Artificial Intelligence-Powered Materials Science
Corresponding Author: Xingcai Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 135
Abstract
The advancement of materials has played a pivotal role in the advancement of human civilization, and the emergence of artificial intelligence (AI)-empowered materials science heralds a new era with substantial potential to tackle the escalating challenges related to energy, environment, and biomedical concerns in a sustainable manner. The exploration and development of sustainable materials are poised to assume a critical role in attaining technologically advanced solutions that are environmentally friendly, energy-efficient, and conducive to human well-being. This review provides a comprehensive overview of the current scholarly progress in artificial intelligence-powered materials science and its cutting-edge applications. We anticipate that AI technology will be extensively utilized in material research and development, thereby expediting the growth and implementation of novel materials. AI will serve as a catalyst for materials innovation, and in turn, advancements in materials innovation will further enhance the capabilities of AI and AI-powered materials science. Through the synergistic collaboration between AI and materials science, we stand to realize a future propelled by advanced AI-powered materials.
Highlights:
1 A detailed exploration is provided of how artificial intelligence (AI) and machine learning techniques are applied across various aspects of materials science.
2 Major challenges in AI-driven materials science are evaluated.
3 Novel case studies are incorporated, demonstrating their impact on accelerating material development and discovery.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021). https://doi.org/10.1039/D1NR06195J
- Z. Li, S. Wang, Xin Toward artificial intelligence in catalysis. Nat. Catal. 1, 641–642 (2018). https://doi.org/10.1038/s41929-018-0150-1
- R. Batra, L. Song, R. Ramprasad, Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 6, 655–678 (2020). https://doi.org/10.1038/s41578-020-00255-y
- K. Honkala, A. Hellman, I.N. Remediakis, A. Logadottir, A. Carlsson et al., Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005). https://doi.org/10.1126/science.1106435
- R.M. Wentzcovitch, J.L. Martins, G.D. Price, Ab initio molecular dynamics with variable cell shape: application to MgSiO3. Phys. Rev. Lett. 70, 3947–3950 (1993). https://doi.org/10.1103/PhysRevLett.70.3947
- V. Oliveira, R. Vilar, Finite element simulation of pulsed laser ablation of titanium carbide. Appl. Surf. Sci. 253, 7810–7814 (2007). https://doi.org/10.1016/j.apsusc.2007.02.101
- Z. Wang, H. Zhang, J. Ren, X. Lin, T. Han et al., Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning. npj Comput. Mater. 7, 1–9 (2021). https://doi.org/10.1038/s41524-021-00494-9
- Y. Han, I. Ali, Z. Wang, J. Cai, S. Wu et al., Machine learning accelerates quantum mechanics predictions of molecular crystals. Phys. Rep. 934, 1–71 (2021). https://doi.org/10.1016/j.physrep.2021.08.002
- Z. Wang, Y. Han, X. Lin, J. Cai, S. Wu et al., An ensemble learning platform for the large-scale exploration of new double perovskites. ACS Appl. Mater. Interfaces 14, 717–725 (2022). https://doi.org/10.1021/acsami.1c18477
- K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, Walsh machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
- J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768 (2012). https://doi.org/10.1021/ci3001277
- A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012). https://doi.org/10.1093/nar/gkr777
- L.C. Blum, J.-L. Reymond, 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732–8733 (2009). https://doi.org/10.1021/ja902302h
- L. Ruddigkeit, R. van Deursen, L.C. Blum, J.L. Reymond, Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012). https://doi.org/10.1021/ci300415d
- A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B 58, 364–369 (2002). https://doi.org/10.1107/s0108768102006948
- S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak et al., The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10
- E.O. Pyzer-Knapp, K. Li, A. Aspuru-Guzik, Learning from the Harvard clean energy project: the use of neural networks to accelerate materials discovery. Adv. Funct. Mater. 25, 6495–6502 (2015). https://doi.org/10.1002/adfm.201501919
- Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee et al., Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: core MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019). https://doi.org/10.1021/acs.jced.9b00835
- F.H. Allen, R. Taylor, Research applications of the Cambridge structural database (CSD). Chem. Soc. Rev. 33, 463 (2004). https://doi.org/10.1039/b309040j
- I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff et al., New cubic perovskites for one- and two-photonwater splitting using the computational materials repository. Energy Environ. Sci. 5, 9034–9043 (2012). https://doi.org/10.1039/C2EE22341D
- Y. Wang, J. Xiao, T.O. Suzek, J. Zhang, J. Wang et al., PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37, W623–W633 (2009). https://doi.org/10.1093/nar/gkp456
- Z. Wang, Y. Han, J. Cai, A. Chen, J. Li, Vision for energy material design: a roadmap for integrated data-driven modeling. J. Energy Chem. 71, 56–62 (2022). https://doi.org/10.1016/j.jechem.2022.03.052
- M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021). https://doi.org/10.1088/2053-1583/ac1059
- J.R. Quinlan, C4.5: Programs for Machine Learning (Elsevier, 2014)
