2018). https://doi.org/10.1002/cphc.201800346
- M. Pantaler, K.T. Cho, V. Queloz, I.G. Benito, C. Fettkenhauer et al., Hysteresis-free lead-free double perovskite solar cells by interface engineering. ACS Energy Lett. 3, 1781–1786 (2018). https://doi.org/10.1021/acsenergylett.8b00871
- M. Wang, P. Zeng, S. Bai, J. Gu, F. Li et al., High quality sequential-vapor-deposited Cs2AgBiBr 6 thin films for lead-free perovskite solar cells. Sol. RRL. 2(12), 1800217–1800222 (2018). https://doi.org/10.1002/solr.201800217
- P. Li, W. Gao, C. Ran, H. Dong, X. Hou et al., Post-treatment engineering of vacuum-deposited Cs2NaBiI6 double perovskite film for enhanced photovoltaic performance. Phys. Status Solidi A 216(23), 1900567–1900574 (2019). https://doi.org/10.1002/pssa.201900567
- H. Wang, Y. Zhao, Z. Wang, Y. Liu, Z. Zhao et al., Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation. Nano Energy 69, 104375–104383 (2020). https://doi.org/10.1016/j.nanoen.2019.104375
- C. Chen, T.H. Han, S. Tan, J. Xue, Y. Zhao et al., Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr 3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20(6), 4673–4680 (2020). https://doi.org/10.1021/acs.nanolett.0c01550
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761–2766 (2013). https://doi.org/10.1038/ncomms3761
J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim et al., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7(6), 486–491 (2013). https://doi.org/10.1038/nphoton.2013.80
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h
O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel et al., Perovskite solar cells employing organic charge-transport layers. Nat. Photon. 8(2), 128–132 (2013). https://doi.org/10.1038/nphoton.2013.341
W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
M. Sessolo, H.J. Bolink, Solar cells@ Perovskite solar cells join the major league. Science 350(6263), 917 (2015). https://doi.org/10.1126/science.aad5891
J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015). https://doi.org/10.1038/ncomms8081
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 46). Prog. Photovolt: Res. Appl. 23(7), 805–812 (2015). https://doi.org/10.1002/pip.2637
Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345(6194), 295–298 (2014). https://doi.org/10.1126/science.1254763
D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2013). https://doi.org/10.1038/nphoton.2013.342
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
Y. Chen, T. Chen, L. Dai, Layer-by-layer growth of CH3NH3PbI(3−x)Clx for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 27(6), 1053–1059 (2015). https://doi.org/10.1002/adma.201404147
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6420), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
J. Wang, Y. Liu, X. Chen, C. Chen, P. Chen et al., Functional metal oxides in perovskite solar cells. ChemPhysChem 20(20), 2580–2586 (2019). https://doi.org/10.1002/cphc.201900447
D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016). https://doi.org/10.1126/sciadv.1501170
K. Meng, S. Gao, L. Wu, G. Wang, X. Liu et al., Two-dimensional organic-inorganic hybrid perovskite photonic films. Nano Lett. 16(7), 4166–4173 (2016). https://doi.org/10.1021/acs.nanolett.6b01046
N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3(8), 682–689 (2018). https://doi.org/10.1038/s41560-018-0200-6
B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on methylammonium lead iodide based perovskites: Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1543–1547 (2015). https://doi.org/10.1021/acs.jpclett.5b00504
R. Wang, J. Wang, S. Tan, Y. Duan, Z.-K. Wang et al., Opportunities and challenges of lead-free perovskite optoelectronic devices. Trends in Chem. 1(4), 368–379 (2019). https://doi.org/10.1016/j.trechm.2019.04.004
F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016). https://doi.org/10.1021/acsenergylett.6b00499
Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan et al., Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005 (2017). https://doi.org/10.1002/adma.201605005
S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5(23), 11462–11482 (2017). https://doi.org/10.1039/c7ta00366h
