Shadow-Assisted Sidewall Emission for Achieving Submicron Linewidth Light Source by Using Normal UV Photolithography
Corresponding Author: Chaoxing Wu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 228
Abstract
Micro light sources are crucial tools for studying the interactions between light and matter at the micro/nanoscale, encompassing diverse applications across multiple disciplines. Despite numerous studies on reducing the size of micro light sources and enhancing optical resolution, the efficient and simple fabrication of ultra-high-resolution micro light sources remains challenging due to its reliance on precise micro-nano processing technology and advanced processing equipment. In this study, a simple approach for the efficient fabrication of submicron light sources is proposed, namely shadow-assisted sidewall emission (SASE) technology. The SASE utilizes the widely adopted UV photolithography process, employing metal shadow modulation to precisely control the emission of light from polymer sidewalls, thereby obtaining photoluminescent light sources with submicron line widths. The SASE eliminates the need for complex and cumbersome manufacturing procedures. The effects of process parameters, including exposure dose, development time, and metal film thickness, on the linewidth of sources are investigated on detail. It is successfully demonstrated red, green, and blue submicron light sources. Finally, their potential application in the field of optical anti-counterfeiting is also demonstrated. We believe that the SASE proposed in this work provides a novel approach for the preparation and application of micro light sources.
Highlights:
1 The submicron light sources are realized only by the normal UV photolithography process, enabling the realization of submicron light sources with arbitrary patterns.
2 A novel and efficient method for the fabrication of submicron light sources is proposed, termed shadow-assisted sidewall emission.
3 The submicron light source fabricated by the shadow-assisted sidewall emission exhibits strong scalability and has been proved to be applicable in optical anti-counterfeiting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang et al., Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.1007/BF03353756
- L. Sortino, P.G. Zotev, S. Mignuzzi, J. Cambiasso, D. Schmidt et al., Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10(1), 5119 (2019). https://doi.org/10.1038/s41467-019-12963-3
- Y. Zhao, K.H. An, S. Chen, B. O’Connor, K.P. Pipe et al., Localized current injection and submicron organic light-emitting device on a pyramidal atomic force microscopy tip. Nano Lett. 7(12), 3645–3649 (2007). https://doi.org/10.1021/nl071883w
- B. Yang, G. Chen, A. Ghafoor, Y. Zhang, Y. Zhang et al., Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14(11), 693–699 (2020). https://doi.org/10.1038/s41566-020-0677-y
- L. Bian, H. Song, L. Peng, X. Chang, X. Yang et al., High-resolution single-photon imaging with physics-informed deep learning. Nat. Commun. 14(1), 5902 (2023). https://doi.org/10.1038/s41467-023-41597-9
- J. Chen, D. Li, Y. Sun, Y. Wang, Z. Zeng et al., Sub-micro organic light emitting diode arrays defined by tip-induced resist hollow structures. Appl. Surf. Sci. 638, 158033 (2023). https://doi.org/10.1016/j.apsusc.2023.158033
- S.V. Makarov, I.S. Sinev, V.A. Milichko, F.E. Komissarenko, D.A. Zuev et al., Nanoscale generation of white light for ultrabroadband nanospectroscopy. Nano Lett. 18(1), 535–539 (2018). https://doi.org/10.1021/acs.nanolett.7b04542
- K. Wang, Y. Liao, W. Li, J. Li, H. Su et al., Memory-electroluminescence for multiple action-potentials combination in bio-inspired afferent nerves. Nat. Commun. 15(1), 3505 (2024). https://doi.org/10.1038/s41467-024-47641-6
- K. Wang, W. Li, Y. Liao, J. Li, R. Chen et al., Electron oscillation-induced splitting electroluminescence from nano-LEDs for device-level encryption. Adv. Mater. 36(3), e2306065 (2024). https://doi.org/10.1002/adma.202306065