- S. Chen, G.I. Webb, L. Liu, X. Ma, A novel selective naïve Bayes algorithm. Knowl. Based Syst. 192, 105361 (2020). https://doi.org/10.1016/j.knosys.2019.105361
- V. Solovev, A. Tsivadze, G. Marcou, A. Varnek, Classification of metal binders by Naïve Bayes classifier on the base of molecular fragment descriptors and ensemble modeling. Mol. Inform. 38, 1900002 (2019). https://doi.org/10.1002/minf.201900002
- V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 113–126 (2004). https://doi.org/10.1016/S0893-6080(03)00169-2
- S.H. Lee, J. Mazumder, J. Park, S. Kim, Ranked feature-based laser material processing monitoring and defect diagnosis using k-NN and SVM. J. Manuf. Process. 55, 307–316 (2020). https://doi.org/10.1016/j.jmapro.2020.04.015
- S. Yagiz, E. Ghasemi, A.C. Adoko, Prediction of rock brittleness using genetic algorithm and p swarm optimization techniques. Geotech. Geol. Eng. 36, 3767–3777 (2018). https://doi.org/10.1007/s10706-018-0570-3
- T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964
- T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 21, 1000–1007 (2020). https://doi.org/10.1016/j.matpr.2019.10.051
- T. Sathish, S. Rangarajan, A. Muthuram, R.P. Kumar, Analysis and modelling of dissimilar materials welding based on K-nearest neighbour predictor. Mater. Today Proc. 21, 108–112 (2020). https://doi.org/10.1016/j.matpr.2019.05.371
- R.E. Schapire, Explaining AdaBoost, in Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik. ed. by B. Schölkopf, Z. Luo, V. Vovk (Springer, Berlin, 2013), pp.37–52. https://doi.org/10.1007/978-3-642-41136-6_5
- J. Li, C. Zhang, X. Zhang, H. He, W. Liu et al., Temperature compensation of piezo-resistive pressure sensor utilizing ensemble AMPSO-SVR based on improved Adaboost.RT. IEEE Access 8, 12413–12425 (2020). https://doi.org/10.1109/ACCESS.2020.2965150
- W.-Y. Loh, Classification and regression trees. Wires Data Min. Knowl. Discov. 1, 14–23 (2011). https://doi.org/10.1002/widm.8
- S. Kadali, S.M. Naushad, A. Radha-Rama-Devi, V.L. Bodiga, Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses. Mol. Cell. Biochem. 458, 27–37 (2019). https://doi.org/10.1007/s11010-019-03527-6
- T. Masuda, T. Nishio, J. Kataoka, M. Arimoto, A. Sano et al., ML-EM algorithm for dose estimation using PET in proton therapy. Phys. Med. Biol. 64, 175011 (2019). https://doi.org/10.1088/1361-6560/ab3276
- N.A. Karakatsanis, E. Fokou, C. Tsoumpas, Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects. Am. J. Nucl. Med. Mol. Imaging 5, 527–547 (2015). https://doi.org/10.1370/afm.825
- A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm. Pattern Recognit. 36, 451–461 (2003). https://doi.org/10.1016/S0031-3203(02)00060-2
- Y. Liu, J. Wu, Z. Wang, X.-G. Lu, M. Avdeev et al., Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater. 195, 454–467 (2020). https://doi.org/10.1016/j.actamat.2020.05.001
- T. Ueno, T.D. Rhone, Z. Hou, T. Mizoguchi, K. Tsuda, COMBO: an efficient Bayesian optimization library for materials science. Mater. Discov. 4, 18–21 (2016). https://doi.org/10.1016/j.md.2016.04.001
- E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain et al., AFLOW-ML: a RESTful API for machine-learning predictions of materials properties. Comput. Mater. Sci. 152, 134–145 (2018). https://doi.org/10.1016/j.commatsci.2018.03.075
- X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14, 221 (2022). https://doi.org/10.1007/s40820-022-00957-8
- P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker et al., Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016). https://doi.org/10.1038/npjcompumats.2016.31
- R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin et al., Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016). https://doi.org/10.1038/nmat4717
- D. Salley, G. Keenan, J. Grizou, A. Sharma, S. Martín et al., A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanops. Nat. Commun. 11, 2771 (2020). https://doi.org/10.1038/s41467-020-16501-4
- F. Mekki-Berrada, Z. Ren, T. Huang, W.K. Wong, F. Zheng et al., Two-step machine learning enables optimized nanop synthesis. npj Comput. Mater. 7, 55 (2021). https://doi.org/10.1038/s41524-021-00520-w
- M. Sajjan, S.H. Sureshbabu, S. Kais, Quantum machine-learning for eigenstate filtration in two-dimensional materials. J. Am. Chem. Soc. 143, 18426–18445 (2021). https://doi.org/10.1021/jacs.1c06246
- G.H. Gu, J. Noh, I. Kim, Y. Jung, Machine learning for renewable energy materials. J. Mater. Chem. A 7, 17096–17117 (2019). https://doi.org/10.1039/c9ta02356a
- M. Pardakhti, E. Moharreri, D. Wanik, S.L. Suib, R. Srivastava, Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). ACS Comb. Sci. 19, 640–645 (2017). https://doi.org/10.1021/acscombsci.7b00056
- M.Z. Aghaji, M. Fernandez, P.G. Boyd, T.D. Daff, T.K. Woo, Quantitative structure–property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/CH4 selectivity for methane purification. Eur. J. Inorg. Chem. 2016, 4505–4511 (2016). https://doi.org/10.1002/ejic.201600365
- M.-H. Lee, Machine learning for understanding the relationship between the charge transport mobility and electronic energy levels for n-type organic field-effect transistors. Adv. Electron. Mater. 5, 1900573 (2019). https://doi.org/10.1002/aelm.201900573
- F. Li, Y. Li, K.S. Novoselov, et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano-Micro Lett. 15, 35 (2023). https://doi.org/10.1007/s40820-022-00993-4
- Y. Wang, G. Zheng, N. Jiang, et al. Nature-inspired micropatterns. Nat. Rev. Method. Prim. 3, 68 (2023). https://doi.org/10.1038/s43586-023-00251-w
