Trapping and Driving Individual Charged Micro-particles in Fluid with an Electrostatic Device
Corresponding Author: Shengyong Xu
Nano-Micro Letters,
Vol. 8 No. 3 (2016), Article Number: 270-281
Abstract
A variety of micro-tweezers techniques, such as optical tweezers, magnetic tweezers, and dielectrophoresis technique, have been applied intensively in precise characterization of micro/nanoparticles and bio-molecules. They have contributed remarkably in better understanding of working mechanisms of individual sub-cell organelles, proteins, and DNA. In this paper, we present a controllable electrostatic device embedded in a microchannel, which is capable of driving, trapping, and releasing charged micro-particles suspended in microfluid, demonstrating the basic concepts of electrostatic tweezers. Such a device is scalable to smaller size and offers an alternative to currently used micro-tweezers for application in sorting, selecting, manipulating, and analyzing individual micro/nanoparticles. Furthermore, the system offers the potential in being combined with dielectrophoresis and other techniques to create hybrid micro-manipulation systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999). doi:10.1103/RevModPhys.71.463
- M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of bose-einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995). doi:10.1126/science.269.5221.198
- S. Chu, Cold atoms and quantum control. Nature 416(6877), 206–210 (2002). doi:10.1038/416206a
- S.T. Cundiff, J. Ye, Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003). doi:10.1103/RevModPhys.75.325
- S.A. Diddams, J.C. Bergquist, S.R. Jefferts, C.W. Oates, Standards of time and frequency at the outset of the 21st century. Science 306(5700), 1318–1324 (2004). doi:10.1126/science.1102330
- S. Chu, Laser manipulation of atoms and particles. Science 253(5022), 861–866 (1991). doi:10.1126/science.253.5022.861
- J. Ye, H.J. Kimble, H. Katori, Quantum state engineering and precision metrology using state-insensitive light traps. Science 320(5884), 1734–1738 (2008). doi:10.1126/science.1148259
- A. Ashkin, Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94(10), 4853–4860 (1997). doi:10.1073/pnas.94.10.4853
- W.M. Lee, X.C. Yuan, W.C. Cheong, Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett. 29(15), 1796–1798 (2004). doi:10.1364/ol.29.001796
- S. Sato, H. Inaba, Optical trapping and manipulation of microscopic particles and biological cells by laser beams. Opt. Quant. Electron. 28(1), 1–16 (1996). doi:10.1007/bf00578546
- M. Andersson, O. Axner, F. Almqvist, B.E. Uhlin, E. Fallman, Physical properties of biopolymers assessed by optical tweezers: Analysis of folding and refolding of bacterial pili. ChemPhysChem 9(2), 221–235 (2008). doi:10.1002/cphc.200700389
- K. Norregaard, L. Jauffred, K. Berg-Sorensen, L.B. Oddershede, Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014). doi:10.1039/c4cp00208c
- S. Seeger, S. Monajembashi, K.J. Hutter, G. Futterman, J. Wolfrum, K.O. Greulich, Application of laser optical tweezers in immunology and molecular-genetics. Cytometry 12(6), 497–504 (1991). doi:10.1002/cyto.990120606
- P. Ben-Abdallah, A.O. El Moctar, B. Ni, N. Aubry, P. Singh, Optical manipulation of neutral nanoparticles suspended in a microfluidic channel. J. Appl. Phys. 99(9), 094303 (2006). doi:10.1063/1.2191572
- W.H. Zhang, L.N. Huang, C. Santschi, O.J.F. Martin, Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10(3), 1006–1011 (2010). doi:10.1021/nl904168f