P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(2), 6068–6073 (2014). https://doi.org/10.1021/cm503122j
S.F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh. Chem. 148(5), 795–826 (2017). https://doi.org/10.1007/s00706-017-1933-9
M. Lyu, J.-H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives. Adv. Energy Mater. 7(15), 1602512–1602537 (2017). https://doi.org/10.1002/aenm.201602512
W. Ming, H. Shi, M.-H. Du, Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3. J. Mater. Chem. A 4(13), 13852–13875 (2016). https://doi.org/10.1039/C6TA04685A
F. Hong, B. Saparov, W. Meng, Z. Xiao, D.B. Mitzi et al., Viability of lead-free perovskites with mixed chalcogen and halogen anions for photovoltaic applications. J. Phys. Chem. C 120(12), 6435–6441 (2016). https://doi.org/10.1021/acs.jpcc.6b00920
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–989 (2014). https://doi.org/10.1039/c3ee43822h
P. Sun, Q. Li, L. Yang, Z. Li, Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+. Nanoscale 8(3), 1503–1513 (2016). https://doi.org/10.1039/c5nr05337d
Y. Zhao, K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45(3), 655–689 (2016). https://doi.org/10.1039/c4cs00458b
N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin et al., Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6(3), 1501420–1501456 (2016). https://doi.org/10.1002/aenm.201501420
Y. Zhang, J. Yin, M.R. Parida, G.H. Ahmed, J. Pan et al., Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 8(1), 3173–3188 (2017). https://doi.org/10.1021/acs.jpclett.7b01381
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
D.E. Starr, G. Sadoughi, E. Handick, R.G. Wilks, J.H. Alsmeier et al., Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3−xClx layers: surface depletion and interface enrichment. Energy Environ. Sci. 8(5), 1609–1615 (2015). https://doi.org/10.1039/c5ee00403a
S. Dharani, H.A. Dewib, R.R. Prabhakarb, T. Baikieb, C. Shic et al., Incorporation of Cl in sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale 6(22), 13854–13860 (2014). https://doi.org/10.1039/C4NR04007D
W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner et al., Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142–6151 (2015). https://doi.org/10.1038/ncomms7142
J. Qing, H.-T. Chandran, Y.-H. Cheng, X.-K. Liu, H.-W. Li et al., Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces. 7(41), 23110–23116 (2015). https://doi.org/10.1021/acsami.5b06819
X. Lu, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo et al., Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28(39), 8663–8668 (2016). https://doi.org/10.1002/adma.201600771
M. Jiang, J. Wu, F. Lan, Q. Tao, D. Gao et al., Enhancing the performance of planar organo-lead halide perovskite solar cells by using a mixed halide source. J. Mater. Chem. A 3(3), 963–967 (2015). https://doi.org/10.1039/c4ta05373g
L. Huang, Z. Hu, G. Yue, J. Liu, X. Cui et al., CH3NH3PbI3−xClx films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Phys. Chem. Chem. Phys. 17(34), 22015–22022 (2015). https://doi.org/10.1039/c5cp03934g
T.G. Kim, S.W. Seo, H. Kwon, J. Hahn, J.W. Kim, Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. Phys. Chem. Chem. Phys. 17(37), 24342–24348 (2015). https://doi.org/10.1039/c5cp04207k
J. Albero, A.M. Asiri, H. Garcia, Influence of the composition of hybrid perovskites on their performance in solar cells. J. Mater. Chem. A 4(12), 4353–4364 (2016). https://doi.org/10.1039/c6ta00334f
B. Ghosh, S. Chakraborty, H. Wei, C. Guet, S. Li et al., Poor photovoltaic performance of Cs3Bi2I9: an insight through first-principles calculations. J. Phys. Chem. C 121(32), 17062–17081 (2017). https://doi.org/10.1021/acs.jpcc.7b03501
Y. Sun, J. Shi, J. Lian, W. Gao, M.L. Agiorgousis et al., Discovering lead-free perovskite solar materials with a split-anion approach. Nanoscale 8(12), 6284–6290 (2016). https://doi.org/10.1039/c5nr04310g
G.E. Eperon, C.E. Beck, H.J. Snaith, Cation exchange for thin film lead iodide perovskite interconversion. Mater. Horiz. 3(1), 63–71 (2016). https://doi.org/10.1039/c5mh00170f