- A. Criminisi, Machine learning for medical images analysis. Med. Image Anal. 33, 91–93 (2016). https://doi.org/10.1016/j.media.2016.06.002
- H.-C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35, 1285–1298 (2016). https://doi.org/10.1109/TMI.2016.2528162
- K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering. Nat. Meth. 16, 687–694 (2019). https://doi.org/10.1038/s41592-019-0496-6
- S. Ekins, A.C. Puhl, K.M. Zorn, T.R. Lane, D.P. Russo et al., Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019). https://doi.org/10.1038/s41563-019-0338-z
- B. Burger, P.M. Maffettone, V.V. Gusev, C.M. Aitchison, Y. Bai et al., A mobile robotic chemist. Nature 583, 237–241 (2020). https://doi.org/10.1038/s41586-020-2442-2
- X. Ma, Z. Li, L.E.K. Achenie, H. Xin, Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015). https://doi.org/10.1021/acs.jpclett.5b01660
- M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013). https://doi.org/10.1126/science.1222453
- X. He, D.J. Singh, P. Boon-On, M.-W. Lee, L. Zhang, Dielectric behavior as a screen in rational searches for electronic materials: metal pnictide sulfosalts. J. Am. Chem. Soc. 140, 18058–18065 (2018). https://doi.org/10.1021/jacs.8b10685
- J. Wu, H. Yang, Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013). https://doi.org/10.1021/ar300359w
- Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015). https://doi.org/10.1039/C4CS00484A
- A.S. Bandarenka, M.T.M. Koper, Structural and electronic effects in heterogeneous electrocatalysis: toward a rational design of electrocatalysts. J. Catal. 308, 11–24 (2013). https://doi.org/10.1016/j.jcat.2013.05.006
- C.T. Campbell, Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990). https://doi.org/10.1146/annurev.pc.41.100190.004015
- W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012). https://doi.org/10.1021/cr300096b
- W.J.O.-T, Electronic structure and the properties of solids: the physics of the chemical bond. J. Mol. Struct. 71, 355 (1981). https://doi.org/10.1016/0022-2860(81)85136-8
- K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1
- R.S. Olson, R.J. Urbanowicz, P.C. Andrews, N.A. Lavender, L.C. Kidd, J.H. Moore, Automating biomedical data science through tree-based pipeline optimization, in Applications of Evolutionary Computation. ed. by G. Squillero, P. Burelli (Springer, Cham, 2016), pp.123–137. https://doi.org/10.1007/978-3-319-31204-0_9
- P.V. Cherepanov, M. Ashokkumar, D.V. Andreeva, Ultrasound assisted formation of Al-Ni electrocatalyst for hydrogen evolution. Ultrason. Sonochem. 23, 142–147 (2015). https://doi.org/10.1016/j.ultsonch.2014.10.012
- M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, M. Takata, Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J. Am. Chem. Soc. 133, 1150–1152 (2011). https://doi.org/10.1021/ja106285p
- H. Liao, C. Wei, J. Wang, A. Fisher, T. Sritharan et al., A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 7, 1701129 (2017). https://doi.org/10.1002/aenm.201701129
- M. Yamawaki, M. Ohnishi, S. Ju, J. Shiomi, Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Sci. Adv. 4, eaar4192 (2018). https://doi.org/10.1126/sciadv.aar4192
- B. Yuan, G.M. Guss, A.C. Wilson, S.P. Hau-Riege, P.J. DePond et al., Machine-learning-based monitoring of laser powder bed fusion. Adv. Mater. Technol. 3, 1800136 (2018). https://doi.org/10.1002/admt.201800136
- J. Wu, F. Xu, S. Li, P. Ma, X. Zhang et al., Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 31, e1802922 (2019). https://doi.org/10.1002/adma.201802922
- J. Meng, Z. Liu, X. Liu, W. Yang, L. Wang et al., Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. J. Mater. Sci. Technol. 66, 186–192 (2021). https://doi.org/10.1016/j.jmst.2020.07.007
- J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143, 15427–15439 (2021). https://doi.org/10.1021/jacs.1c07875
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
- Y. Zhu, P. Xu, X. Zhang, D. Wu, Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 51, 1377–1414 (2022). https://doi.org/10.1039/d1cs00871d
- X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14, 11104–11115 (2022). https://doi.org/10.1021/acsami.1c24231
- Z. Chen, Y. Sun, J. Wang, X. Zhou, X. Kong, J. Meng, X. Zhang. Dual-responsive triple-synergistic Fe-MOF for tumor theranostics. ACS Nano 17, 9003–9013 (2023). https://doi.org/10.1021/acsnano.2c10310
- C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser et al., Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012). https://doi.org/10.1038/nchem.1192
- R.L. Martin, C.M. Simon, B. Smit, M. Haranczyk, In silico design of porous polymer networks: high-throughput screening for methane storage materials. J. Am. Chem. Soc. 136, 5006–5022 (2014). https://doi.org/10.1021/ja4123939
- L.-C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher et al., In silico screening of carbon-capture materials. Nat. Mater. 11, 633–641 (2012). https://doi.org/10.1038/nmat3336
- M. Fernandez, N.R. Trefiak, T.K. Woo, Atomic property weighted radial distribution functions descriptors of metal–organic frameworks for the prediction of gas uptake capacity. J. Phys. Chem. C 117, 14095–14105 (2013). https://doi.org/10.1021/jp404287t
- M. Fernandez, T.K. Woo, C.E. Wilmer, R.Q. Snurr, Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks. J. Phys. Chem. C 117, 7681–7689 (2013). https://doi.org/10.1021/jp4006422
- P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny et al., Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). https://doi.org/10.1038/nature17439