- S. Dash, S. Mohanty, Dielectrophoretic separation of micron and submicron particles: a review. Electrophoresis 35(18), 2656–2672 (2014). doi:10.1002/elps.201400084
- N. Lewpiriyawong, C. Yang, AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics 6(1), 012807 (2012). doi:10.1063/1.3682049
- N. Markarian, M. Yeksel, B. Khusid, K.R. Farmer, A. Acrivos, Particle motions and segregation in dielectrophoretic microfluidics. J. Appl. Phys. 94(6), 4160–4169 (2003). doi:10.1063/1.1600845
- H.A. Pohl, I. Hawk, Separation of living and dead cells by dielectrophoresis. Science 152(3722), 647–649 (1966). doi:10.1126/science.152.3722.647-a
- I.F. Cheng, H.-C. Chang, D. Hou, H.-C. Chang, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1(2), 021503 (2007). doi:10.1063/1.2723669
- R. Pethig, Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010). doi:10.1063/1.3456626
- C. Zhang, K. Khoshmanesh, A. Mitchell, K. Kalantar-zadeh, Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1), 401–420 (2010). doi:10.1007/s00216-009-2922-6
- W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531–540 (1990). doi:10.1103/RevModPhys.62.531
- N.D. Scielzo, R.M. Yee, P.F. Bertone, F. Buchinger, S.A. Caldwell et al., A novel approach to beta-delayed neutron spectroscopy using the beta-decay Paul trap. Nucl. Data Sheets 120, 70–73 (2014). doi:10.1016/j.nds.2014.07.009
- Y. Rondelez, G. Tresset, T. Nakashima, Y. Kato-Yamada, H. Fujita, S. Takeuchi, H. Noji, Highly coupled ATP synthesis by F-1-ATPase single molecules. Nature 433(7027), 773–777 (2005). doi:10.1038/nature03277
- I. De Vlaminck, C. Dekker, Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012). doi:10.1146/annurev-biophys-122311-100544
- C. Liu, T. Stakenborg, S. Peeters, L. Lagae, Cell manipulation with magnetic particles toward microfluidic cytometry. J. Appl. Phys. 105, 102014 (2009). doi:10.1063/1.3116091
- C. Bao, L. Chen, T. Wang, C. Lei, F. Tian, D. Cui, Y. Zhou, One step quick detection of cancer cell surface marker by integrated NiFe-based magnetic biosensing cell cultural chip. Nano-Micro Lett. 5(3), 213–222 (2013). doi:10.5101/nml.v5i3.p213-222
- L. Yu, H. Wu, B. Wu, Z. Wang, H. Cao, C. Fu, N. Jia, Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett. 6(3), 258–267 (2014). doi:10.5101/nml140028a
- T.R. Strick, G. Charvin, N.H. Dekker, J.F. Allemand, D. Bensimon, V. Croquette, Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation. C. R. Phys. 3(5), 595–618 (2002). doi:10.1016/s1631-0705(02)01347-6
- S.Y. Xu, W.Q. Sun, M. Zhang, J. Xu, L.M. Peng, Transmission electron microscope observation of a freestanding nanocrystal in a Coulomb potential well. Nanoscale 2(2), 248–253 (2010). doi:10.1039/b9nr00144a
- V.P. Oleshko, J.M. Howe, Are electron tweezers possible? Ultramicroscopy 111(11), 1599–1606 (2011). doi:10.1016/j.ultramic.2011.08.015
- V.P. Oleshko, J.M. Howe, Advances in imaging and electron physics, vol. 179 (Elsevier Academic Press Inc., San Diego, 2013), pp. 203–262. doi:10.1016/b978-0-12-407700-3.00003-x
- A.A. Kayani, K. Khoshmanesh, S.A. Ward, A. Mitchell, K. Kalantar-Zadeh, Optofluidics incorporating actively controlled micro- and nano-particles. Biomicrofluidics 6(3), 32 (2012). doi:10.1063/1.4736796
- K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, M.S. Strano, M. Pumera, S.L. Gras, Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25(32), 5086–5099 (2015). doi:10.1002/adfm.201500891
- J. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5(1), 66–80 (2013). doi:10.3786/nml.v5i1.p66-80
