Chip-Based High-Dimensional Optical Neural Network
Corresponding Author: Xingcai Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 221
Abstract
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems. Optical neural network (ONN) has the native advantages of high parallelization, large bandwidth, and low power consumption to meet the demand of big data. Here, we demonstrate the dual-layer ONN with Mach–Zehnder interferometer (MZI) network and nonlinear layer, while the nonlinear activation function is achieved by optical-electronic signal conversion. Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN. We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution. Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN. This work provides a high-performance architecture for future parallel high-capacity optical analog computing.
Highlights:
1 High-dimensional optical neural network is achieved by introducing an on-chip soliton microcomb source and wavelength division multiplexing technique.
2 The programmable electro-optic nonlinear layer and optical meshes promote the implementation of a multi-layer optical neural network.
3 Ultra-low coupling loss is realized between functional chips and fiber array, which is around 1 dB per facet.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
- L.G. Wright, T. Onodera, M.M. Stein, T. Wang, D.T. Schachter et al., Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022). https://doi.org/10.1038/s41586-021-04223-6
- X. Zhang, Nanowires Pin Neurons: a Nano “Moon Landing.” Matter 1, 560–562 (2019). https://doi.org/10.1016/j.matt.2019.08.011
- S. Wang, Z. Shen, Z. Shen, Y. Dong, Y. Li et al., Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021). https://doi.org/10.1016/j.nantod.2021.101152
- L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021). https://doi.org/10.1039/d1nr06195j
- B.J. Shastri, A.N. Tait, T.F. Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
- M. Burresi, Device-level photonic testing. Nat. Photonics 9, 8–9 (2015). https://doi.org/10.1038/nphoton.2014.313
- W. Bogaerts, D. Pérez, J. Capmany, D.A.B. Miller, J. Poon et al., Programmable photonic circuits. Nature 586, 207–216 (2020). https://doi.org/10.1038/s41586-020-2764-0
- Y. Meng, Y. Chen, L. Lu, Y. Ding, A. Cusano et al., Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 10, 235 (2021). https://doi.org/10.1038/s41377-021-00655-x
- T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie et al., Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w
- X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo et al., All-optical machine learning using diffractive deep neural networks. Science 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084
- R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund, Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032
- T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu et al., Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019). https://doi.org/10.1103/PhysRevLett.123.023901
- T. Wang, S.Y. Ma, L.G. Wright, T. Onodera, B.C. Richard et al., An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022). https://doi.org/10.1038/s41467-021-27774-8
- M. Spagnolo, J. Morris, S. Piacentini, M. Antesberger, F. Massa et al., Experimental photonic quantum memristor. Nat. Photonics 16, 318–323 (2022). https://doi.org/10.1038/s41566-022-00973-5
- Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones et al., Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). https://doi.org/10.1038/nphoton.2017.93
- J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
- F. Ashtiani, A.J. Geers, F. Aflatouni, An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022). https://doi.org/10.1038/s41586-022-04714-0
- H.H. Zhu, J. Zou, H. Zhang, Y.Z. Shi, S.B. Luo et al., Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13, 1044 (2022). https://doi.org/10.1038/s41467-022-28702-0
- Y. Zhang, Z. Lu, J. Wu, X. Lin, D. Jiang et al., Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat. Commun. 12, 6391 (2021). https://doi.org/10.1038/s41467-021-26730-w
- T. Yan, R. Yang, Z. Zheng, X. Lin, H. Xiong et al., All-optical graph representation learning using integrated diffractive photonic computing units. Sci. Adv. 8(24), abn7630 (2022). https://doi.org/10.1126/sciadv.abn7630
- Y. Meng, F. Hu, Z. Liu, P. Xie, Y. Shen et al., Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization. Opt. Express 27, 16425 (2019). https://doi.org/10.1364/OE.27.016425
- Y. Meng, Z. Liu, Z. Xie, R. Wang, T. Qi et al., Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res. 8, 564 (2020). https://doi.org/10.1364/PRJ.384449
- Y. Meng, S. Ye, Y. Shen, Q. Xiao, X. Fu et al., Waveguide engineering of graphene optoelectronics—modulators and polarizers. IEEE Photonics J. 10, 1–17 (2018). https://doi.org/10.1109/JPHOT.2018.2789894
- X. Ouyang, Y. Xu, M. Xian, Z. Feng, L. Zhu et al., Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics 15, 901–907 (2021). https://doi.org/10.1038/s41566-021-00880-1
- M. Kues, C. Reimer, P. Roztocki, L.R. Cortés, S. Sciara et al., On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017). https://doi.org/10.1038/nature22986
