Split-Ring Structured All-Inorganic Perovskite Photodetector Arrays for Masterly Internet of Things
Corresponding Author: Jinbo Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 3
Abstract
Photodetectors with long detection distances and fast response are important media in constructing a non-contact human–machine interface for the Masterly Internet of Things (MIT). All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance, making them one of the promising candidates for high-performance photodetectors, but a simple, low-cost and reliable fabrication technology is urgently needed. Here, a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning. This novel split-ring structure can capture the perovskite precursor droplet efficiently and achieve the uniform and compact deposition of CsPbBr3 films. Furthermore, our devices based on laterally conducting split-ring structured photodetectors possess outstanding performance, including the maximum responsivity of 1.44 × 105 mA W−1, a response time of 150 μs in 1.5 kHz and one-unit area < 4 × 10–2 mm2. Based on these split-ring photodetector arrays, we realized three-dimensional gesture detection with up to 100 mm distance detection and up to 600 mm s−1 speed detection, for low-cost, integrative, and non-contact human–machine interfaces. Finally, we applied this MIT to wearable and flexible digital gesture recognition watch panel, safe and comfortable central controller integrated on the car screen, and remote control of the robot, demonstrating the broad potential applications.
Highlights:
1 The split-ring topography is studied systematically from wettability, evaporation assembly to optoelectronic devices.
2 An efficient dual-function laser etching scheme has been developed to fabricate the split-ring lyophilic pattern and the lateral electrode array simultaneously.
3 A non-contact human-machine interface based on CsPbBr3 perovskite photodetector arrays has been successfully applied to wearable devices, automobile displays, robot remote control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- A. Chorots, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- J. Kim, A.S. Campbell, B.E.F. Avila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
- L. Lu, C. Jiang, G. Hu, J. Liu, B. Yang, Flexible noncontact sensing for human-machine interaction. Adv. Mater. 33(16), 2100218 (2021). https://doi.org/10.1002/adma.202100218
- S. An, H. Zhu, C. Guo, B. Fu, C. Song et al., Noncontact human-machine interaction based on hand-eesponsive infrared structural color. Nat. Commun. 13, 1446 (2022). https://doi.org/10.1038/s41467-022-29197-5
- Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
- Z. Li, W. Ran, Y. Yan, L. Li, Z. Lou et al., High-performance optical noncontact controlling system based on broadband PtTex /Si heterojunction photodetectors for human–machine interaction. InfoMat 4(1), e12261 (2021). https://doi.org/10.1002/inf2.12261
- Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30(5), 1907893 (2019). https://doi.org/10.1002/adfm.201907893
- C. Bao, W. Xu, J. Yang et al., Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3(3), 156–164 (2020). https://doi.org/10.1038/s41928-020-0382-3
- Y. Kim, K. Kim, D. Son, S. Bai, P. Teng et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-Inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
- X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang et al., Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 13(5), 5910–5919 (2019). https://doi.org/10.1021/acsnano.9b01734
- W. Ran, L. Wang, S. Zhao, D. Wang, R. Yin et al., An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 32(16), e1908419 (2020). https://doi.org/10.1002/adma.201908419
- C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, Advances in perovskite photodetectors. InfoMat 2(6), 1247–1256 (2020). https://doi.org/10.1002/inf2.12141
- H. Wang, S. Li, X. Liu, Z. Shi, X. Fang et al., Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33(7), e2003309 (2021). https://doi.org/10.1002/adma.202003309
- A. Breemen, R. Ollearo, S. Shanmugam, B. Peeters, L.C.J.M. Peters et al., A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nat. Electron. 4(11), 818–826 (2021). https://doi.org/10.1038/s41928-021-00662-1