- I. Artsimovitch, M.N. Vassylyeva, D. Svetlov, V. Svetlov, A. Perederina, N. Igarashi, N. Matsugaki, S. Wakatsuki, T.H. Tahirov, D.G. Vassylyev, Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122(3), 351–363 (2005). doi:10.1016/j.cell.2005.07.014
- S.J. Benkovic, S. Hammes-Schiffer, A perspective on enzyme catalysis. Science 301(5637), 1196–1202 (2003). doi:10.1126/science.1085515
- M. Buck, W. Cannon, Specific binding of the transcription factor Sigma-54 to promoter DNA. Nature 358(6385), 422–424 (1992). doi:10.1038/358422a0
- F.C. Oberstrass, S.D. Auweter, M. Erat, Y. Hargous, A. Henning, P. Wenter, L. Reymond, B. Amir-Ahmady, S. Pitsch, D.L. Black, F.H.T. Allain, Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309(5743), 2054–2057 (2005). doi:10.1126/science.1114066
- S.J. Singer, G.L. Nicolson, Fluid mosaic model of structure of cell-membranes. Science 175(4023), 720–731 (1972). doi:10.1126/science.175.4023.720
- T.J. Yoo, O.A. Roholt, D. Pressman, Specific binding activity of isolated light chains of antibodies. Science 157(3789), 707–709 (1967). doi:10.1126/science.157.3789.707
- V. Zimarino, C. Wu, Induction of sequence-specific binding of drosophila heat-shoch activator protein without protein-synthesis. Nature 327(6124), 727–730 (1987). doi:10.1038/327727a0
- F. Avbelj, J. Moult, Role of electrostatic screening in determining protein main-chain conformation preferences. Biochemistry 34(3), 755–764 (1995). doi:10.1021/bi00003a008
- A.I. Popescu, Possible specificity of cellular interaction due to electrostatic forces. Electro- Magnetobiol. 14(2), 65–74 (1995). doi:10.3109/15368379509022546
- A.A. Kornyshev, S. Leikin, Theory of interaction between helical molecules. J. Chem. Phys. 107(9), 3656–3674 (1997). doi:10.1063/1.475320
- E. Seyrek, P.L. Dubin, J. Henriksen, Nonspecific electrostatic binding characteristics of the heparin-antithrombin interaction. Biopolymers 86(3), 249–259 (2007). doi:10.1002/bip.20731
- M.P. Singh, J. Stefko, J.A. Lumpkin, J. Rosenblatt, The effect of electrostatic charge interactions on release rate of gentamicin from collagen matrices. Pharm. Res. 12(8), 1205–1210 (1995). doi:10.1023/a:1016272212833
- S. Sabri, A. Pierres, A.M. Benoliel, P. Bongrand, Influence of surface charges on cell adhesion: difference between static and dynamic conditions. Biochem. Cell Biol. 73(7–8), 411–420 (1995). doi:10.1139/o95-048
- I. Rouzina, V.A. Bloomfield, Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. Biophys. Chem. 64(1–3), 139–155 (1997). doi:10.1016/s0301-4622(96)02231-4
- A.A. Kornyshev, S. Leikin, Electrostatic interaction between helical macromolecules in dense aggregates: an impetus for DNA poly- and mesomorphism. Proc. Natl. Acad. Sci. USA 95(23), 13579–13584 (1998). doi:10.1073/pnas.95.23.13579
- U. Sharma, R.S. Negin, J.D. Carbeck, Effects of cooperativity in proton binding on the net charge of proteins in charge ladders. J. Phys. Chem. B 107(19), 4653–4666 (2003). doi:10.1021/jp027780d
- H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000). doi:10.1093/nar/28.1.235
- J. Gruber, A. Zawaira, R. Saunders, C.P. Barrett, M.E.M. Noble, Computational analyses of the surface properties of protein-protein interfaces. Acta Crystallogr. D 63, 50–57 (2007). doi:10.1107/s0907444906046762
- P. Schaefer, D. Riccardi, Q. Cui, Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J. Chem. Phys. 123(1), 014905 (2005). doi:10.1063/1.1940047
- R.J. Zauhar, A. Varnek, A fast and space-efficient boundary element method for computing electrostatic and hydration effects in large molecules. J. Comput. Chem. 17(7), 864–877 (1996). doi:10.1002/(sici)1096-987x(199605)17:7<864:aid-jcc10>3.0.co;2-b