- D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 (2022). https://doi.org/10.1007/s40820-021-00771-8
- H. Liu, H. Li, Y. Wang, et al. Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE). Nano Lett. 24, 16221–16230 (2024). https://doi.org/10.1021/acs.nanolett.4c02474
- M.S. Chowdhury, X. Zhang, L. Amini, P. Dey, A.K. Singh et al., Functional surfactants for molecular fishing, capsule creation, and single-cell gene expression. Nano-Micro Lett. 13, 147 (2021). https://doi.org/10.1007/s40820-021-00663-x
- G.U. Ruiz-Esparza, X. Wang, X. Zhang, S. Jimenez-Vazquez, L. Diaz-Gomez et al., Nanoengineered shear-thinning hydrogel barrier for preventing postoperative abdominal adhesions. Nano-Micro Lett. 13, 212 (2021). https://doi.org/10.1007/s40820-021-00712-5
- E.J. Corey, W.T. Wipke, Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969). https://doi.org/10.1126/science.166.3902.178
- X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 (2021). https://doi.org/10.1038/s41467-021-21436-5
- D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
- Y. Wang, L. Lu, G. Zheng, X. Zhang, Microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies. ACS Nano 14, 9861–9872 (2020). https://doi.org/10.1021/acsnano.0c02701
- C. Kim, S. Hong, D. Shin, S. An, X. Zhang et al., Sorting gold and sand (silica) using atomic force microscope-based dielectrophoresis. Nano-Micro Lett. 14, 13 (2021). https://doi.org/10.1007/s40820-021-00760-x
- L. Liu, N. Xiang, Z. Ni, X. Huang, J. Zheng et al., Step emulsification: high-throughput production of monodisperse droplets. Biotechniques 68, 114–116 (2020). https://doi.org/10.2144/btn-2019-0134
- X. Zhang, Y. Wang. AI-recognized mitochondrial phenotype enables identification of drug targets. Nat. Comput. Sci. 4, 563–564 (2024). https://doi.org/10.1038/s43588-024-00682-9
- M. Yu, W. Li, Y. Yu et al. Deep learning large-scale drug discovery and repurposing. Nat. Comput. Sci. 4, 600–614 (2024).https://doi.org/10.1038/s43588-024-00679-4
- F. Han, S. Lv, Z. Li, L. Jin, B. Fan et al., Triple-synergistic 2D material-based dual-delivery antibiotic platform. npg Asia Mater. 12, 15 (2020). https://doi.org/10.1038/s41427-020-0195-x
- B. Zheng, Q. Li, Y. Liu, et al. Microorganism microneedle micro-engine depth drug delivery. Nat. Commun. 15, 8947 (2024). https://doi.org/10.1038/s41467-024-53280-8
- X. Li, Y. Hu, X. Zhang, et al. Transvascular transport of nanocarriers for tumor delivery. Nat. Commun. 15, 8172 (2024). https://doi.org/10.1038/s41467-024-52416-0
- J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. U.S.A. 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
- Z. Yang, D. Gao, J. Zhao, et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 20, 116–134 (2023). https://doi.org/10.1038/s41571-022-00717-y
- Y. Yang, X. Wei, N. Zhang, J. Zheng, X. Chen et al., A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12, 4876 (2021). https://doi.org/10.1038/s41467-021-25075-8
- X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
- B. Wang, Y. Li, M. Zhou, Y. Han, M. Zhang et al., Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 14, 1341 (2023). https://doi.org/10.1038/s41467-023-36017-x
- T. Li, N., Yang, Y. Xiao, et al. Virus detection light diffraction fingerprints for biological applications. Sci. Adv. 10, eadl3466 (2024). https://doi.org/10.1126/sciadv.adl346
- S.R. Dabbagh, F. Rabbi, Z. Doğan, A.K. Yetisen, S. Tasoglu, Machine learning-enabled multiplexed microfluidic sensors. Biomicrofluidics 14, 061506 (2020). https://doi.org/10.1063/5.0025462
- S. Han, T. Kim, D. Kim, Y.-L. Park, S. Jo, Use of deep learning for characterization of microfluidic soft sensors. IEEE Robot. Autom. Lett. 3, 873–880 (2018). https://doi.org/10.1109/LRA.2018.2792684
- X. Huang, Y. Jiang, X. Liu, H. Xu, Z. Han et al., Machine learning based single-frame super-resolution processing for lensless blood cell counting. Sensors 16, 1836 (2016). https://doi.org/10.3390/s16111836
- N. Yang, Q. Shi, M. Wei, Y. Xiao, M. Xia et al., Deep-learning terahertz single-cell metabolic viability study. ACS Nano 17, 21383–21393 (2023). https://doi.org/10.1021/acsnano.3c06084
- Y. Jiang, C. Lei, A. Yasumoto, H. Kobayashi, Y. Aisaka et al., Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab Chip 17, 2426–2434 (2017). https://doi.org/10.1039/c7lc00396j
- M.S. Manak, J.S. Varsanik, B.J. Hogan, M.J. Whitfield, W.R. Su et al., Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning. Nat. Biomed. Eng. 2, 761–772 (2018). https://doi.org/10.1038/s41551-018-0285-z
- N. Yang, W. Song, Y. Xiao, M. Xia, L. Xiao et al., Minimum minutes machine-learning microfluidic microbe monitoring method (M7). ACS Nano 18, 4862–4870 (2024). https://doi.org/10.1021/acsnano.3c09733
- M. Yu, W. Li, Y. Yu, Y. Zhao, L. Xiao et al., Deep learning large-scale drug discovery and repurposing. Nat. Comput. Sci. 4, 600–614 (2024). https://doi.org/10.1038/s43588-024-00679-4
- K. Jeong, S. Park, D. Park, M. Ahn, J. Han et al., Evolution of crystal structures in GeTe during phase transition. Sci. Rep. 7, 955 (2017). https://doi.org/10.1038/s41598-017-01154-z
- S. Park, Y.J. Kang, S. Majd, A review of patterned organic bioelectronic materials and their biomedical applications. Adv. Mater. 27, 7583–7619 (2015). https://doi.org/10.1002/adma.201501809
- W. Xiao, L. Xin, R. Cao, X. Wu, R. Tian et al., Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning. Lab Chip 21, 1385–1394 (2021). https://doi.org/10.1039/d0lc01113d
- A.Y. Mutlu, V. Kılıç, G.K. Özdemir, A. Bayram, N. Horzum et al., Smartphone-based colorimetric detection via machine learning. Analyst 142, 2434–2441 (2017). https://doi.org/10.1039/c7an00741h