J.H. Heo, S.H. Im, Highly reproducible, efficient hysteresis-less CH3NH3PbI3−xClx planar hybrid solar cells without requiring heat-treatment. Nanoscale 8(5), 2554–2560 (2016). https://doi.org/10.1039/c5nr08458j
T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007–15023 (2015). https://doi.org/10.1038/natrevmats.2015.7
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
N. Leblanc, N. Mercier, L. Zorina, S. Simonov, P. Auban-Senzier et al., Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide BiI3Cl2 polar chains and methylviologen dication. J. Am. Chem. Soc. 133(38), 14924–14927 (2011). https://doi.org/10.1021/ja206171s
W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, C. Pasquier, Thermally induced Bi(III) lone pair stereoactivity: ferroelectric phase transition and semiconducting properties of (MV)BiBr 5(MV = methylviologen). Chem. Mater. 21(18), 4099–4101 (2009). https://doi.org/10.1021/cm9016003
B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo et al., Bismuth based hybrid perovskites A3Bi2I9 (a: methylammonium or cesium) for solar cell application. Adv. Mater. 27(43), 6806–6813 (2015). https://doi.org/10.1002/adma.201501978
T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie et al., Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015). https://doi.org/10.1039/c5ta05741h
C.C. Stoumpos, L. Frazer, D.J. Clark, Y.S. Kim, S.H. Rhim et al., Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137(21), 6804–6819 (2015). https://doi.org/10.1021/jacs.5b01025
B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng et al., Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater. 27(16), 5622–5632 (2015). https://doi.org/10.1021/acs.chemmater.5b01989
D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen et al., Lead-free MA2CuClxBr 4–x hybrid perovskites. Inorg. Chem. 55(3), 1044–1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896
G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4(24), 4213–4216 (2013). https://doi.org/10.1021/jz4023865
J. Feng, B. Xiao, Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 5(7), 1278–1282 (2014). https://doi.org/10.1021/jz500480m
M.R. Filip, F. Giustino, Computational screening of homovalent lead substitution in organic-inorganic halide perovskites. J. Phys. Chem. C 120(1), 166–173 (2015). https://doi.org/10.1021/acs.jpcc.5b11845
Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31(47), 1803792–1803813 (2019). https://doi.org/10.1002/adma.201803792
P. Umari, E. Mosconi, F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467–4473 (2014). https://doi.org/10.1038/srep04467
F. Li, C. Zhang, J.H. Huang, H. Fan, H. Wang et al., A cation-exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angew. Chem. Int. Ed. 58(20), 6688–6692 (2019). https://doi.org/10.1002/anie.201902418
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photon. 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
T. Yokoyama, D.H. Cao, C.C. Stoumpos, T.B. Song, Y. Sato et al., Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J. Phys. Chem. Lett. 7(5), 776–782 (2016). https://doi.org/10.1021/acs.jpclett.6b00118
F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks et al., Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445–11452 (2015). https://doi.org/10.1021/jacs.5b06658
M. Weiss, J. Horn, C. Richter, D. Schlettwein, Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Phys. Status Solidi A 213(4), 975–981 (2016). https://doi.org/10.1002/pssa.201532594
S. Chen, A. Walsh, X.G. Gong, S.-H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25(11), 1522–1539 (2013). https://doi.org/10.1002/adma.201203146
M.C. Jung, S.R. Raga, Y. Qi, Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition. RSC Adv. 6(4), 2819–2825 (2016). https://doi.org/10.1039/c5ra21291j
D.E. Scaife, P.F. Weller, W.G. Fisher, Crystal preparation and properties of cesium tin(ii) trihalides. J. Solid State Chem. 9(3), 308–314 (1974). https://doi.org/10.1016/0022-4596(74)90088-7
Z. Chen, J.J. Wang, Y. Ren, C. Yu, K. Shum, Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 101(9), 093901–093904 (2012). https://doi.org/10.1063/1.4748888