- T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione et al., Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9(1), 1 (2017). https://doi.org/10.1007/s40820-016-0103-7
- C.S. Wijesooriya, J.A. Peterson, P. Shrestha, E.J. Gehrmann, A.H. Winter et al., A photoactivatable BODIPY probe for localization-based super-resolution cellular imaging. Angew. Chem. Int. Ed. 57(39), 12685–12689 (2018). https://doi.org/10.1002/anie.201805827
- Y. Dai, M. Du, L. Huang, J. Zheng, L. Wei et al., Multimaterial glass fiber probe for deep neural stimulation and detection. Adv. Opt. Mater. 11(2), 2202184 (2023). https://doi.org/10.1002/adom.202202184
- K. Huang, J. Wu, Z. Chen, H. Xu, Z. Wu et al., Nanostructured high-performance thin-film transistors and phototransistors fabricated by a high-yield and versatile near-field nanolithography strategy. ACS Nano 13(6), 6618–6630 (2019). https://doi.org/10.1021/acsnano.9b00665
- J. Li, J. Qiu, B. Xie, W. Li, K. Wang et al., Light-emitting MOS junction for ultrahigh-resolution quantum dot displays. Nano Energy 120, 109105 (2024). https://doi.org/10.1016/j.nanoen.2023.109105
- J. Bae, Y. Shin, H. Yoo, Y. Choi, J. Lim et al., Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun. 13, 1862 (2022). https://doi.org/10.1038/s41467-022-29538-4
- F.A. Boroumand, P.W. Fry, D.G. Lidzey, Nanoscale conjugated-polymer light-emitting diodes. Nano Lett. 5(1), 67–71 (2005). https://doi.org/10.1021/nl048382k
- K.H. Chen, W. Wu, B.H. Chu, C.Y. Chang, J. Lin et al., UV excimer laser drilled high aspect ratio submicron via hole. Appl. Surf. Sci. 256(1), 183–186 (2009). https://doi.org/10.1016/j.apsusc.2009.07.105
- Y. Bi, J. Feng, Y. Liu, Y. Li, Y. Chen et al., Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. Sci. Rep. 4, 7108 (2014). https://doi.org/10.1038/srep07108
- C. Wei, B. Xu, M. Zhang, Z. Su, J. Gu et al., Highly ordered inkjet-printed quantum-dot thin films enable efficient and stable QLEDs with EQE exceeding 23%. eScience 4(3), 100227 (2024). https://doi.org/10.1016/j.esci.2023.100227
- C. Luo, Y. Ding, Z. Ren, C. Wu, Y. Huo et al., Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition. Light Sci. Appl. 13(1), 273 (2024). https://doi.org/10.1038/s41377-024-01601-3
- J. Zhao, L. Chen, D. Li, Z. Shi, P. Liu et al., Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 12(1), 4603 (2021). https://doi.org/10.1038/s41467-021-24931-x
- J. Park, J.H. Choi, K. Kong, J.H. Han, J.H. Park et al., Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15(6), 449–455 (2021). https://doi.org/10.1038/s41566-021-00783-1
- K.M. Song, M. Kim, H. Cho, H. Shin, G.Y. Kim et al., Noninvasive and direct patterning of high-resolution full-color quantum dot arrays by programmed microwetting. ACS Nano 16(10), 16598–16607 (2022). https://doi.org/10.1021/acsnano.2c06032
- Z. Gong, B. Guilhabert, Z. Chen, M.D. Dawson, Direct LED writing of submicron resist patterns: towards the fabrication of individually-addressable InGaN submicron stripe-shaped LED arrays. Nano Res. 7(12), 1849–1860 (2014). https://doi.org/10.1007/s12274-014-0545-5
- F. Chen, J. Bian, J. Hu, N. Sun, B. Yang et al., Mass transfer techniques for large-scale and high-density microLED arrays. Int. J. Extrem. Manuf. 4(4), 042005 (2022). https://doi.org/10.1088/2631-7990/ac92ee
- W. Chang, M. Choi, J. Kim, S. Cho, K. Whang, Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction. Appl. Surf. Sci. 240(1–4), 296–304 (2005). https://doi.org/10.1016/j.apsusc.2004.06.157
- E. Gu, H. Howard, A. Conneely, G.M. O’Connor, E.K. Illy et al., Microfabrication in free-standing gallium nitride using UV laser micromachining. Appl. Surf. Sci. 252(13), 4897–4901 (2006). https://doi.org/10.1016/j.apsusc.2005.07.117
- S. Zhou, X. Zhao, P. Du, Z. Zhang, X. Liu et al., Application of patterned sapphire substrate for III-nitride light-emitting diodes. Nanoscale 14, 4887 (2022). https://doi.org/10.1039/d1nr08221c
- Y. Fan, C. Wang, J. Sun, X. Peng, H. Tian et al., Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer. Int. J. Extrem. Manuf. 5(3), 035101 (2023). https://doi.org/10.1088/2631-7990/acd827