- C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso et al., Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351(6278), 1176–1180 (2016). https://doi.org/10.1126/science.aad8532
- J.S. Xu, M.H. Yung, X.Y. Xu, J.S. Tang, C.F. Li et al., Robust bidirectional links for photonic quantum networks. Sci. Adv. 2(1), 1500672 (2016). https://doi.org/10.1126/sciadv.1500672
- K. Maeda, T. Sasaki, M. Koashi, Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 10, 3140 (2019). https://doi.org/10.1038/s41467-019-11008-z
- J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner et al., Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 8, 375–380 (2014). https://doi.org/10.1038/nphoton.2014.57
- B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu et al., Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020). https://doi.org/10.1038/s41467-020-16265-x
- F. Wang, W. Wang, R. Niu, X. Wang, C. Zou et al., Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev. 14, 1900190 (2020). https://doi.org/10.1002/lpor.201900190
- T.J. Kippenberg, A.L. Gaeta, M. Lipson, M.L. Gorodetsky, Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018). https://doi.org/10.1126/science.aan8083
- J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li et al., Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). https://doi.org/10.1038/s41586-020-03070-1
- X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes et al., 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). https://doi.org/10.1038/s41586-020-03063-0
- B. Stern, X. Ji, Y. Okawachi, A.L. Gaeta, M. Lipson, Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018). https://doi.org/10.1038/s41586-018-0598-9
- B. Shen, L. Chang, J. Liu, H. Wang, Q.F. Yang et al., Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020). https://doi.org/10.1038/s41586-020-2358-x
- C. Xiang, J. Liu, J. Guo, L. Chang, R.N. Wang et al., Laser soliton microcombs heterogeneously integrated on silicon. Science 373(6550), 99–103 (2021). https://doi.org/10.1126/science.abh2076
- C.T. Phare, Y.H.D. Lee, J. Cardenas, M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015). https://doi.org/10.1038/nphoton.2015.122
- M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan et al., High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13, 359–364 (2019). https://doi.org/10.1038/s41566-019-0378-6
- Y. Liu, Z. Qiu, X. Ji, A. Lukashchuk, J. He et al., A photonic integrated circuit–based erbium-doped amplifier. Science 376(6599), 1309–1313 (2022). https://doi.org/10.1126/science.abo2631
- Y. Gao, H. Cansizoglu, K.G. Polat, S. Ghandiparsi, A. Kaya et al., Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 11, 301–308 (2017). https://doi.org/10.1038/nphoton.2017.37
- L. Chang, W. Xie, H. Shu, Q. Yang, B. Shen et al., Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020). https://doi.org/10.1038/s41467-020-15005-5
- H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie et al., Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022). https://doi.org/10.1038/s41586-022-04579-3
- M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar et al., Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 7(25), eabg3500 (2021). https://doi.org/10.1126/sciadv.abg3500
References
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
L.G. Wright, T. Onodera, M.M. Stein, T. Wang, D.T. Schachter et al., Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022). https://doi.org/10.1038/s41586-021-04223-6
X. Zhang, Nanowires Pin Neurons: a Nano “Moon Landing.” Matter 1, 560–562 (2019). https://doi.org/10.1016/j.matt.2019.08.011
S. Wang, Z. Shen, Z. Shen, Y. Dong, Y. Li et al., Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021). https://doi.org/10.1016/j.nantod.2021.101152
L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021). https://doi.org/10.1039/d1nr06195j
B.J. Shastri, A.N. Tait, T.F. Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021). https://doi.org/10.1038/s41566-020-00754-y
M. Burresi, Device-level photonic testing. Nat. Photonics 9, 8–9 (2015). https://doi.org/10.1038/nphoton.2014.313
W. Bogaerts, D. Pérez, J. Capmany, D.A.B. Miller, J. Poon et al., Programmable photonic circuits. Nature 586, 207–216 (2020). https://doi.org/10.1038/s41586-020-2764-0
Y. Meng, Y. Chen, L. Lu, Y. Ding, A. Cusano et al., Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 10, 235 (2021). https://doi.org/10.1038/s41377-021-00655-x
T. Zhou, X. Lin, J. Wu, Y. Chen, H. Xie et al., Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021). https://doi.org/10.1038/s41566-021-00796-w
X. Lin, Y. Rivenson, N.T. Yardimci, M. Veli, Y. Luo et al., All-optical machine learning using diffractive deep neural networks. Science 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084
R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund, Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X 9, 021032 (2019). https://doi.org/10.1103/PhysRevX.9.021032
T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu et al., Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123, 023901 (2019). https://doi.org/10.1103/PhysRevLett.123.023901
T. Wang, S.Y. Ma, L.G. Wright, T. Onodera, B.C. Richard et al., An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022). https://doi.org/10.1038/s41467-021-27774-8