D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie et al., Impact of anionic Br- substitution on open circuit voltage in lead free perovskite (CsSnI3−xBrx) solar cells. J. Phys. Chem. C 119(4), 1763–1767 (2015). https://doi.org/10.1021/jp5126624
Y. Zhou, H.F. Garces, B.S. Senturk, A.L. Ortiz, N.P. Padture, Roomtemperature “one-pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films andparticles. Mater. Lett. 110, 127–129 (2013). https://doi.org/10.1016/j.matlet.2013.08.011
S. Dharani, H.K. Mulmudi, N. Yantara, P.T. Thu-Trang, N.G. Park et al., High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale 6(3), 1675–1679 (2014). https://doi.org/10.1039/c3nr04857h
K. Shum, Z. Chen, J. Qureshi, C. Yu, J.J. Wang et al., Synthesis and characterization of CsSNi3 thin films. Appl. Phys. Lett. 96(22), 221903 (2010). https://doi.org/10.1063/1.3442511
I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas et al., CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134(20), 8579–8587 (2012). https://doi.org/10.1021/ja301539s
K.P. Marshall, R.I. Walton, R.A. Hatton, Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 3(21), 11631–11640 (2015). https://doi.org/10.1039/c5ta02950c
L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. 5(2), 1700331–1700364 (2018). https://doi.org/10.1002/advs.201700331
S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye et al., Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12. Adv. Sci. 4(11), 1700204–1700210 (2017). https://doi.org/10.1002/advs.201700204
W. Ke, C.C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos et al., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3(8), e1701293–e1701301 (2017). https://doi.org/10.1126/sciadv.1701293
K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 16178–16186 (2016). https://doi.org/10.1038/nenergy.2016.178
M. Zhang, M. Lyu, J.H. Yun, M. Noori, X. Zhou et al., Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 9(6), 1570–1577 (2016). https://doi.org/10.1007/s12274-016-1051-8
R.L. Milot, G.E. Eperon, T. Green, H.J. Snaith, M.B. Johnston et al., Radiative monomolecular recombination boosts amplified spontaneous emission in HC(NH2)2SnI3 perovskite films. J. Phys. Chem. Lett. 7(20), 4178–4184 (2016). https://doi.org/10.1021/acs.jpclett.6b02030
Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. 55(10), 3447–3450 (2016). https://doi.org/10.1002/anie.201511792
D.B. Mitzi, K. Liang, Synthesis, resistivity, and thermal properties of the cubic perovskite NH2CH5NH2SnI3 and related systems. J. Solid State Chem. 134(2), 376–381 (1997). https://doi.org/10.1006/jssc.1997.7593
Z. Zhu, C.C. Chueh, N. Li, C. Mao, A.K.-Y. Jen, Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv. Mater. 30(6), 1703800–1703808 (2018). https://doi.org/10.1002/adma.201703800
W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 622. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
W. Ke, C.C. Stoumpos, J.L. Logsdon, M.R. Wasielewski, Y. Yan et al., Tio2-zns cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138(45), 14998–15003 (2016). https://doi.org/10.1021/jacs.6b08790
F. Wang, J. Ma, F. Xie, L. Li, J. Chen et al., Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv. Funct. Mater. 26(20), 3417–3423 (2016). https://doi.org/10.1002/adfm.201505127
T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong et al., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k
F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2(10), 1870217 (2018). https://doi.org/10.1002/solr.201870217
Z. Lin, C. Liu, G. Liu, J. Yang, X. Duan et al., Efficient inverted tin-based perovskite solar cells via bidentate coordination effect of 8-Hydroxyquinoline. Chem. Commun. 56(28), 4007–4010 (2020). https://doi.org/10.1039/d0cc01106a
J. Cao, Q. Tai, P. You, G. Tang, T. Wang et al., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A 7(46), 26580–26585 (2019). https://doi.org/10.1039/c9ta08679j
T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base. Sci. China Chem. 63(1), 107–115 (2019). https://doi.org/10.1007/s11426-019-9653-8
X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923
M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016). https://doi.org/10.1126/science.aah5557