- M. Malinska, K.N. Jarzembska, A.M. Goral, A. Kutner, K. Wozniak, P.M. Dominiak, Sunitinib: from charge-density studies to interaction with proteins. Acta Crystallogr. D 70, 1257–1270 (2014). doi:10.1107/s1399004714002351
- M. Krishnan, N. Mojarad, P. Kukura, V. Sandoghdar, Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467(7316), 692–695 (2010). doi:10.1038/nature09404
- Q.W. Zhuang, W.Q. Sun, Y.L. Zheng, J.W. Xue, H.X. Liu, M. Chen, S.Y. Xu, A multilayered microfluidic system with functions for local electrical and thermal measurements. Microfluid. Nanofluid. 12(6), 963–970 (2012). doi:10.1007/s10404-011-0930-2
- J. Koo, C. Kleinstreuer, Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int. Commun. Heat Mass 32(9), 1111–1118 (2005). doi:10.1016/j.icheatmasstransfer.2005.05.014
- W.B. Russel, Brownian-motion of small particles suspended in liquids. Annu. Rev. Fluid Mech. 13, 425–455 (1981). doi:10.1146/annurev.fl.13.010181.002233
- R. Tadmor, E. Hernandez-Zapata, N.H. Chen, P. Pincus, J.N. Israelachvili, Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 35(6), 2380–2388 (2002). doi:10.1021/ma011893y
- A. Ajdari, Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75(4), 755–758 (1995). doi:10.1103/PhysRevLett.75.755
- C. Kan, C. Bo, W. Jiankang, Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Biomed. Microdevices 12(6), 959–966 (2010). doi:10.1007/s10544-010-9450-1
- G.M. Mala, D.Q. Li, Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow 20(2), 142–148 (1999). doi:10.1016/S0142-727X(98)10043-7
- Y. Demircan, E. Ozgur, H. Kulah, Dielectrophoresis: applications and future outlook in point of care. Electrophoresis 34(7), 1008–1027 (2013). doi:10.1002/elps.201200446
- W. Guan, J.H. Park, P.S. Krstic, M.A. Reed, Non-vanishing ponderomotive AC electrophoretic effect for particle trapping. Nanotechnology 22(24), 245103 (2011). doi:10.1088/0957-4484/22/24/245103
- C.-C. Chung, T. Glawdel, C.L. Ren, H.-C. Chang, Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures. J. Micromech. Microeng. 25(3), 035003 (2015). doi:10.1088/0960-1317/25/3/035003
- T.Z. Jubery, S.K. Srivastava, P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35(5), 691–713 (2014). doi:10.1002/elps.201300424
References
F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999). doi:10.1103/RevModPhys.71.463
M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of bose-einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995). doi:10.1126/science.269.5221.198
S. Chu, Cold atoms and quantum control. Nature 416(6877), 206–210 (2002). doi:10.1038/416206a
S.T. Cundiff, J. Ye, Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003). doi:10.1103/RevModPhys.75.325
S.A. Diddams, J.C. Bergquist, S.R. Jefferts, C.W. Oates, Standards of time and frequency at the outset of the 21st century. Science 306(5700), 1318–1324 (2004). doi:10.1126/science.1102330
S. Chu, Laser manipulation of atoms and particles. Science 253(5022), 861–866 (1991). doi:10.1126/science.253.5022.861
J. Ye, H.J. Kimble, H. Katori, Quantum state engineering and precision metrology using state-insensitive light traps. Science 320(5884), 1734–1738 (2008). doi:10.1126/science.1148259
A. Ashkin, Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94(10), 4853–4860 (1997). doi:10.1073/pnas.94.10.4853
W.M. Lee, X.C. Yuan, W.C. Cheong, Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett. 29(15), 1796–1798 (2004). doi:10.1364/ol.29.001796
