Mitochondrial H2Sn-Mediated Anti-Inflammatory Theranostics
Corresponding Author: Jong Seung Kim
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 168
Abstract
The insistent demand for space-controllable delivery, which reduces the side effects of non-steroidal anti-inflammatory drugs (NSAIDs), has led to the development of a new theranostics-based approach for anti-inflammatory therapy. The current anti-inflammatory treatments can be improved by designing a drug delivery system responsive to the inflammatory site biomarker, hydrogen polysulfide (H2Sn). Here, we report a novel theranostic agent 1 (TA1), consisting of three parts: H2Sn-mediated triggering part, a two-photon fluorophore bearing mitochondria targeting unit (Rhodol-TPP), and anti-inflammatory COX inhibitor (indomethacin). In vitro experiments showed that TA1 selectively reacts with H2Sn to concomitantly release both Rhodol-TPP and indomethacin. Confocal-microscopy imaging of inflammation-induced live cells suggested that TA1 is localized in the mitochondria where the H2Sn is overexpressed. The TA1 reacted with H2Sn in the endogenous and exogenous H2Sn environments and in lipopolysaccharide treated inflammatory cells. Moreover, TA1 suppressed COX-2 level in the inflammatory-induced cells and prostaglandin E2 (PGE2) level in blood serum from inflammation-induced mouse models. In vivo experiments with inflammation-induced mouse models suggested that TA1 exhibits inflammation-site-elective drug release followed by significant therapeutic effects, showing its function as a theranostic agent, capable of both anti-inflammatory therapy and precise diagnosis. Theranostic behavior of TA1 is highly applicable in vivo model therapeutics for the inflammatory disease.
Highlights:
1 Theranostic agent 1 (TA1) was successfully developed to provide dual functions: anti-inflammatory therapy and precise diagnosis.
2 TA1 selectively reacts with H2Sn in the mitochondria in response to inflammatory reactions to simultaneously produce both indomethacin as a drug and ring-opened fluorescence-on Rhodol.
3 Theranostic behavior of TA1 was proven by in vitro and in vivo imaging.
4 TA1 reveals inflammatory site-selective drug release followed by significant therapeutic effects and is highly applicable in vivo model therapeutics for the inflammatory disease.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Medzhitov, Inflammation 2010: New adventures of an old flame. Cell 140, 771–776 (2010). https://doi.org/10.1016/j.cell.2010.03.006
- Y. Wang, D. Gao, Y. Liu, X. Guo, S. Chen et al., Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact. Mater. 6, 1513–1527 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.016
- O. Takeuchi, S. Akira, Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010). https://doi.org/10.1016/j.cell.2010.01.022
- J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. USA 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
- M.A. Sugimoto, L.P. Sousa, V. Pinho, M. Perretti, M.M. Teixeira, Resolution of inflammation: What controls its onset? Front. Immunol. 7, 160 (2016). https://doi.org/10.3389/fimmu.2016.00160
- G. He, M. Karin, Nf-kappab and stat3 - key players in liver inflammation and cancer. Cell Res. 21, 159–168 (2011). https://doi.org/10.1038/cr.2010.183
- S. Crittenden, M. Goepp, J. Pollock, C.T. Robb, D.J. Smyth et al., Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci. Adv. 7, 7954 (2021). https://doi.org/10.1126/sciadv.abd7954