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(ii) iodide. J. Am. Chem. Soc. 137(27), 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
W. Ke, C.C. Stoumpos, I. Spanopoulos, L. Mao, M. Chen et al., Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites. J. Am. Chem. Soc. 139(41), 14800–14806 (2017). https://doi.org/10.1021/jacs.7b09018
W. Ke, C.C. Stoumpos, I. Spanopoulos, M. Chen, M.R. Wasielewski et al., Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells. ACS Energy Lett. 3(7), 1470–1476 (2018). https://doi.org/10.1021/acsenergylett.8b00687
X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016). https://doi.org/10.1126/science.aaf8060
F. Xu, T. Zhang, G. Li, Y. Zhao, Mixed cation hybrid lead halide perovskites with enhanced performance and stability. J. Mater. Chem. A 5(23), 11450–11461 (2017). https://doi.org/10.1039/c7ta00042a
H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. Arquer et al., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017). https://doi.org/10.1126/science.aai9081
W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
X. Liu, Z. Yang, C.C. Chueh, A. Rajagopal, S.T. Williams et al., Improved efficiency and stability of Pb-Sn binary perovskite solar cells by cs substitution. J. Mater. Chem. A 4(46), 17939–17945 (2016). https://doi.org/10.1039/c6ta07712a
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De Bastiani et al., Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17(8), 4759–4767 (2017). https://doi.org/10.1021/acs.nanolett.7b01475
Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng et al., Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2(7), 1571–1572 (2017). https://doi.org/10.1021/acsenergylett.7b00442
C.-M. Tsai, Y.-P. Lin, M.K. Pola, S. Narra, E. Jokar et al., Control of crystal structures and optical properties with hybrid formamidinium and 2-hydroxyethylammonium cations for mesoscopic carbon-electrode tin-based perovskite solar cells. ACS Energy Lett. 3(9), 2077–2085 (2018). https://doi.org/10.1021/acsenergylett.8b01046
E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31(2), e1804835 (2019). https://doi.org/10.1002/adma.201804835
D.H. Cao, C.C. Stoumpos, T. Yokoyama, J.L. Logsdon, T.-B. Song et al., Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett. 2(5), 982–990 (2017). https://doi.org/10.1021/acsenergylett.7b00202
K. Yao, X. Wang, Y. Xu, F. Li, L. Zhou, Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem. Mater. 28(9), 3131–3138 (2016). https://doi.org/10.1021/acs.chemmater.6b00711
C. Ma, C. Leng, Y. Ji, X. Wei, K. Sun et al., 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8(43), 18309–18314 (2016). https://doi.org/10.1039/c6nr04741f
F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu et al., 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2(12), 2732–2743 (2018). https://doi.org/10.1016/j.joule.2018.09.012
X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 1702498 (2018). https://doi.org/10.1002/aenm.201702498
A.Z. Chen, M. Shiu, J.H. Ma, M.R. Alpert, D. Zhang et al., Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9(1), 1336 (2018). https://doi.org/10.1038/s41467-018-03757-0
J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu et al., 2D intermediate suppression for efficient ruddlesden-popper (RP) phase lead-free perovskite solar cells. ACS Energy Lett. 4(7), 1513–1520 (2019). https://doi.org/10.1021/acsenergylett.9b00954
Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang et al., Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139(19), 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815
H. Xu, Y. Jiang, T. He, S. Li, H. Wang et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics. Adv. Funct. Mater. 29(47), 1807696 (2019). https://doi.org/10.1002/adfm.201807696
J. Wang, H. Shen, W. Li, S. Wang, J. Li et al., The role of chloride incorporation in lead-free 2D perovskite (BA)2SnI4: morphology, photoluminescence, phase transition, and charge transport. Adv. Sci. 6(5), 1802019 (2019). https://doi.org/10.1002/advs.201802019