- J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014). https://doi.org/10.1103/physrevx.4.011019
- L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016). https://doi.org/10.1038/npjcompumats.2016.28
- J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019). https://doi.org/10.1038/s41524-019-0221-0
- M. Zhang, Y. Bai, C. Sun, L. Xue, H. Wang et al., Computational tools for porous materials. npj Comput. Mater. 65, 462–485 (2022). https://doi.org/10.1007/s11426-021-1171-4
- A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon et al., Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9
- N.J. Szymanski, B. Rendy, Y. Fei, R.E. Kumar, T. He et al., An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023). https://doi.org/10.1038/s41586-023-06734-w
References
L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021). https://doi.org/10.1039/D1NR06195J
Z. Li, S. Wang, Xin Toward artificial intelligence in catalysis. Nat. Catal. 1, 641–642 (2018). https://doi.org/10.1038/s41929-018-0150-1
R. Batra, L. Song, R. Ramprasad, Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 6, 655–678 (2020). https://doi.org/10.1038/s41578-020-00255-y
K. Honkala, A. Hellman, I.N. Remediakis, A. Logadottir, A. Carlsson et al., Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005). https://doi.org/10.1126/science.1106435
R.M. Wentzcovitch, J.L. Martins, G.D. Price, Ab initio molecular dynamics with variable cell shape: application to MgSiO3. Phys. Rev. Lett. 70, 3947–3950 (1993). https://doi.org/10.1103/PhysRevLett.70.3947
V. Oliveira, R. Vilar, Finite element simulation of pulsed laser ablation of titanium carbide. Appl. Surf. Sci. 253, 7810–7814 (2007). https://doi.org/10.1016/j.apsusc.2007.02.101
Z. Wang, H. Zhang, J. Ren, X. Lin, T. Han et al., Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning. npj Comput. Mater. 7, 1–9 (2021). https://doi.org/10.1038/s41524-021-00494-9
Y. Han, I. Ali, Z. Wang, J. Cai, S. Wu et al., Machine learning accelerates quantum mechanics predictions of molecular crystals. Phys. Rep. 934, 1–71 (2021). https://doi.org/10.1016/j.physrep.2021.08.002
Z. Wang, Y. Han, X. Lin, J. Cai, S. Wu et al., An ensemble learning platform for the large-scale exploration of new double perovskites. ACS Appl. Mater. Interfaces 14, 717–725 (2022). https://doi.org/10.1021/acsami.1c18477
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, Walsh machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768 (2012). https://doi.org/10.1021/ci3001277
A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012). https://doi.org/10.1093/nar/gkr777
L.C. Blum, J.-L. Reymond, 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732–8733 (2009). https://doi.org/10.1021/ja902302h
L. Ruddigkeit, R. van Deursen, L.C. Blum, J.L. Reymond, Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012). https://doi.org/10.1021/ci300415d
A. Belsky, M. Hellenbrandt, V.L. Karen, P. Luksch, New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B 58, 364–369 (2002). https://doi.org/10.1107/s0108768102006948
S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak et al., The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015). https://doi.org/10.1038/npjcompumats.2015.10
E.O. Pyzer-Knapp, K. Li, A. Aspuru-Guzik, Learning from the Harvard clean energy project: the use of neural networks to accelerate materials discovery. Adv. Funct. Mater. 25, 6495–6502 (2015). https://doi.org/10.1002/adfm.201501919
Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee et al., Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: core MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019). https://doi.org/10.1021/acs.jced.9b00835
F.H. Allen, R. Taylor, Research applications of the Cambridge structural database (CSD). Chem. Soc. Rev. 33, 463 (2004). https://doi.org/10.1039/b309040j
I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff et al., New cubic perovskites for one- and two-photonwater splitting using the computational materials repository. Energy Environ. Sci. 5, 9034–9043 (2012). https://doi.org/10.1039/C2EE22341D
Y. Wang, J. Xiao, T.O. Suzek, J. Zhang, J. Wang et al., PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37, W623–W633 (2009). https://doi.org/10.1093/nar/gkp456
Z. Wang, Y. Han, J. Cai, A. Chen, J. Li, Vision for energy material design: a roadmap for integrated data-driven modeling. J. Energy Chem. 71, 56–62 (2022). https://doi.org/10.1016/j.jechem.2022.03.052
M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8, 044002 (2021). https://doi.org/10.1088/2053-1583/ac1059
J.R. Quinlan, C4.5: Programs for Machine Learning (Elsevier, 2014)
S. Chen, G.I. Webb, L. Liu, X. Ma, A novel selective naïve Bayes algorithm. Knowl. Based Syst. 192, 105361 (2020). https://doi.org/10.1016/j.knosys.2019.105361
V. Solovev, A. Tsivadze, G. Marcou, A. Varnek, Classification of metal binders by Naïve Bayes classifier on the base of molecular fragment descriptors and ensemble modeling. Mol. Inform. 38, 1900002 (2019). https://doi.org/10.1002/minf.201900002
V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 113–126 (2004). https://doi.org/10.1016/S0893-6080(03)00169-2
S.H. Lee, J. Mazumder, J. Park, S. Kim, Ranked feature-based laser material processing monitoring and defect diagnosis using k-NN and SVM. J. Manuf. Process. 55, 307–316 (2020). https://doi.org/10.1016/j.jmapro.2020.04.015