- A.M. Schjerning, P. McGettigan, G. Gislason, Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat. Rev. Cardiol. 17, 574–584 (2020). https://doi.org/10.1038/s41569-020-0366-z
- J. Tan, Z. Deng, G. Liu, J. Hu, S. Liu, Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials 178, 608–619 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.035
- M. Peleli, S.I. Bibli, Z. Li, A. Chatzianastasiou, A. Varela et al., Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem. Pharmacol. 176, 113833 (2020). https://doi.org/10.1016/j.bcp.2020.113833
- H. Kimura, Signaling molecules: Hydrogen sulfide and polysulfide. Antioxid. Redox Signal. 22, 362–376 (2015). https://doi.org/10.1089/ars.2014.5869
- E.C. Estevam, L. Faulstich, S. Griffin, T. Burkholz, C. Jacob, Polysulfides in biology: From intricate chemistry to an astonishing yet hidden biological activity. Curr. Org. Chem. 20, 211–217 (2016). https://doi.org/10.2174/1385272819666150724233028
- H. Dong, Q. Zhou, L. Zhang, Y. Tian, Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain. Angew. Chem. Int. Ed. 58, 13948–13953 (2019). https://doi.org/10.1002/anie.201907210
- P. Nagy, Z. Palinkas, A. Nagy, B. Budai, I. Toth et al., Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta 1840, 876–891 (2014). https://doi.org/10.1016/j.bbagen.2013.05.037
- P.K. Yadav, M. Martinov, V. Vitvitsky, J. Seravalli, R. Wedmann et al., Biosynthesis and reactivity of cysteine persulfides in signaling. J. Am. Chem. Soc. 138, 289–299 (2016). https://doi.org/10.1021/jacs.5b10494
- M.R. Jackson, S.L. Melideo, M.S. Jorns, Human sulfide: Quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51, 6804–6815 (2012). https://doi.org/10.1021/bi300778t
- V.S. Lin, A.R. Lippert, C.J. Chang, Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc. Natl. Acad. Sci. USA 110, 7131–7135 (2013). https://doi.org/10.1073/pnas.1302193110
- N. Gupta, S.I. Reja, V. Bhalla, M. Kumar, Fluorescent probes for hydrogen polysulfides (H2Sn, n > 1): From design rationale to applications. Org. Biomol. Chem. 15, 6692–6701 (2017). https://doi.org/10.1039/c7ob01615h
- W. Chen, E.W. Rosser, T. Matsunaga, A. Pacheco, T. Akaike et al., The development of fluorescent probes for visualizing intracellular hydrogen polysulfides. Angew. Chem. Int. Ed. 54, 13961–13965 (2015). https://doi.org/10.1002/anie.201506887
- W. Chen, C.R. Liu, B. Peng, Y. Zhao, A. Pacheco et al., New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem. Sci. 4, 2892–2896 (2013). https://doi.org/10.1039/c3sc50754h
- S. Park, E. Kim, W.Y. Kim, C. Kang, J.S. Kim, Biotin-guided anticancer drug delivery with acidity-triggered drug release. Chem. Commun. 51, 9343–9345 (2015). https://doi.org/10.1039/c5cc03003j
- W.Y. Kim, H. Shi, H.S. Jung, D. Cho, P. Verwilst et al., Coumarin-decorated schiff base hydrolysis as an efficient driving force for the fluorescence detection of water in organic solvents. Chem. Commun. 52, 8675–8678 (2016). https://doi.org/10.1039/c6cc04285f
- H.S. Jung, J. Han, H. Shi, S. Koo, H. Singh et al., Overcoming the limits of hypoxia in photodynamic therapy: A carbonic anhydrase ix-targeted approach. J. Am. Chem. Soc. 139, 7595–7602 (2017). https://doi.org/10.1021/jacs.7b02396
- N.K. Hien, D.T. Nhan, W.Y. Kim, M. Van Bay, P.C. Nam et al., Exceptional case of kasha’s rule: Emission from higher-lying singlet electron excited states into ground states in coumarin-based biothiol sensing. Dyes. Pigm. 152, 118–126 (2018). https://doi.org/10.1016/j.dyepig.2018.01.046