M. Chen, M.G. Ju, M.Y. Hu, Z.H. Dai, Y. Hu et al., Lead-free dion-jacobson tin halide perovskites for photovoltaics. ACS Energy Lett. 4(1), 276–277 (2019). https://doi.org/10.1021/acsenergylett.8b02051
B.E. Cohen, Y. Li, Q. Meng, L. Etgar, Dion-jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett. 19(4), 2588–2597 (2019). https://doi.org/10.1021/acs.nanolett.9b00387
C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30(22), 1800710–1800715 (2018). https://doi.org/10.1002/adma.201800710
C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure-bandgap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56(1), 56–73 (2017). https://doi.org/10.1021/acs.inorgchem.6b02764
G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5(12), 4712–4715 (2014). https://doi.org/10.1039/c4sc02211d
X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang et al., Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11(1), 1245–1251 (2020). https://doi.org/10.1038/s41467-020-15078-2
C. Wang, F. Gu, Z. Zhao, H. Rao, Y. Qiu et al., Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11. Adv. Mater. 32(31), e1907623–e1907631 (2020). https://doi.org/10.1002/adma.201907623
F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous bandgap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094–8099 (2014). https://doi.org/10.1021/ja5033259
H.D. Kim, Y. Miyamoto, H. Kubota, T. Yamanari, H. Ohkita, Open-circuit voltage loss in CH3NH3SnI3 perovskite solar cells. Chem. Lett. 46, 253–256 (2017). https://doi.org/10.1246/cl.160994
T. Handa, T. Yamada, H. Kubota, S. Ise, Y. Miyamoto et al., Photocarrier recombination and injection dynamics in long-term stable lead-free CH3NH3SnI3 perovskite thin films and solar cells. J. Phys. Chem. C 121(30), 16158–16165 (2017). https://doi.org/10.1021/acs.jpcc.7b06199
W. Ke, P. Priyanka, S. Vegiraju, C.C. Stoumpos, I. Spanopoulos et al., Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 140(1), 388–393 (2018). https://doi.org/10.1021/jacs.7b10898
T. Yokoyama, T.-B. Song, D.H. Cao, C.C. Stoumpos, S. Aramaki et al., The origin of lower hole carrier concentration in methylammonium tin halide films grown by a vapor-assisted solution process. ACS Energy Lett. 2(1), 22–28 (2016). https://doi.org/10.1021/acsenergylett.6b00513
S.A. Moyez, S. Roy, Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. J. Nanopart. Res. 20(1), 5–17 (2017). https://doi.org/10.1007/s11051-017-4108-z
N. Wang, Y. Zhou, M.-G. Ju, H.F. Garces, T. Ding et al., Heterojunction-depleted lead-free perovskite solar cells with coarse-grained b-γ-CsSnI3 thin films. Adv. Energy Mater. 6(24), 1601130–1601139 (2016). https://doi.org/10.1002/aenm.201601130
T.B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao et al., Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139(2), 836–842 (2017). https://doi.org/10.1021/jacs.6b10734
B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj et al., High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv. Mater. 29(2), 1604744–1604751 (2017). https://doi.org/10.1002/adma.201604744
S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8(4), 1702019–1702028 (2018). https://doi.org/10.1002/aenm.201702019
L.-J. Chen, C.-R. Lee, Y.-J. Chuang, Z.-H. Wu, C. Chen, Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. J. Phys. Chem. Lett. 7(24), 5028–5035 (2016). https://doi.org/10.1021/acs.jpclett.6b02344
J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran et al., Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv. Mater. 29(23), 1606964–1606970 (2017). https://doi.org/10.1002/adma.201606964
D. Moghe, L. Wang, C.J. Traverse, A. Redoute, M. Sponseller et al., All vapor-deposited lead-free doped CsSnBr 3 planar solar cells. Nano Energy 28, 469–474 (2016). https://doi.org/10.1016/j.nanoen.2016.09.009
C. Ran, J. Xi, W. Gao, F. Yuan, T. Lei et al., Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells. ACS Energy Lett. 3(3), 713–721 (2018). https://doi.org/10.1021/acsenergylett.8b00085
Y. Yu, D. Zhao, C.R. Grice, W. Meng, C. Wang et al., Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Adv. 6(93), 90248–90254 (2016). https://doi.org/10.1039/c6ra19476a