S. Yagiz, E. Ghasemi, A.C. Adoko, Prediction of rock brittleness using genetic algorithm and p swarm optimization techniques. Geotech. Geol. Eng. 36, 3767–3777 (2018). https://doi.org/10.1007/s10706-018-0570-3
T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964
T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 21, 1000–1007 (2020). https://doi.org/10.1016/j.matpr.2019.10.051
T. Sathish, S. Rangarajan, A. Muthuram, R.P. Kumar, Analysis and modelling of dissimilar materials welding based on K-nearest neighbour predictor. Mater. Today Proc. 21, 108–112 (2020). https://doi.org/10.1016/j.matpr.2019.05.371
R.E. Schapire, Explaining AdaBoost, in Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik. ed. by B. Schölkopf, Z. Luo, V. Vovk (Springer, Berlin, 2013), pp.37–52. https://doi.org/10.1007/978-3-642-41136-6_5
J. Li, C. Zhang, X. Zhang, H. He, W. Liu et al., Temperature compensation of piezo-resistive pressure sensor utilizing ensemble AMPSO-SVR based on improved Adaboost.RT. IEEE Access 8, 12413–12425 (2020). https://doi.org/10.1109/ACCESS.2020.2965150
W.-Y. Loh, Classification and regression trees. Wires Data Min. Knowl. Discov. 1, 14–23 (2011). https://doi.org/10.1002/widm.8
S. Kadali, S.M. Naushad, A. Radha-Rama-Devi, V.L. Bodiga, Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses. Mol. Cell. Biochem. 458, 27–37 (2019). https://doi.org/10.1007/s11010-019-03527-6
T. Masuda, T. Nishio, J. Kataoka, M. Arimoto, A. Sano et al., ML-EM algorithm for dose estimation using PET in proton therapy. Phys. Med. Biol. 64, 175011 (2019). https://doi.org/10.1088/1361-6560/ab3276
N.A. Karakatsanis, E. Fokou, C. Tsoumpas, Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects. Am. J. Nucl. Med. Mol. Imaging 5, 527–547 (2015). https://doi.org/10.1370/afm.825
A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm. Pattern Recognit. 36, 451–461 (2003). https://doi.org/10.1016/S0031-3203(02)00060-2
Y. Liu, J. Wu, Z. Wang, X.-G. Lu, M. Avdeev et al., Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta Mater. 195, 454–467 (2020). https://doi.org/10.1016/j.actamat.2020.05.001
T. Ueno, T.D. Rhone, Z. Hou, T. Mizoguchi, K. Tsuda, COMBO: an efficient Bayesian optimization library for materials science. Mater. Discov. 4, 18–21 (2016). https://doi.org/10.1016/j.md.2016.04.001
E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain et al., AFLOW-ML: a RESTful API for machine-learning predictions of materials properties. Comput. Mater. Sci. 152, 134–145 (2018). https://doi.org/10.1016/j.commatsci.2018.03.075
X. Wang, P. Xie, B. Chen, X. Zhang, Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14, 221 (2022). https://doi.org/10.1007/s40820-022-00957-8
P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker et al., Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016). https://doi.org/10.1038/npjcompumats.2016.31
R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin et al., Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016). https://doi.org/10.1038/nmat4717
D. Salley, G. Keenan, J. Grizou, A. Sharma, S. Martín et al., A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanops. Nat. Commun. 11, 2771 (2020). https://doi.org/10.1038/s41467-020-16501-4
F. Mekki-Berrada, Z. Ren, T. Huang, W.K. Wong, F. Zheng et al., Two-step machine learning enables optimized nanop synthesis. npj Comput. Mater. 7, 55 (2021). https://doi.org/10.1038/s41524-021-00520-w
M. Sajjan, S.H. Sureshbabu, S. Kais, Quantum machine-learning for eigenstate filtration in two-dimensional materials. J. Am. Chem. Soc. 143, 18426–18445 (2021). https://doi.org/10.1021/jacs.1c06246
G.H. Gu, J. Noh, I. Kim, Y. Jung, Machine learning for renewable energy materials. J. Mater. Chem. A 7, 17096–17117 (2019). https://doi.org/10.1039/c9ta02356a
M. Pardakhti, E. Moharreri, D. Wanik, S.L. Suib, R. Srivastava, Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). ACS Comb. Sci. 19, 640–645 (2017). https://doi.org/10.1021/acscombsci.7b00056
M.Z. Aghaji, M. Fernandez, P.G. Boyd, T.D. Daff, T.K. Woo, Quantitative structure–property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/CH4 selectivity for methane purification. Eur. J. Inorg. Chem. 2016, 4505–4511 (2016). https://doi.org/10.1002/ejic.201600365
M.-H. Lee, Machine learning for understanding the relationship between the charge transport mobility and electronic energy levels for n-type organic field-effect transistors. Adv. Electron. Mater. 5, 1900573 (2019). https://doi.org/10.1002/aelm.201900573
F. Li, Y. Li, K.S. Novoselov, et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano-Micro Lett. 15, 35 (2023). https://doi.org/10.1007/s40820-022-00993-4
Y. Wang, G. Zheng, N. Jiang, et al. Nature-inspired micropatterns. Nat. Rev. Method. Prim. 3, 68 (2023). https://doi.org/10.1038/s43586-023-00251-w
A. Criminisi, Machine learning for medical images analysis. Med. Image Anal. 33, 91–93 (2016). https://doi.org/10.1016/j.media.2016.06.002
H.-C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu et al., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35, 1285–1298 (2016). https://doi.org/10.1109/TMI.2016.2528162
K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering. Nat. Meth. 16, 687–694 (2019). https://doi.org/10.1038/s41592-019-0496-6
S. Ekins, A.C. Puhl, K.M. Zorn, T.R. Lane, D.P. Russo et al., Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019). https://doi.org/10.1038/s41563-019-0338-z
B. Burger, P.M. Maffettone, V.V. Gusev, C.M. Aitchison, Y. Bai et al., A mobile robotic chemist. Nature 583, 237–241 (2020). https://doi.org/10.1038/s41586-020-2442-2