- M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5
- T. He, X. Qin, C. Jiang, D. Jiang, S. Lei et al., Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 10, 2453–2462 (2020). https://doi.org/10.7150/thno.42981
- Z. Li, Y. Hu, Z. Miao, H. Xu, C. Li et al., Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett. 18, 6778–6788 (2018). https://doi.org/10.1021/acs.nanolett.8b02639
- K.N. Bobba, M. Won, I. Shim, N. Velusamy, Z.G. Yang et al., A bodipy-based two-photon fluorescent probe validates tyrosinase activity in live cells. Chem. Commun. 53, 11213–11216 (2017). https://doi.org/10.1039/c7cc05043g
- A. Podder, M. Won, S. Kim, P. Verwilst, M. Maiti et al., A two-photon fluorescent probe records the intracellular ph through “or” logic operation via internal calibration. Sens. Actuat. B 268, 195–204 (2018). https://doi.org/10.1016/j.snb.2018.04.092
- N.Y. Lim, J. Ahn, M. Won, W. Choi, J.S. Kim et al., Novel cyanostilbene-based fluorescent chemoprobe for hydroxyl radicals and its two-photon bioimaging in living cells. ACS Appl. Bio Mater. 2, 936–942 (2019). https://doi.org/10.1021/acsabm.8b00796
- H.M. Kim, B.R. Cho, Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015). https://doi.org/10.1021/cr5004425
References
R. Medzhitov, Inflammation 2010: New adventures of an old flame. Cell 140, 771–776 (2010). https://doi.org/10.1016/j.cell.2010.03.006
Y. Wang, D. Gao, Y. Liu, X. Guo, S. Chen et al., Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact. Mater. 6, 1513–1527 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.016
O. Takeuchi, S. Akira, Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010). https://doi.org/10.1016/j.cell.2010.01.022
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. USA 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
M.A. Sugimoto, L.P. Sousa, V. Pinho, M. Perretti, M.M. Teixeira, Resolution of inflammation: What controls its onset? Front. Immunol. 7, 160 (2016). https://doi.org/10.3389/fimmu.2016.00160
G. He, M. Karin, Nf-kappab and stat3 - key players in liver inflammation and cancer. Cell Res. 21, 159–168 (2011). https://doi.org/10.1038/cr.2010.183
S. Crittenden, M. Goepp, J. Pollock, C.T. Robb, D.J. Smyth et al., Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci. Adv. 7, 7954 (2021). https://doi.org/10.1126/sciadv.abd7954
A.M. Schjerning, P. McGettigan, G. Gislason, Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat. Rev. Cardiol. 17, 574–584 (2020). https://doi.org/10.1038/s41569-020-0366-z
J. Tan, Z. Deng, G. Liu, J. Hu, S. Liu, Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials 178, 608–619 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.035
M. Peleli, S.I. Bibli, Z. Li, A. Chatzianastasiou, A. Varela et al., Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem. Pharmacol. 176, 113833 (2020). https://doi.org/10.1016/j.bcp.2020.113833
H. Kimura, Signaling molecules: Hydrogen sulfide and polysulfide. Antioxid. Redox Signal. 22, 362–376 (2015). https://doi.org/10.1089/ars.2014.5869
E.C. Estevam, L. Faulstich, S. Griffin, T. Burkholz, C. Jacob, Polysulfides in biology: From intricate chemistry to an astonishing yet hidden biological activity. Curr. Org. Chem. 20, 211–217 (2016). https://doi.org/10.2174/1385272819666150724233028
H. Dong, Q. Zhou, L. Zhang, Y. Tian, Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain. Angew. Chem. Int. Ed. 58, 13948–13953 (2019). https://doi.org/10.1002/anie.201907210