C.-M. Tsai, N. Mohanta, C.-Y. Wang, Y.-P. Lin, Y.-W. Yang et al., Formation of stable tin perovskites co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angew. Chem. Int. Ed. 56(44), 13819–13823 (2017). https://doi.org/10.1002/anie.201707037
W. Li, J. Li, J. Li, J. Fan, Y. Maib et al., Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4, 17104–17110 (2016). https://doi.org/10.1039/c6ta08332c
K. Chen, P. Wu, W. Yang, R. Su, D. Luo et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006
E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, C.-Y. Hao et al., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11(9), 1–12 (2018). https://doi.org/10.1039/C8EE00956B
X.Y. Meng, Y.B. Wang, J.B. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4, 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007
L.-C. Tang, C.-S. Chang, J.Y. Huang, Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J. Phys.: Condens. Matter 12(43), 9129–9143 (2000). https://doi.org/10.1088/0953-8984/12/43/303
I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank et al., Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater. 1(2), 343–347 (2018). https://doi.org/10.1021/acsaem.8b00007
M.F. Mostafa, R.D. Willett, Magnetic properties of ferrous chloride complexes with two-dimensional structures. Phys. Rev. B 4(7), 2213–2215 (1971). https://doi.org/10.1103/PhysRevB.4.2213
S.N. Ruddlesden, P. Popper, New compounds of the K2NiF4 type. Acta Cryst. 10(8), 538–539 (1957). https://doi.org/10.1107/S0365110X57001929
X.-P. Cui, K.-J. Jiang, J.-H. Huang, Q.-Q. Zhang, M.-J. Su et al., Cupric bromide hybrid perovskite heterojunction solar cells. Synth. Met. 209, 247–250 (2015). https://doi.org/10.1016/j.synthmet.2015.07.013
X. Li, B. Li, J. Chang, B. Ding, S. Zheng et al., (C6H5CH2NH3)2CuBr 4: a lead-free, highly stable two-dimensional perovskite for solar cell applications. ACS Appl. Energy Mater. 1(6), 2709–2716 (2018). https://doi.org/10.1021/acsaem.8b00372
M. Abulikemu, S. Ould-Chikh, X. Miao, E. Alarousu, B. Murali et al., Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A 4(32), 12504–12515 (2016). https://doi.org/10.1039/c6ta04657f
R.L.Z. Hoye, R.E. Brandt, A. Osherov, V. Stevanović, S.D. Stranks et al., Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chem. Eur. J. 22(8), 2605–2610 (2016). https://doi.org/10.1002/chem.201505055
Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang et al., High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64. J. Phys. Chem. Lett. 8(17), 4300–4307 (2017). https://doi.org/10.1021/acs.jpclett.7b01952
C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong et al., Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V. J. Phys. Chem. Lett. 8(2), 394–400 (2017). https://doi.org/10.1021/acs.jpclett.6b02578
M.B. Johansson, H. Zhu, E.M. Johansson, Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells. J. Phys. Chem. Lett. 7(17), 3467–3471 (2016). https://doi.org/10.1021/acs.jpclett.6b01452
A.K. Baranwal, H. Masutani, H. Sugita, H. Kanda, S. Kanaya et al., Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures. Nano Converg. 4(1), 26–39 (2017). https://doi.org/10.1186/s40580-017-0120-3
M. Lyu, J.-H. Yun, M. Cai, Y. Jiao, P.V. Bernhardt et al., Organic-inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9(3), 692–702 (2016). https://doi.org/10.1007/s12274-015-0948-y
S.S. Shin, O.P.C. Baena, O.C. Kurchin, O. Polizzotti, O.J. Yoo et al., Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics. Chem. Mater. 30(2), 336–343 (2018). https://doi.org/10.1021/acs.chemmater.7b03227
S.M. Jain, D. Phuyal, M.L. Davies, M. Li, B. Philippe et al., An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49, 614–624 (2018). https://doi.org/10.1016/j.nanoen.2018.05.003
F. Bai, Y. Hu, Y. Hu, T. Qiu, X. Miao et al., Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 184, 15–21 (2018). https://doi.org/10.1016/j.solmat.2018.04.032
J.-C. Hebig, I. Kühn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 1(1), 309–314 (2016). https://doi.org/10.1021/acsenergylett.6b00170
P.C. Harikesh, H.K. Mulmudi, B. Ghosh, T.W. Goh, Y.T. Teng et al., Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem. Mater. 28(20), 7496–7504 (2016). https://doi.org/10.1021/acs.chemmater.6b03310