- D.-M. Geum, S.K. Kim, C.-M. Kang, S.-H. Moon, J. Kyhm et al., Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11(48), 23139–23148 (2019). https://doi.org/10.1039/c9nr04423j
- J.J. Rickard, I. Farrer, P.G. Oppenheimer, Tunable nanopatterning of conductive polymers via electrohydrodynamic lithography. ACS Nano 10(3), 3865–3870 (2016). https://doi.org/10.1021/acsnano.6b01246
- C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
- V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez et al., Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8, 14323 (2017). https://doi.org/10.1038/ncomms14323
- C. Tan, T. Ren, D. Qu, X. Shan, R. Lin et al., Maskless photolithography based on ultraviolet micro-LEDs and direct writing method for improving pattern resolution. Opt. Express 32(11), 18916–18930 (2024). https://doi.org/10.1364/OE.520809
- W. Guo, J. Chen, T. Ma, Z. Chen, M. Li et al., Direct photolithography patterning of quantum dot-polymer. Adv. Funct. Mater. 34(10), 2310338 (2024). https://doi.org/10.1002/adfm.A
References
Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang et al., Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.1007/BF03353756
L. Sortino, P.G. Zotev, S. Mignuzzi, J. Cambiasso, D. Schmidt et al., Enhanced light-matter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10(1), 5119 (2019). https://doi.org/10.1038/s41467-019-12963-3
Y. Zhao, K.H. An, S. Chen, B. O’Connor, K.P. Pipe et al., Localized current injection and submicron organic light-emitting device on a pyramidal atomic force microscopy tip. Nano Lett. 7(12), 3645–3649 (2007). https://doi.org/10.1021/nl071883w
B. Yang, G. Chen, A. Ghafoor, Y. Zhang, Y. Zhang et al., Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14(11), 693–699 (2020). https://doi.org/10.1038/s41566-020-0677-y
L. Bian, H. Song, L. Peng, X. Chang, X. Yang et al., High-resolution single-photon imaging with physics-informed deep learning. Nat. Commun. 14(1), 5902 (2023). https://doi.org/10.1038/s41467-023-41597-9
J. Chen, D. Li, Y. Sun, Y. Wang, Z. Zeng et al., Sub-micro organic light emitting diode arrays defined by tip-induced resist hollow structures. Appl. Surf. Sci. 638, 158033 (2023). https://doi.org/10.1016/j.apsusc.2023.158033
S.V. Makarov, I.S. Sinev, V.A. Milichko, F.E. Komissarenko, D.A. Zuev et al., Nanoscale generation of white light for ultrabroadband nanospectroscopy. Nano Lett. 18(1), 535–539 (2018). https://doi.org/10.1021/acs.nanolett.7b04542
K. Wang, Y. Liao, W. Li, J. Li, H. Su et al., Memory-electroluminescence for multiple action-potentials combination in bio-inspired afferent nerves. Nat. Commun. 15(1), 3505 (2024). https://doi.org/10.1038/s41467-024-47641-6
K. Wang, W. Li, Y. Liao, J. Li, R. Chen et al., Electron oscillation-induced splitting electroluminescence from nano-LEDs for device-level encryption. Adv. Mater. 36(3), e2306065 (2024). https://doi.org/10.1002/adma.202306065
T. Limongi, L. Tirinato, F. Pagliari, A. Giugni, M. Allione et al., Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-Micro Lett. 9(1), 1 (2017). https://doi.org/10.1007/s40820-016-0103-7
C.S. Wijesooriya, J.A. Peterson, P. Shrestha, E.J. Gehrmann, A.H. Winter et al., A photoactivatable BODIPY probe for localization-based super-resolution cellular imaging. Angew. Chem. Int. Ed. 57(39), 12685–12689 (2018). https://doi.org/10.1002/anie.201805827
Y. Dai, M. Du, L. Huang, J. Zheng, L. Wei et al., Multimaterial glass fiber probe for deep neural stimulation and detection. Adv. Opt. Mater. 11(2), 2202184 (2023). https://doi.org/10.1002/adom.202202184
K. Huang, J. Wu, Z. Chen, H. Xu, Z. Wu et al., Nanostructured high-performance thin-film transistors and phototransistors fabricated by a high-yield and versatile near-field nanolithography strategy. ACS Nano 13(6), 6618–6630 (2019). https://doi.org/10.1021/acsnano.9b00665
J. Li, J. Qiu, B. Xie, W. Li, K. Wang et al., Light-emitting MOS junction for ultrahigh-resolution quantum dot displays. Nano Energy 120, 109105 (2024). https://doi.org/10.1016/j.nanoen.2023.109105