S. Sato, H. Inaba, Optical trapping and manipulation of microscopic particles and biological cells by laser beams. Opt. Quant. Electron. 28(1), 1–16 (1996). doi:10.1007/bf00578546
M. Andersson, O. Axner, F. Almqvist, B.E. Uhlin, E. Fallman, Physical properties of biopolymers assessed by optical tweezers: Analysis of folding and refolding of bacterial pili. ChemPhysChem 9(2), 221–235 (2008). doi:10.1002/cphc.200700389
K. Norregaard, L. Jauffred, K. Berg-Sorensen, L.B. Oddershede, Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014). doi:10.1039/c4cp00208c
S. Seeger, S. Monajembashi, K.J. Hutter, G. Futterman, J. Wolfrum, K.O. Greulich, Application of laser optical tweezers in immunology and molecular-genetics. Cytometry 12(6), 497–504 (1991). doi:10.1002/cyto.990120606
P. Ben-Abdallah, A.O. El Moctar, B. Ni, N. Aubry, P. Singh, Optical manipulation of neutral nanoparticles suspended in a microfluidic channel. J. Appl. Phys. 99(9), 094303 (2006). doi:10.1063/1.2191572
W.H. Zhang, L.N. Huang, C. Santschi, O.J.F. Martin, Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10(3), 1006–1011 (2010). doi:10.1021/nl904168f
S. Dash, S. Mohanty, Dielectrophoretic separation of micron and submicron particles: a review. Electrophoresis 35(18), 2656–2672 (2014). doi:10.1002/elps.201400084
N. Lewpiriyawong, C. Yang, AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes. Biomicrofluidics 6(1), 012807 (2012). doi:10.1063/1.3682049
N. Markarian, M. Yeksel, B. Khusid, K.R. Farmer, A. Acrivos, Particle motions and segregation in dielectrophoretic microfluidics. J. Appl. Phys. 94(6), 4160–4169 (2003). doi:10.1063/1.1600845
H.A. Pohl, I. Hawk, Separation of living and dead cells by dielectrophoresis. Science 152(3722), 647–649 (1966). doi:10.1126/science.152.3722.647-a
I.F. Cheng, H.-C. Chang, D. Hou, H.-C. Chang, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1(2), 021503 (2007). doi:10.1063/1.2723669
R. Pethig, Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010). doi:10.1063/1.3456626
C. Zhang, K. Khoshmanesh, A. Mitchell, K. Kalantar-zadeh, Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396(1), 401–420 (2010). doi:10.1007/s00216-009-2922-6
W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531–540 (1990). doi:10.1103/RevModPhys.62.531
N.D. Scielzo, R.M. Yee, P.F. Bertone, F. Buchinger, S.A. Caldwell et al., A novel approach to beta-delayed neutron spectroscopy using the beta-decay Paul trap. Nucl. Data Sheets 120, 70–73 (2014). doi:10.1016/j.nds.2014.07.009
Y. Rondelez, G. Tresset, T. Nakashima, Y. Kato-Yamada, H. Fujita, S. Takeuchi, H. Noji, Highly coupled ATP synthesis by F-1-ATPase single molecules. Nature 433(7027), 773–777 (2005). doi:10.1038/nature03277
I. De Vlaminck, C. Dekker, Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012). doi:10.1146/annurev-biophys-122311-100544
C. Liu, T. Stakenborg, S. Peeters, L. Lagae, Cell manipulation with magnetic particles toward microfluidic cytometry. J. Appl. Phys. 105, 102014 (2009). doi:10.1063/1.3116091
C. Bao, L. Chen, T. Wang, C. Lei, F. Tian, D. Cui, Y. Zhou, One step quick detection of cancer cell surface marker by integrated NiFe-based magnetic biosensing cell cultural chip. Nano-Micro Lett. 5(3), 213–222 (2013). doi:10.5101/nml.v5i3.p213-222
L. Yu, H. Wu, B. Wu, Z. Wang, H. Cao, C. Fu, N. Jia, Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett. 6(3), 258–267 (2014). doi:10.5101/nml140028a