C. Zuo, L. Ding, Lead-free perovskite materials (NH4)3Sb2IxBr 9–x. Angew. Chem. Int. Ed. 56(23), 6528–6532 (2017). https://doi.org/10.1002/anie.201702265
F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao et al., Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140(3), 1019–1027 (2018). https://doi.org/10.1021/jacs.7b10739
W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961). https://doi.org/10.1063/1.1736034
T. Li, X. Wang, Y. Yan, D.B. Mitzi, Phase stability and electronic structure of prospective sb-based mixed sulfide and iodide 3D perovskite (CH3NH3)SbSI2. J. Phys. Chem. Lett. 9(14), 3829–3833 (2018). https://doi.org/10.1021/acs.jpclett.8b01641
A. Antonio, Perovskite solar cells go lead free. Joule 1(4), 659–664 (2017). https://doi.org/10.1016/j.joule.2017.09.007
Y. Cai, W. Xie, H. Ding, Y. Chen, T. Krishnamoorthy et al., Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. Chem. Mater. 29(18), 7740 (2017). https://doi.org/10.1021/acs.chemmater.7b02013
A.E. Maughan, J.A. Kurzman, J.R. Neilson, Hybrid inorganic-organic materials with an optoelectronically active aromatic cation: (C7H7)2SnI6 and C7H7PbI3. Inorg. Chem. 54(1), 370–378 (2015). https://doi.org/10.1021/ic5025795
M.M. Elsenety, A. Kaltzoglou, M. Antoniadou, I. Koutselas, A.G. Kontos et al., Synthesis, characterization and use of highly stable trimethyl sulfonium tin(IV) halide defect perovskites in dye sensitized solar cells. Polyhedron 150, 83–91 (2018). https://doi.org/10.1016/j.poly.2018.05.001
X. Qiu, Y. Jiang, H. Zhang, Z. Qiu, S. Yuan et al., Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys. Status Solid. RRL 10(8), 587–591 (2016). https://doi.org/10.1002/pssr.201600166
B. Lee, A. Krenselewski, S. Il-Baik, D. Seidman, R.P.H. Chang, Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6−xBrx, for potential solar cell applications. Sustain. Energy Fuels 1(4), 710–724 (2017). https://doi.org/10.1039/c7se00100b
A.E. Maughan, A.M. Ganose, M.M. Bordelon, E.M. Miller, D.O. Scanlon et al., Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138(27), 8453–8464 (2016). https://doi.org/10.1021/jacs.6b03207
M. Chen, M.-G. Ju, A.D. Carl, Y. Zong, R.L. Grimm et al., Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018). https://doi.org/10.1016/j.joule.2018.01.009
E. Greul, M.L. Petrus, A. Binek, P. Docampo, T. Bein, Highly stable, phase pure Cs2AgBiBr 6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5(37), 19972–19981 (2017). https://doi.org/10.1039/c7ta06816f
C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo et al., The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr 6 film. Adv. Sci. 5(3), 1700759–1700766 (2018). https://doi.org/10.1002/advs.201700759
W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang et al., High-quality Cs2AgBiBr 6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2@2% efficiency. ChemPhysChem 19(14), 1696–1700 (2018). https://doi.org/10.1002/cphc.201800346
M. Pantaler, K.T. Cho, V. Queloz, I.G. Benito, C. Fettkenhauer et al., Hysteresis-free lead-free double perovskite solar cells by interface engineering. ACS Energy Lett. 3, 1781–1786 (2018). https://doi.org/10.1021/acsenergylett.8b00871
M. Wang, P. Zeng, S. Bai, J. Gu, F. Li et al., High quality sequential-vapor-deposited Cs2AgBiBr 6 thin films for lead-free perovskite solar cells. Sol. RRL. 2(12), 1800217–1800222 (2018). https://doi.org/10.1002/solr.201800217
P. Li, W. Gao, C. Ran, H. Dong, X. Hou et al., Post-treatment engineering of vacuum-deposited Cs2NaBiI6 double perovskite film for enhanced photovoltaic performance. Phys. Status Solidi A 216(23), 1900567–1900574 (2019). https://doi.org/10.1002/pssa.201900567
H. Wang, Y. Zhao, Z. Wang, Y. Liu, Z. Zhao et al., Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation. Nano Energy 69, 104375–104383 (2020). https://doi.org/10.1016/j.nanoen.2019.104375
C. Chen, T.H. Han, S. Tan, J. Xue, Y. Zhao et al., Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr 3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano Lett. 20(6), 4673–4680 (2020). https://doi.org/10.1021/acs.nanolett.0c01550