M. Spagnolo, J. Morris, S. Piacentini, M. Antesberger, F. Massa et al., Experimental photonic quantum memristor. Nat. Photonics 16, 318–323 (2022). https://doi.org/10.1038/s41566-022-00973-5
Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones et al., Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). https://doi.org/10.1038/nphoton.2017.93
J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
F. Ashtiani, A.J. Geers, F. Aflatouni, An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022). https://doi.org/10.1038/s41586-022-04714-0
H.H. Zhu, J. Zou, H. Zhang, Y.Z. Shi, S.B. Luo et al., Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13, 1044 (2022). https://doi.org/10.1038/s41467-022-28702-0
Y. Zhang, Z. Lu, J. Wu, X. Lin, D. Jiang et al., Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat. Commun. 12, 6391 (2021). https://doi.org/10.1038/s41467-021-26730-w
T. Yan, R. Yang, Z. Zheng, X. Lin, H. Xiong et al., All-optical graph representation learning using integrated diffractive photonic computing units. Sci. Adv. 8(24), abn7630 (2022). https://doi.org/10.1126/sciadv.abn7630
Y. Meng, F. Hu, Z. Liu, P. Xie, Y. Shen et al., Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization. Opt. Express 27, 16425 (2019). https://doi.org/10.1364/OE.27.016425
Y. Meng, Z. Liu, Z. Xie, R. Wang, T. Qi et al., Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res. 8, 564 (2020). https://doi.org/10.1364/PRJ.384449
Y. Meng, S. Ye, Y. Shen, Q. Xiao, X. Fu et al., Waveguide engineering of graphene optoelectronics—modulators and polarizers. IEEE Photonics J. 10, 1–17 (2018). https://doi.org/10.1109/JPHOT.2018.2789894
X. Ouyang, Y. Xu, M. Xian, Z. Feng, L. Zhu et al., Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics 15, 901–907 (2021). https://doi.org/10.1038/s41566-021-00880-1
M. Kues, C. Reimer, P. Roztocki, L.R. Cortés, S. Sciara et al., On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017). https://doi.org/10.1038/nature22986
C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso et al., Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351(6278), 1176–1180 (2016). https://doi.org/10.1126/science.aad8532
J.S. Xu, M.H. Yung, X.Y. Xu, J.S. Tang, C.F. Li et al., Robust bidirectional links for photonic quantum networks. Sci. Adv. 2(1), 1500672 (2016). https://doi.org/10.1126/sciadv.1500672
K. Maeda, T. Sasaki, M. Koashi, Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 10, 3140 (2019). https://doi.org/10.1038/s41467-019-11008-z
J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner et al., Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 8, 375–380 (2014). https://doi.org/10.1038/nphoton.2014.57
B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu et al., Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020). https://doi.org/10.1038/s41467-020-16265-x
F. Wang, W. Wang, R. Niu, X. Wang, C. Zou et al., Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev. 14, 1900190 (2020). https://doi.org/10.1002/lpor.201900190
T.J. Kippenberg, A.L. Gaeta, M. Lipson, M.L. Gorodetsky, Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018). https://doi.org/10.1126/science.aan8083
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li et al., Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). https://doi.org/10.1038/s41586-020-03070-1
X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes et al., 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). https://doi.org/10.1038/s41586-020-03063-0
B. Stern, X. Ji, Y. Okawachi, A.L. Gaeta, M. Lipson, Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018). https://doi.org/10.1038/s41586-018-0598-9
B. Shen, L. Chang, J. Liu, H. Wang, Q.F. Yang et al., Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020). https://doi.org/10.1038/s41586-020-2358-x
C. Xiang, J. Liu, J. Guo, L. Chang, R.N. Wang et al., Laser soliton microcombs heterogeneously integrated on silicon. Science 373(6550), 99–103 (2021). https://doi.org/10.1126/science.abh2076
C.T. Phare, Y.H.D. Lee, J. Cardenas, M. Lipson, Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015). https://doi.org/10.1038/nphoton.2015.122
M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan et al., High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13, 359–364 (2019). https://doi.org/10.1038/s41566-019-0378-6
Y. Liu, Z. Qiu, X. Ji, A. Lukashchuk, J. He et al., A photonic integrated circuit–based erbium-doped amplifier. Science 376(6599), 1309–1313 (2022). https://doi.org/10.1126/science.abo2631
Y. Gao, H. Cansizoglu, K.G. Polat, S. Ghandiparsi, A. Kaya et al., Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 11, 301–308 (2017). https://doi.org/10.1038/nphoton.2017.37
L. Chang, W. Xie, H. Shu, Q. Yang, B. Shen et al., Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020). https://doi.org/10.1038/s41467-020-15005-5
H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie et al., Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022). https://doi.org/10.1038/s41586-022-04579-3
M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar et al., Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 7(25), eabg3500 (2021). https://doi.org/10.1126/sciadv.abg3500