P. Nagy, Z. Palinkas, A. Nagy, B. Budai, I. Toth et al., Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta 1840, 876–891 (2014). https://doi.org/10.1016/j.bbagen.2013.05.037
P.K. Yadav, M. Martinov, V. Vitvitsky, J. Seravalli, R. Wedmann et al., Biosynthesis and reactivity of cysteine persulfides in signaling. J. Am. Chem. Soc. 138, 289–299 (2016). https://doi.org/10.1021/jacs.5b10494
M.R. Jackson, S.L. Melideo, M.S. Jorns, Human sulfide: Quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51, 6804–6815 (2012). https://doi.org/10.1021/bi300778t
V.S. Lin, A.R. Lippert, C.J. Chang, Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc. Natl. Acad. Sci. USA 110, 7131–7135 (2013). https://doi.org/10.1073/pnas.1302193110
N. Gupta, S.I. Reja, V. Bhalla, M. Kumar, Fluorescent probes for hydrogen polysulfides (H2Sn, n > 1): From design rationale to applications. Org. Biomol. Chem. 15, 6692–6701 (2017). https://doi.org/10.1039/c7ob01615h
W. Chen, E.W. Rosser, T. Matsunaga, A. Pacheco, T. Akaike et al., The development of fluorescent probes for visualizing intracellular hydrogen polysulfides. Angew. Chem. Int. Ed. 54, 13961–13965 (2015). https://doi.org/10.1002/anie.201506887
W. Chen, C.R. Liu, B. Peng, Y. Zhao, A. Pacheco et al., New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem. Sci. 4, 2892–2896 (2013). https://doi.org/10.1039/c3sc50754h
S. Park, E. Kim, W.Y. Kim, C. Kang, J.S. Kim, Biotin-guided anticancer drug delivery with acidity-triggered drug release. Chem. Commun. 51, 9343–9345 (2015). https://doi.org/10.1039/c5cc03003j
W.Y. Kim, H. Shi, H.S. Jung, D. Cho, P. Verwilst et al., Coumarin-decorated schiff base hydrolysis as an efficient driving force for the fluorescence detection of water in organic solvents. Chem. Commun. 52, 8675–8678 (2016). https://doi.org/10.1039/c6cc04285f
H.S. Jung, J. Han, H. Shi, S. Koo, H. Singh et al., Overcoming the limits of hypoxia in photodynamic therapy: A carbonic anhydrase ix-targeted approach. J. Am. Chem. Soc. 139, 7595–7602 (2017). https://doi.org/10.1021/jacs.7b02396
N.K. Hien, D.T. Nhan, W.Y. Kim, M. Van Bay, P.C. Nam et al., Exceptional case of kasha’s rule: Emission from higher-lying singlet electron excited states into ground states in coumarin-based biothiol sensing. Dyes. Pigm. 152, 118–126 (2018). https://doi.org/10.1016/j.dyepig.2018.01.046
M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5
T. He, X. Qin, C. Jiang, D. Jiang, S. Lei et al., Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 10, 2453–2462 (2020). https://doi.org/10.7150/thno.42981
Z. Li, Y. Hu, Z. Miao, H. Xu, C. Li et al., Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett. 18, 6778–6788 (2018). https://doi.org/10.1021/acs.nanolett.8b02639
K.N. Bobba, M. Won, I. Shim, N. Velusamy, Z.G. Yang et al., A bodipy-based two-photon fluorescent probe validates tyrosinase activity in live cells. Chem. Commun. 53, 11213–11216 (2017). https://doi.org/10.1039/c7cc05043g
A. Podder, M. Won, S. Kim, P. Verwilst, M. Maiti et al., A two-photon fluorescent probe records the intracellular ph through “or” logic operation via internal calibration. Sens. Actuat. B 268, 195–204 (2018). https://doi.org/10.1016/j.snb.2018.04.092
N.Y. Lim, J. Ahn, M. Won, W. Choi, J.S. Kim et al., Novel cyanostilbene-based fluorescent chemoprobe for hydroxyl radicals and its two-photon bioimaging in living cells. ACS Appl. Bio Mater. 2, 936–942 (2019). https://doi.org/10.1021/acsabm.8b00796
H.M. Kim, B.R. Cho, Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 115, 5014–5055 (2015). https://doi.org/10.1021/cr5004425