X. Ma, Z. Li, L.E.K. Achenie, H. Xin, Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015). https://doi.org/10.1021/acs.jpclett.5b01660
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013). https://doi.org/10.1126/science.1222453
X. He, D.J. Singh, P. Boon-On, M.-W. Lee, L. Zhang, Dielectric behavior as a screen in rational searches for electronic materials: metal pnictide sulfosalts. J. Am. Chem. Soc. 140, 18058–18065 (2018). https://doi.org/10.1021/jacs.8b10685
J. Wu, H. Yang, Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013). https://doi.org/10.1021/ar300359w
Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015). https://doi.org/10.1039/C4CS00484A
A.S. Bandarenka, M.T.M. Koper, Structural and electronic effects in heterogeneous electrocatalysis: toward a rational design of electrocatalysts. J. Catal. 308, 11–24 (2013). https://doi.org/10.1016/j.jcat.2013.05.006
C.T. Campbell, Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990). https://doi.org/10.1146/annurev.pc.41.100190.004015
W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012). https://doi.org/10.1021/cr300096b
W.J.O.-T, Electronic structure and the properties of solids: the physics of the chemical bond. J. Mol. Struct. 71, 355 (1981). https://doi.org/10.1016/0022-2860(81)85136-8
K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1
R.S. Olson, R.J. Urbanowicz, P.C. Andrews, N.A. Lavender, L.C. Kidd, J.H. Moore, Automating biomedical data science through tree-based pipeline optimization, in Applications of Evolutionary Computation. ed. by G. Squillero, P. Burelli (Springer, Cham, 2016), pp.123–137. https://doi.org/10.1007/978-3-319-31204-0_9
P.V. Cherepanov, M. Ashokkumar, D.V. Andreeva, Ultrasound assisted formation of Al-Ni electrocatalyst for hydrogen evolution. Ultrason. Sonochem. 23, 142–147 (2015). https://doi.org/10.1016/j.ultsonch.2014.10.012
M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, M. Takata, Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J. Am. Chem. Soc. 133, 1150–1152 (2011). https://doi.org/10.1021/ja106285p
H. Liao, C. Wei, J. Wang, A. Fisher, T. Sritharan et al., A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energy Mater. 7, 1701129 (2017). https://doi.org/10.1002/aenm.201701129
M. Yamawaki, M. Ohnishi, S. Ju, J. Shiomi, Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Sci. Adv. 4, eaar4192 (2018). https://doi.org/10.1126/sciadv.aar4192
B. Yuan, G.M. Guss, A.C. Wilson, S.P. Hau-Riege, P.J. DePond et al., Machine-learning-based monitoring of laser powder bed fusion. Adv. Mater. Technol. 3, 1800136 (2018). https://doi.org/10.1002/admt.201800136
J. Wu, F. Xu, S. Li, P. Ma, X. Zhang et al., Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 31, e1802922 (2019). https://doi.org/10.1002/adma.201802922
J. Meng, Z. Liu, X. Liu, W. Yang, L. Wang et al., Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. J. Mater. Sci. Technol. 66, 186–192 (2021). https://doi.org/10.1016/j.jmst.2020.07.007
J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143, 15427–15439 (2021). https://doi.org/10.1021/jacs.1c07875
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
Y. Zhu, P. Xu, X. Zhang, D. Wu, Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 51, 1377–1414 (2022). https://doi.org/10.1039/d1cs00871d
X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14, 11104–11115 (2022). https://doi.org/10.1021/acsami.1c24231
Z. Chen, Y. Sun, J. Wang, X. Zhou, X. Kong, J. Meng, X. Zhang. Dual-responsive triple-synergistic Fe-MOF for tumor theranostics. ACS Nano 17, 9003–9013 (2023). https://doi.org/10.1021/acsnano.2c10310
C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser et al., Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012). https://doi.org/10.1038/nchem.1192
R.L. Martin, C.M. Simon, B. Smit, M. Haranczyk, In silico design of porous polymer networks: high-throughput screening for methane storage materials. J. Am. Chem. Soc. 136, 5006–5022 (2014). https://doi.org/10.1021/ja4123939
L.-C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher et al., In silico screening of carbon-capture materials. Nat. Mater. 11, 633–641 (2012). https://doi.org/10.1038/nmat3336
M. Fernandez, N.R. Trefiak, T.K. Woo, Atomic property weighted radial distribution functions descriptors of metal–organic frameworks for the prediction of gas uptake capacity. J. Phys. Chem. C 117, 14095–14105 (2013). https://doi.org/10.1021/jp404287t
M. Fernandez, T.K. Woo, C.E. Wilmer, R.Q. Snurr, Large-scale quantitative structure–property relationship (QSPR) analysis of methane storage in metal–organic frameworks. J. Phys. Chem. C 117, 7681–7689 (2013). https://doi.org/10.1021/jp4006422
P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny et al., Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). https://doi.org/10.1038/nature17439
D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 (2022). https://doi.org/10.1007/s40820-021-00771-8
H. Liu, H. Li, Y. Wang, et al. Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE). Nano Lett. 24, 16221–16230 (2024). https://doi.org/10.1021/acs.nanolett.4c02474
M.S. Chowdhury, X. Zhang, L. Amini, P. Dey, A.K. Singh et al., Functional surfactants for molecular fishing, capsule creation, and single-cell gene expression. Nano-Micro Lett. 13, 147 (2021). https://doi.org/10.1007/s40820-021-00663-x
G.U. Ruiz-Esparza, X. Wang, X. Zhang, S. Jimenez-Vazquez, L. Diaz-Gomez et al., Nanoengineered shear-thinning hydrogel barrier for preventing postoperative abdominal adhesions. Nano-Micro Lett. 13, 212 (2021). https://doi.org/10.1007/s40820-021-00712-5