- Z. Yang, M. Wang, H. Qiu, X. Yao, X. Lao et al., Engineering the exciton dissociation in quantum-confined 2D CsPbBr 3 nanosheet films. Adv. Funct. Mater. 28(14), 1705908 (2018). https://doi.org/10.1002/adfm.201705908
- J. Song, L. Xu, J. Li, J. Xue, Y. Dong et al., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4819 (2016). https://doi.org/10.1002/adma.201600225
- C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), e1803422 (2018). https://doi.org/10.1002/adma.201803422
- B. Li, R. Long, Y. Xia, Q. Mi, All-inorganic perovskite CsSnBr 3 as a thermally stable, free-carrier semiconductor. Angew. Chem. Int. Ed. 57(40), 13154–13158 (2018). https://doi.org/10.1002/anie.201807674
- M. Shoai, X. Zhang, X. Wang, H. Zhou, T. Xu et al., Directional growth of ultralong CsPbBr 3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 139(44), 15592–15595 (2017). https://doi.org/10.1021/jacs.7b08818
- W. Wu, X. Han, J. Li, X. Wang, Y. Zhang et al., Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33(9), e2006006 (2021). https://doi.org/10.1002/adma.202006006
- M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov et al., Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7(1), 167–172 (2016). https://doi.org/10.1021/acs.jpclett.5b02597
- Y. Lin, H. Zhang, J. Feng et al., Unclonable micro-texture with clonable micro-shape towards rapid, convenient, and low-cost fluorescent anti-counterfeiting labels. Small 17(30), e2100244 (2021). https://doi.org/10.1002/smll.202100244
- J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang et al., Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 18(12), 7628–7634 (2018). https://doi.org/10.1021/acs.nanolett.8b03209
- Z. Gu, Z. Zhou, Z. Huang, K. Wang, Z. Cai et al., Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics. Adv. Mater. 32(17), e1908006 (2020). https://doi.org/10.1002/adma.201908006
- W. Deng, H. Huang, H. Jin, W. Li, X. Chu et al., All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Adv. Opt. Mater. 7(6), 1801521 (2019). https://doi.org/10.1002/adom.201801521
- W. Deng, J. Jie, X. Xu, Y. Xiao, B. Lu et al., A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 32(16), e1908340 (2020). https://doi.org/10.1002/adma.201908340
- W. Wu, X. Wang, X. Han, Z. Yang, G. Gao et al., Flexible photodetector arrays based on patterned CH3NH3PbI3- xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 31(3), e1805913 (2019). https://doi.org/10.1002/adma.201805913
- L. Gu, M.M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed et al., 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28(44), 9713–9721 (2016). https://doi.org/10.1002/adma.201601603
- Y. Wang, C. Chen, T. Zou, L. Yan, C. Liu et al., Spin-on-patterning of Sn–Pb perovskite photodiodes on IGZO transistor arrays for fast active-matrix near-infrared imaging. Adv. Mater. Technol. 5(1), 1900752 (2019). https://doi.org/10.1002/admt.201900752
- W. Lee, J. Lee, H. Yun, J. Kim, J. Park et al., High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29(40), 1702902 (2017). https://doi.org/10.1002/adma.201702902
- L. Zeng, Q. Chen, Z. Zhang, D. Wu, H. Yuan et al., Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6(19), 1901134 (2019). https://doi.org/10.1002/advs.201901134
- A. Scholz, L. Zimmermann, U. Gengenbach, L. Koker, Z. Chen et al., Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors. Nat. Commun. 11, 5543 (2020). https://doi.org/10.1038/s41467-020-19324-5
- Q. Zhu, B. Li, D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
- X. Han, W. Wu, H. Chen, D. Peng, L. Qiu et al., Metal halide perovskite arrays, from construction to optoelectronic applications. Adv. Funct. Mater. 31(3), 2005230 (2020). https://doi.org/10.1002/adfm.202005230
- B. Jeong, H. Han, C. Park, Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), e2000597 (2020). https://doi.org/10.1002/adma.202000597
- X. Zhang, Strain control for halide perovskites. Matter 2(2), 294–296 (2020). https://doi.org/10.1016/j.matt.2020.01.010
- W. Feng, E. Ueda, P. Levkin, Droplet microarrays, from surface patterning to high-throughput applications. Adv. Mater. 30(20), e1706111 (2018). https://doi.org/10.1002/adma.201706111
- Y. Li, B.F. Liu, X. Zhang, Wettability-patterned microchip for emerging biomedical materials and technologies. Mater. Today 51, 273–293 (2021). https://doi.org/10.1016/j.mattod.2021.10.008