J. Bae, Y. Shin, H. Yoo, Y. Choi, J. Lim et al., Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun. 13, 1862 (2022). https://doi.org/10.1038/s41467-022-29538-4
F.A. Boroumand, P.W. Fry, D.G. Lidzey, Nanoscale conjugated-polymer light-emitting diodes. Nano Lett. 5(1), 67–71 (2005). https://doi.org/10.1021/nl048382k
K.H. Chen, W. Wu, B.H. Chu, C.Y. Chang, J. Lin et al., UV excimer laser drilled high aspect ratio submicron via hole. Appl. Surf. Sci. 256(1), 183–186 (2009). https://doi.org/10.1016/j.apsusc.2009.07.105
Y. Bi, J. Feng, Y. Liu, Y. Li, Y. Chen et al., Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. Sci. Rep. 4, 7108 (2014). https://doi.org/10.1038/srep07108
C. Wei, B. Xu, M. Zhang, Z. Su, J. Gu et al., Highly ordered inkjet-printed quantum-dot thin films enable efficient and stable QLEDs with EQE exceeding 23%. eScience 4(3), 100227 (2024). https://doi.org/10.1016/j.esci.2023.100227
C. Luo, Y. Ding, Z. Ren, C. Wu, Y. Huo et al., Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition. Light Sci. Appl. 13(1), 273 (2024). https://doi.org/10.1038/s41377-024-01601-3
J. Zhao, L. Chen, D. Li, Z. Shi, P. Liu et al., Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 12(1), 4603 (2021). https://doi.org/10.1038/s41467-021-24931-x
J. Park, J.H. Choi, K. Kong, J.H. Han, J.H. Park et al., Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15(6), 449–455 (2021). https://doi.org/10.1038/s41566-021-00783-1
K.M. Song, M. Kim, H. Cho, H. Shin, G.Y. Kim et al., Noninvasive and direct patterning of high-resolution full-color quantum dot arrays by programmed microwetting. ACS Nano 16(10), 16598–16607 (2022). https://doi.org/10.1021/acsnano.2c06032
Z. Gong, B. Guilhabert, Z. Chen, M.D. Dawson, Direct LED writing of submicron resist patterns: towards the fabrication of individually-addressable InGaN submicron stripe-shaped LED arrays. Nano Res. 7(12), 1849–1860 (2014). https://doi.org/10.1007/s12274-014-0545-5
F. Chen, J. Bian, J. Hu, N. Sun, B. Yang et al., Mass transfer techniques for large-scale and high-density microLED arrays. Int. J. Extrem. Manuf. 4(4), 042005 (2022). https://doi.org/10.1088/2631-7990/ac92ee
W. Chang, M. Choi, J. Kim, S. Cho, K. Whang, Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction. Appl. Surf. Sci. 240(1–4), 296–304 (2005). https://doi.org/10.1016/j.apsusc.2004.06.157
E. Gu, H. Howard, A. Conneely, G.M. O’Connor, E.K. Illy et al., Microfabrication in free-standing gallium nitride using UV laser micromachining. Appl. Surf. Sci. 252(13), 4897–4901 (2006). https://doi.org/10.1016/j.apsusc.2005.07.117
S. Zhou, X. Zhao, P. Du, Z. Zhang, X. Liu et al., Application of patterned sapphire substrate for III-nitride light-emitting diodes. Nanoscale 14, 4887 (2022). https://doi.org/10.1039/d1nr08221c
Y. Fan, C. Wang, J. Sun, X. Peng, H. Tian et al., Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer. Int. J. Extrem. Manuf. 5(3), 035101 (2023). https://doi.org/10.1088/2631-7990/acd827
D.-M. Geum, S.K. Kim, C.-M. Kang, S.-H. Moon, J. Kyhm et al., Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11(48), 23139–23148 (2019). https://doi.org/10.1039/c9nr04423j
J.J. Rickard, I. Farrer, P.G. Oppenheimer, Tunable nanopatterning of conductive polymers via electrohydrodynamic lithography. ACS Nano 10(3), 3865–3870 (2016). https://doi.org/10.1021/acsnano.6b01246
C. Zou, C. Chang, D. Sun, K.F. Böhringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez et al., Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon. Nat. Commun. 8, 14323 (2017). https://doi.org/10.1038/ncomms14323
C. Tan, T. Ren, D. Qu, X. Shan, R. Lin et al., Maskless photolithography based on ultraviolet micro-LEDs and direct writing method for improving pattern resolution. Opt. Express 32(11), 18916–18930 (2024). https://doi.org/10.1364/OE.520809
W. Guo, J. Chen, T. Ma, Z. Chen, M. Li et al., Direct photolithography patterning of quantum dot-polymer. Adv. Funct. Mater. 34(10), 2310338 (2024). https://doi.org/10.1002/adfm.A