E.J. Corey, W.T. Wipke, Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969). https://doi.org/10.1126/science.166.3902.178
X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 (2021). https://doi.org/10.1038/s41467-021-21436-5
D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
Y. Wang, L. Lu, G. Zheng, X. Zhang, Microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies. ACS Nano 14, 9861–9872 (2020). https://doi.org/10.1021/acsnano.0c02701
C. Kim, S. Hong, D. Shin, S. An, X. Zhang et al., Sorting gold and sand (silica) using atomic force microscope-based dielectrophoresis. Nano-Micro Lett. 14, 13 (2021). https://doi.org/10.1007/s40820-021-00760-x
L. Liu, N. Xiang, Z. Ni, X. Huang, J. Zheng et al., Step emulsification: high-throughput production of monodisperse droplets. Biotechniques 68, 114–116 (2020). https://doi.org/10.2144/btn-2019-0134
X. Zhang, Y. Wang. AI-recognized mitochondrial phenotype enables identification of drug targets. Nat. Comput. Sci. 4, 563–564 (2024). https://doi.org/10.1038/s43588-024-00682-9
M. Yu, W. Li, Y. Yu et al. Deep learning large-scale drug discovery and repurposing. Nat. Comput. Sci. 4, 600–614 (2024).https://doi.org/10.1038/s43588-024-00679-4
F. Han, S. Lv, Z. Li, L. Jin, B. Fan et al., Triple-synergistic 2D material-based dual-delivery antibiotic platform. npg Asia Mater. 12, 15 (2020). https://doi.org/10.1038/s41427-020-0195-x
B. Zheng, Q. Li, Y. Liu, et al. Microorganism microneedle micro-engine depth drug delivery. Nat. Commun. 15, 8947 (2024). https://doi.org/10.1038/s41467-024-53280-8
X. Li, Y. Hu, X. Zhang, et al. Transvascular transport of nanocarriers for tumor delivery. Nat. Commun. 15, 8172 (2024). https://doi.org/10.1038/s41467-024-52416-0
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. U.S.A. 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
Z. Yang, D. Gao, J. Zhao, et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 20, 116–134 (2023). https://doi.org/10.1038/s41571-022-00717-y
Y. Yang, X. Wei, N. Zhang, J. Zheng, X. Chen et al., A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12, 4876 (2021). https://doi.org/10.1038/s41467-021-25075-8
X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
B. Wang, Y. Li, M. Zhou, Y. Han, M. Zhang et al., Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 14, 1341 (2023). https://doi.org/10.1038/s41467-023-36017-x
T. Li, N., Yang, Y. Xiao, et al. Virus detection light diffraction fingerprints for biological applications. Sci. Adv. 10, eadl3466 (2024). https://doi.org/10.1126/sciadv.adl346
S.R. Dabbagh, F. Rabbi, Z. Doğan, A.K. Yetisen, S. Tasoglu, Machine learning-enabled multiplexed microfluidic sensors. Biomicrofluidics 14, 061506 (2020). https://doi.org/10.1063/5.0025462
S. Han, T. Kim, D. Kim, Y.-L. Park, S. Jo, Use of deep learning for characterization of microfluidic soft sensors. IEEE Robot. Autom. Lett. 3, 873–880 (2018). https://doi.org/10.1109/LRA.2018.2792684
X. Huang, Y. Jiang, X. Liu, H. Xu, Z. Han et al., Machine learning based single-frame super-resolution processing for lensless blood cell counting. Sensors 16, 1836 (2016). https://doi.org/10.3390/s16111836
N. Yang, Q. Shi, M. Wei, Y. Xiao, M. Xia et al., Deep-learning terahertz single-cell metabolic viability study. ACS Nano 17, 21383–21393 (2023). https://doi.org/10.1021/acsnano.3c06084
Y. Jiang, C. Lei, A. Yasumoto, H. Kobayashi, Y. Aisaka et al., Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab Chip 17, 2426–2434 (2017). https://doi.org/10.1039/c7lc00396j
M.S. Manak, J.S. Varsanik, B.J. Hogan, M.J. Whitfield, W.R. Su et al., Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning. Nat. Biomed. Eng. 2, 761–772 (2018). https://doi.org/10.1038/s41551-018-0285-z
N. Yang, W. Song, Y. Xiao, M. Xia, L. Xiao et al., Minimum minutes machine-learning microfluidic microbe monitoring method (M7). ACS Nano 18, 4862–4870 (2024). https://doi.org/10.1021/acsnano.3c09733
M. Yu, W. Li, Y. Yu, Y. Zhao, L. Xiao et al., Deep learning large-scale drug discovery and repurposing. Nat. Comput. Sci. 4, 600–614 (2024). https://doi.org/10.1038/s43588-024-00679-4
K. Jeong, S. Park, D. Park, M. Ahn, J. Han et al., Evolution of crystal structures in GeTe during phase transition. Sci. Rep. 7, 955 (2017). https://doi.org/10.1038/s41598-017-01154-z
S. Park, Y.J. Kang, S. Majd, A review of patterned organic bioelectronic materials and their biomedical applications. Adv. Mater. 27, 7583–7619 (2015). https://doi.org/10.1002/adma.201501809
W. Xiao, L. Xin, R. Cao, X. Wu, R. Tian et al., Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning. Lab Chip 21, 1385–1394 (2021). https://doi.org/10.1039/d0lc01113d
A.Y. Mutlu, V. Kılıç, G.K. Özdemir, A. Bayram, N. Horzum et al., Smartphone-based colorimetric detection via machine learning. Analyst 142, 2434–2441 (2017). https://doi.org/10.1039/c7an00741h
J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014). https://doi.org/10.1103/physrevx.4.011019
L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016). https://doi.org/10.1038/npjcompumats.2016.28
J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019). https://doi.org/10.1038/s41524-019-0221-0
M. Zhang, Y. Bai, C. Sun, L. Xue, H. Wang et al., Computational tools for porous materials. npj Comput. Mater. 65, 462–485 (2022). https://doi.org/10.1007/s11426-021-1171-4
A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon et al., Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9
N.J. Szymanski, B. Rendy, Y. Fei, R.E. Kumar, T. He et al., An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023). https://doi.org/10.1038/s41586-023-06734-w