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- C.Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong et al., Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 15(19), e1900730 (2019). https://doi.org/10.1002/smll.201900730
- A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 7(7), 1901–1911 (2020). https://doi.org/10.1039/D0MH00537A
- X. Xu, W. Liu, Z. Ji, D. Hao, W. Yan et al., Large-area periodic organic–inorganic hybrid perovskite nanopyramid arrays for high-performance photodetector and image sensor applications. ACS Mater. Lett. 3(8), 1189–1196 (2021). https://doi.org/10.1021/acsmaterialslett.1c00298
- J. Jang, Y.G. Park, E. Cha, S. Ji, H. Hwang et al., 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Adv. Mater. 33(30), e2101093 (2021). https://doi.org/10.1002/adma.202101093
- B. Wang, C. Zhang, B. Zeng, C. Wu, C. Xie et al., Fabrication of addressable perovskite film arrays for high-performance photodetection and real-time image sensing application. J. Phys. Chem. Lett. 12(11), 2930–2936 (2021). https://doi.org/10.1021/acs.jpclett.1c00521
- Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin et al., High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31(28), 2100857 (2021). https://doi.org/10.1002/adfm.202100857
- K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam et al., Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr 3 quantum dots. Adv. Mater. 32(22), e2000004 (2020). https://doi.org/10.1002/adma.202000004
- X. Gong, M. Tong, Y. Xia, W. Xia, W. Cai et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009). https://doi.org/10.1126/science.1176706
- Y. Yang, R. Shi, Z. Lou, R. Chai, K. Jiang et al., Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 15(38), e1902801 (2019). https://doi.org/10.1002/smll.201902801
- F. Yuan, S. Liu, J. Zhou, S. Wang, Y. Wang et al., Smart touchless triboelectric nanogenerator towards safeguard and 3D morphological awareness. Nano Energy 86, 106071 (2021). https://doi.org/10.1016/j.nanoen.2021.106071
- S. Chen, Y. Wang, L. Yang, Y. Guo, M. Wang et al., Flexible and transparent sensors with hierarchically micro-nano texture for touchless sensing and controlling. Nano Energy 82, 105719 (2021). https://doi.org/10.1016/j.nanoen.2020.105719
- Q. Wang, H. Ding, X. Hu, X. Liang, M. Wang et al., A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition. Mater. Horiz. 7(10), 2673–2682 (2020). https://doi.org/10.1039/D0MH00862A
- M. Manjappa, Y. Srivastava, A. Solanki, A. Kumar, T.C. Sum et al., Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater. 29(32), 1605881 (2017). https://doi.org/10.1002/adma.201605881
- H.T. Chen, W. Padilla, J. Zide, A.C. Gossard, A.J. Taylor et al., Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006). https://doi.org/10.1038/nature05343
- A. Chanana, X. Liu, C. Zhang, A. Nahata, Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv. 4(5), 7353 (2018). https://doi.org/10.1126/sciadv.aar7353
References
D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim et al., Epidermal electronics. Science 333(6044), 838–843 (2011). https://doi.org/10.1126/science.1206157
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
A. Chorots, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15(9), 937–950 (2016). https://doi.org/10.1038/nmat4671
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
J. Kim, A.S. Campbell, B.E.F. Avila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng et al., Fully fabric-based triboelectric nanogenerators as self-powered human-machine interactive keyboards. Nano-Micro Lett. 13, 103 (2021). https://doi.org/10.1007/s40820-021-00621-7
L. Lu, C. Jiang, G. Hu, J. Liu, B. Yang, Flexible noncontact sensing for human-machine interaction. Adv. Mater. 33(16), 2100218 (2021). https://doi.org/10.1002/adma.202100218
S. An, H. Zhu, C. Guo, B. Fu, C. Song et al., Noncontact human-machine interaction based on hand-eesponsive infrared structural color. Nat. Commun. 13, 1446 (2022). https://doi.org/10.1038/s41467-022-29197-5
Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
Z. Li, W. Ran, Y. Yan, L. Li, Z. Lou et al., High-performance optical noncontact controlling system based on broadband PtTex /Si heterojunction photodetectors for human–machine interaction. InfoMat 4(1), e12261 (2021). https://doi.org/10.1002/inf2.12261
Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30(5), 1907893 (2019). https://doi.org/10.1002/adfm.201907893
C. Bao, W. Xu, J. Yang et al., Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3(3), 156–164 (2020). https://doi.org/10.1038/s41928-020-0382-3
Y. Kim, K. Kim, D. Son, S. Bai, P. Teng et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-Inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang et al., Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 13(5), 5910–5919 (2019). https://doi.org/10.1021/acsnano.9b01734
W. Ran, L. Wang, S. Zhao, D. Wang, R. Yin et al., An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 32(16), e1908419 (2020). https://doi.org/10.1002/adma.201908419
C. Li, Y. Ma, Y. Xiao, L. Shen, L. Ding, Advances in perovskite photodetectors. InfoMat 2(6), 1247–1256 (2020). https://doi.org/10.1002/inf2.12141
H. Wang, S. Li, X. Liu, Z. Shi, X. Fang et al., Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 33(7), e2003309 (2021). https://doi.org/10.1002/adma.202003309
A. Breemen, R. Ollearo, S. Shanmugam, B. Peeters, L.C.J.M. Peters et al., A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nat. Electron. 4(11), 818–826 (2021). https://doi.org/10.1038/s41928-021-00662-1
Z. Yang, M. Wang, H. Qiu, X. Yao, X. Lao et al., Engineering the exciton dissociation in quantum-confined 2D CsPbBr 3 nanosheet films. Adv. Funct. Mater. 28(14), 1705908 (2018). https://doi.org/10.1002/adfm.201705908
J. Song, L. Xu, J. Li, J. Xue, Y. Dong et al., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4819 (2016). https://doi.org/10.1002/adma.201600225
C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), e1803422 (2018). https://doi.org/10.1002/adma.201803422
B. Li, R. Long, Y. Xia, Q. Mi, All-inorganic perovskite CsSnBr 3 as a thermally stable, free-carrier semiconductor. Angew. Chem. Int. Ed. 57(40), 13154–13158 (2018). https://doi.org/10.1002/anie.201807674
M. Shoai, X. Zhang, X. Wang, H. Zhou, T. Xu et al., Directional growth of ultralong CsPbBr 3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 139(44), 15592–15595 (2017). https://doi.org/10.1021/jacs.7b08818
W. Wu, X. Han, J. Li, X. Wang, Y. Zhang et al., Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33(9), e2006006 (2021). https://doi.org/10.1002/adma.202006006
M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov et al., Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7(1), 167–172 (2016). https://doi.org/10.1021/acs.jpclett.5b02597
Y. Lin, H. Zhang, J. Feng et al., Unclonable micro-texture with clonable micro-shape towards rapid, convenient, and low-cost fluorescent anti-counterfeiting labels. Small 17(30), e2100244 (2021). https://doi.org/10.1002/smll.202100244
J. Xue, Z. Zhu, X. Xu, Y. Gu, S. Wang et al., Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 18(12), 7628–7634 (2018). https://doi.org/10.1021/acs.nanolett.8b03209
Z. Gu, Z. Zhou, Z. Huang, K. Wang, Z. Cai et al., Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics. Adv. Mater. 32(17), e1908006 (2020). https://doi.org/10.1002/adma.201908006
W. Deng, H. Huang, H. Jin, W. Li, X. Chu et al., All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Adv. Opt. Mater. 7(6), 1801521 (2019). https://doi.org/10.1002/adom.201801521
W. Deng, J. Jie, X. Xu, Y. Xiao, B. Lu et al., A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration. Adv. Mater. 32(16), e1908340 (2020). https://doi.org/10.1002/adma.201908340
W. Wu, X. Wang, X. Han, Z. Yang, G. Gao et al., Flexible photodetector arrays based on patterned CH3NH3PbI3- xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 31(3), e1805913 (2019). https://doi.org/10.1002/adma.201805913
L. Gu, M.M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed et al., 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28(44), 9713–9721 (2016). https://doi.org/10.1002/adma.201601603
Y. Wang, C. Chen, T. Zou, L. Yan, C. Liu et al., Spin-on-patterning of Sn–Pb perovskite photodiodes on IGZO transistor arrays for fast active-matrix near-infrared imaging. Adv. Mater. Technol. 5(1), 1900752 (2019). https://doi.org/10.1002/admt.201900752
W. Lee, J. Lee, H. Yun, J. Kim, J. Park et al., High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29(40), 1702902 (2017). https://doi.org/10.1002/adma.201702902