T.R. Strick, G. Charvin, N.H. Dekker, J.F. Allemand, D. Bensimon, V. Croquette, Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation. C. R. Phys. 3(5), 595–618 (2002). doi:10.1016/s1631-0705(02)01347-6
S.Y. Xu, W.Q. Sun, M. Zhang, J. Xu, L.M. Peng, Transmission electron microscope observation of a freestanding nanocrystal in a Coulomb potential well. Nanoscale 2(2), 248–253 (2010). doi:10.1039/b9nr00144a
V.P. Oleshko, J.M. Howe, Are electron tweezers possible? Ultramicroscopy 111(11), 1599–1606 (2011). doi:10.1016/j.ultramic.2011.08.015
V.P. Oleshko, J.M. Howe, Advances in imaging and electron physics, vol. 179 (Elsevier Academic Press Inc., San Diego, 2013), pp. 203–262. doi:10.1016/b978-0-12-407700-3.00003-x
A.A. Kayani, K. Khoshmanesh, S.A. Ward, A. Mitchell, K. Kalantar-Zadeh, Optofluidics incorporating actively controlled micro- and nano-particles. Biomicrofluidics 6(3), 32 (2012). doi:10.1063/1.4736796
K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, M.S. Strano, M. Pumera, S.L. Gras, Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25(32), 5086–5099 (2015). doi:10.1002/adfm.201500891
J. Chen, D. Chen, Y. Xie, T. Yuan, X. Chen, Progress of microfluidics for biology and medicine. Nano-Micro Lett. 5(1), 66–80 (2013). doi:10.3786/nml.v5i1.p66-80
I. Artsimovitch, M.N. Vassylyeva, D. Svetlov, V. Svetlov, A. Perederina, N. Igarashi, N. Matsugaki, S. Wakatsuki, T.H. Tahirov, D.G. Vassylyev, Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122(3), 351–363 (2005). doi:10.1016/j.cell.2005.07.014
S.J. Benkovic, S. Hammes-Schiffer, A perspective on enzyme catalysis. Science 301(5637), 1196–1202 (2003). doi:10.1126/science.1085515
M. Buck, W. Cannon, Specific binding of the transcription factor Sigma-54 to promoter DNA. Nature 358(6385), 422–424 (1992). doi:10.1038/358422a0
F.C. Oberstrass, S.D. Auweter, M. Erat, Y. Hargous, A. Henning, P. Wenter, L. Reymond, B. Amir-Ahmady, S. Pitsch, D.L. Black, F.H.T. Allain, Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309(5743), 2054–2057 (2005). doi:10.1126/science.1114066
S.J. Singer, G.L. Nicolson, Fluid mosaic model of structure of cell-membranes. Science 175(4023), 720–731 (1972). doi:10.1126/science.175.4023.720
T.J. Yoo, O.A. Roholt, D. Pressman, Specific binding activity of isolated light chains of antibodies. Science 157(3789), 707–709 (1967). doi:10.1126/science.157.3789.707
V. Zimarino, C. Wu, Induction of sequence-specific binding of drosophila heat-shoch activator protein without protein-synthesis. Nature 327(6124), 727–730 (1987). doi:10.1038/327727a0
F. Avbelj, J. Moult, Role of electrostatic screening in determining protein main-chain conformation preferences. Biochemistry 34(3), 755–764 (1995). doi:10.1021/bi00003a008
A.I. Popescu, Possible specificity of cellular interaction due to electrostatic forces. Electro- Magnetobiol. 14(2), 65–74 (1995). doi:10.3109/15368379509022546
A.A. Kornyshev, S. Leikin, Theory of interaction between helical molecules. J. Chem. Phys. 107(9), 3656–3674 (1997). doi:10.1063/1.475320
E. Seyrek, P.L. Dubin, J. Henriksen, Nonspecific electrostatic binding characteristics of the heparin-antithrombin interaction. Biopolymers 86(3), 249–259 (2007). doi:10.1002/bip.20731
M.P. Singh, J. Stefko, J.A. Lumpkin, J. Rosenblatt, The effect of electrostatic charge interactions on release rate of gentamicin from collagen matrices. Pharm. Res. 12(8), 1205–1210 (1995). doi:10.1023/a:1016272212833
S. Sabri, A. Pierres, A.M. Benoliel, P. Bongrand, Influence of surface charges on cell adhesion: difference between static and dynamic conditions. Biochem. Cell Biol. 73(7–8), 411–420 (1995). doi:10.1139/o95-048
I. Rouzina, V.A. Bloomfield, Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. Biophys. Chem. 64(1–3), 139–155 (1997). doi:10.1016/s0301-4622(96)02231-4
A.A. Kornyshev, S. Leikin, Electrostatic interaction between helical macromolecules in dense aggregates: an impetus for DNA poly- and mesomorphism. Proc. Natl. Acad. Sci. USA 95(23), 13579–13584 (1998). doi:10.1073/pnas.95.23.13579
U. Sharma, R.S. Negin, J.D. Carbeck, Effects of cooperativity in proton binding on the net charge of proteins in charge ladders. J. Phys. Chem. B 107(19), 4653–4666 (2003). doi:10.1021/jp027780d
H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000). doi:10.1093/nar/28.1.235
J. Gruber, A. Zawaira, R. Saunders, C.P. Barrett, M.E.M. Noble, Computational analyses of the surface properties of protein-protein interfaces. Acta Crystallogr. D 63, 50–57 (2007). doi:10.1107/s0907444906046762
P. Schaefer, D. Riccardi, Q. Cui, Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J. Chem. Phys. 123(1), 014905 (2005). doi:10.1063/1.1940047
R.J. Zauhar, A. Varnek, A fast and space-efficient boundary element method for computing electrostatic and hydration effects in large molecules. J. Comput. Chem. 17(7), 864–877 (1996). doi:10.1002/(sici)1096-987x(199605)17:7<864:aid-jcc10>3.0.co;2-b
M. Malinska, K.N. Jarzembska, A.M. Goral, A. Kutner, K. Wozniak, P.M. Dominiak, Sunitinib: from charge-density studies to interaction with proteins. Acta Crystallogr. D 70, 1257–1270 (2014). doi:10.1107/s1399004714002351
M. Krishnan, N. Mojarad, P. Kukura, V. Sandoghdar, Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467(7316), 692–695 (2010). doi:10.1038/nature09404
Q.W. Zhuang, W.Q. Sun, Y.L. Zheng, J.W. Xue, H.X. Liu, M. Chen, S.Y. Xu, A multilayered microfluidic system with functions for local electrical and thermal measurements. Microfluid. Nanofluid. 12(6), 963–970 (2012). doi:10.1007/s10404-011-0930-2
J. Koo, C. Kleinstreuer, Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int. Commun. Heat Mass 32(9), 1111–1118 (2005). doi:10.1016/j.icheatmasstransfer.2005.05.014
W.B. Russel, Brownian-motion of small particles suspended in liquids. Annu. Rev. Fluid Mech. 13, 425–455 (1981). doi:10.1146/annurev.fl.13.010181.002233
R. Tadmor, E. Hernandez-Zapata, N.H. Chen, P. Pincus, J.N. Israelachvili, Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 35(6), 2380–2388 (2002). doi:10.1021/ma011893y
A. Ajdari, Electro-osmosis on inhomogeneously charged surfaces. Phys. Rev. Lett. 75(4), 755–758 (1995). doi:10.1103/PhysRevLett.75.755
C. Kan, C. Bo, W. Jiankang, Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Biomed. Microdevices 12(6), 959–966 (2010). doi:10.1007/s10544-010-9450-1
G.M. Mala, D.Q. Li, Flow characteristics of water in microtubes. Int. J. Heat Fluid Flow 20(2), 142–148 (1999). doi:10.1016/S0142-727X(98)10043-7
Y. Demircan, E. Ozgur, H. Kulah, Dielectrophoresis: applications and future outlook in point of care. Electrophoresis 34(7), 1008–1027 (2013). doi:10.1002/elps.201200446
W. Guan, J.H. Park, P.S. Krstic, M.A. Reed, Non-vanishing ponderomotive AC electrophoretic effect for particle trapping. Nanotechnology 22(24), 245103 (2011). doi:10.1088/0957-4484/22/24/245103
C.-C. Chung, T. Glawdel, C.L. Ren, H.-C. Chang, Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures. J. Micromech. Microeng. 25(3), 035003 (2015). doi:10.1088/0960-1317/25/3/035003
T.Z. Jubery, S.K. Srivastava, P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35(5), 691–713 (2014). doi:10.1002/elps.201300424