L. Zeng, Q. Chen, Z. Zhang, D. Wu, H. Yuan et al., Multilayered PdSe2/perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 6(19), 1901134 (2019). https://doi.org/10.1002/advs.201901134
A. Scholz, L. Zimmermann, U. Gengenbach, L. Koker, Z. Chen et al., Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors. Nat. Commun. 11, 5543 (2020). https://doi.org/10.1038/s41467-020-19324-5
Q. Zhu, B. Li, D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
X. Han, W. Wu, H. Chen, D. Peng, L. Qiu et al., Metal halide perovskite arrays, from construction to optoelectronic applications. Adv. Funct. Mater. 31(3), 2005230 (2020). https://doi.org/10.1002/adfm.202005230
B. Jeong, H. Han, C. Park, Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), e2000597 (2020). https://doi.org/10.1002/adma.202000597
X. Zhang, Strain control for halide perovskites. Matter 2(2), 294–296 (2020). https://doi.org/10.1016/j.matt.2020.01.010
W. Feng, E. Ueda, P. Levkin, Droplet microarrays, from surface patterning to high-throughput applications. Adv. Mater. 30(20), e1706111 (2018). https://doi.org/10.1002/adma.201706111
Y. Li, B.F. Liu, X. Zhang, Wettability-patterned microchip for emerging biomedical materials and technologies. Mater. Today 51, 273–293 (2021). https://doi.org/10.1016/j.mattod.2021.10.008
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808), 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
C.Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong et al., Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 15(19), e1900730 (2019). https://doi.org/10.1002/smll.201900730
A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horiz. 7(7), 1901–1911 (2020). https://doi.org/10.1039/D0MH00537A
X. Xu, W. Liu, Z. Ji, D. Hao, W. Yan et al., Large-area periodic organic–inorganic hybrid perovskite nanopyramid arrays for high-performance photodetector and image sensor applications. ACS Mater. Lett. 3(8), 1189–1196 (2021). https://doi.org/10.1021/acsmaterialslett.1c00298
J. Jang, Y.G. Park, E. Cha, S. Ji, H. Hwang et al., 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Adv. Mater. 33(30), e2101093 (2021). https://doi.org/10.1002/adma.202101093
B. Wang, C. Zhang, B. Zeng, C. Wu, C. Xie et al., Fabrication of addressable perovskite film arrays for high-performance photodetection and real-time image sensing application. J. Phys. Chem. Lett. 12(11), 2930–2936 (2021). https://doi.org/10.1021/acs.jpclett.1c00521
Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin et al., High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31(28), 2100857 (2021). https://doi.org/10.1002/adfm.202100857
K. Shen, H. Xu, X. Li, J. Guo, S. Sathasivam et al., Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr 3 quantum dots. Adv. Mater. 32(22), e2000004 (2020). https://doi.org/10.1002/adma.202000004
X. Gong, M. Tong, Y. Xia, W. Xia, W. Cai et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009). https://doi.org/10.1126/science.1176706
Y. Yang, R. Shi, Z. Lou, R. Chai, K. Jiang et al., Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 15(38), e1902801 (2019). https://doi.org/10.1002/smll.201902801
F. Yuan, S. Liu, J. Zhou, S. Wang, Y. Wang et al., Smart touchless triboelectric nanogenerator towards safeguard and 3D morphological awareness. Nano Energy 86, 106071 (2021). https://doi.org/10.1016/j.nanoen.2021.106071
S. Chen, Y. Wang, L. Yang, Y. Guo, M. Wang et al., Flexible and transparent sensors with hierarchically micro-nano texture for touchless sensing and controlling. Nano Energy 82, 105719 (2021). https://doi.org/10.1016/j.nanoen.2020.105719
Q. Wang, H. Ding, X. Hu, X. Liang, M. Wang et al., A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition. Mater. Horiz. 7(10), 2673–2682 (2020). https://doi.org/10.1039/D0MH00862A
M. Manjappa, Y. Srivastava, A. Solanki, A. Kumar, T.C. Sum et al., Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices. Adv. Mater. 29(32), 1605881 (2017). https://doi.org/10.1002/adma.201605881
H.T. Chen, W. Padilla, J. Zide, A.C. Gossard, A.J. Taylor et al., Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006). https://doi.org/10.1038/nature05343
A. Chanana, X. Liu, C. Zhang, A. Nahata, Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv. 4(5), 7353 (2018). https://doi.org/10.1126/sciadv.aar7353