From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines
Corresponding Author: Guillermo U. Ruiz‑Esparza
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 41
Abstract
During the last decades, the use of nanotechnology in medicine has effectively been translated to the design of drug delivery systems, nanostructured tissues, diagnostic platforms, and novel nanomaterials against several human diseases and infectious pathogens. Nanotechnology-enabled vaccines have been positioned as solutions to mitigate the pandemic outbreak caused by the novel pathogen severe acute respiratory syndrome coronavirus 2. To fast-track the development of vaccines, unprecedented industrial and academic collaborations emerged around the world, resulting in the clinical translation of effective vaccines in less than one year. In this article, we provide an overview of the path to translation from the bench to the clinic of nanotechnology-enabled messenger ribonucleic acid vaccines and examine in detail the types of delivery systems used, their mechanisms of action, obtained results during each phase of their clinical development and their regulatory approval process. We also analyze how nanotechnology is impacting global health and economy during the COVID-19 pandemic and beyond.
Highlights:
1 Pfizer–BioNTech’s and Moderna’s nanotechnology-enabled mRNA vaccines are the first of its kind to be approved for human use.
2 The COVID-19 pandemic has changed our lives and although SARS-CoV-2 has caused irreversible health, social and economic damage, continuous and extensive efforts world-wide were essential to reduce its deleterious effects.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.K. Taubenberger, The origin and virulence of the 1918 “Spanish” influenza virus. Proc. Am. Philos. Soc. 150(1), 86–112 (2006)
- E.C. Holmes, S.A. Goldstein, A.L. Rasmussen, D.L. Robertson, A. Crits-Christoph et al., The origins of SARS-CoV-2: a critical review. Cell 184(19), 4848–4856 (2021). https://doi.org/10.1016/j.cell.2021.08.017
- World Health Organization, Timeline of WHO’s response to COVID-19. (WHO, 2020). Accessed 8 November 2021. https://www.who.int/news-room/detail/29-06-2020-covidtimeline
- World Health Organization, WHO coronavirus (COVID-19) dashboard. (WHO, 2021). Accessed 8 November 2021. https://covid19.who.int/
- J. Wolfram, M. Ferrari, Clinical cancer nanomedicine. Nano Today 25, 85–98 (2019). https://doi.org/10.1016/j.nantod.2019.02.005
- D.M. Smith, J.K. Simon, J.R. Baker, Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13(8), 592–605 (2013). https://doi.org/10.1038/nri3488
- L.J. Cruz, P.J. Tacken, R. Fokkink, B. Joosten, M.C. Stuart et al., Targeted PLGA nano- but not microps specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release 144(2), 118–126 (2010). https://doi.org/10.1016/j.jconrel.2010.02.013
- A. Iwasaki, Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol. 10(10), 699–711 (2010). https://doi.org/10.1038/nri2836
- A.R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology 1282, 1–23 (Humana Press, New York, 2015). https://doi.org/10.1007/978-1-4939-2438-7_1
- N. Wang, J. Shang, S. Jiang, L. Du, Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol. 11, 298 (2020). https://doi.org/10.3389/fmicb.2020.00298
- K.G. Andersen, A. Rambaut, W.I. Lipkin, E.C. Holmes, R.F. Garry, The proximal origin of SARS-CoV-2. Nat. Med. 26(4), 450–452 (2020). https://doi.org/10.1038/s41591-020-0820-9
- L. Kuo, K.R. Hurst, P.S. Masters, Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol. 81(5), 2249 (2007). https://doi.org/10.1128/JVI.01577-06
- D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019). https://doi.org/10.1186/s12985-019-1182-0
- M. Nishiga, D.W. Wang, Y. Han, D.B. Lewis, J.C. Wu, COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17(9), 543–558 (2020). https://doi.org/10.1038/s41569-020-0413-9
- A. Gupta, M.V. Madhavan, K. Sehgal, N. Nair, S. Mahajan et al., Extrapulmonary manifestations of COVID-19. Nat. Med. 26(7), 1017–1032 (2020). https://doi.org/10.1038/s41591-020-0968-3
- M.Z. Tay, C.M. Poh, L. Rénia, P.A. MacAry, L.F.P. Ng, The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20(6), 363–374 (2020). https://doi.org/10.1038/s41577-020-0311-8
- I. Hamming, W. Timens, M.L. Bulthuis, A.T. Lely, G. Navis et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus, a first step in understanding SARS pathogenesis. J. Pathol. 203(2), 631–637 (2004). https://doi.org/10.1002/path.1570
- H.P. Jia, D.C. Look, L. Shi, M. Hickey, L. Pewe et al., ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79(23), 14614–14621 (2005). https://doi.org/10.1128/JVI.79.23.14614-14621.2005
- M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kruger, T. Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2), 271–280 (2020). https://doi.org/10.1016/j.cell.2020.02.052
- R.J. Mason, Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 55(4), 2000607 (2020). https://doi.org/10.1183/13993003.00607-2020
- A. Heurich, H. Hofmann-Winkler, S. Gierer, T. Liepold, O. Jahn et al., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88(2), 1293–1307 (2014). https://doi.org/10.1128/JVI.02202-13
- R. Zang, M.F.G. Castro, B.T. McCune, Q. Zeng, P.W. Rothlauf et al., TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5(47), abc3582 (2020). https://doi.org/10.1126/sciimmunol.abc3582
- Z.Y. Yang, Y. Huang, L. Ganesh, K. Leung, W.P. Kong et al., pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78(11), 5642–5650 (2004). https://doi.org/10.1128/JVI.78.11.5642-5650.2004
- D.A. Groneberg, R. Hilgenfeld, P. Zabel, Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir. Res. 6, 8 (2005). https://doi.org/10.1186/1465-9921-6-8
- H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433 (2020). https://doi.org/10.1016/j.jaut.2020.102433
- W.T. Harvey, A.M. Carabelli, B. Jackson, R.K. Gupta, E.C. Thomson et al., SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19(7), 409–424 (2021). https://doi.org/10.1038/s41579-021-00573-0
- A.J. Greaney, A.N. Loes, K.H.D. Crawford, T.N. Starr, K.D. Malone et al., Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 29(3), 463–476 (2021). https://doi.org/10.1016/j.chom.2021.02.003
- E.C. Sabino, L.F. Buss, M.P.S. Carvalho, C.A. Prete, M.A.E. Crispim et al., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397(10273), 452–455 (2021). https://doi.org/10.1016/S0140-6736(21)00183-5
- H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca et al., Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, (2020). https://doi.org/10.1101/2020.12.21.20248640
- E. Volz, S. Mishra, M. Chand, J.C. Barrett, R. Johnson et al., Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv, (2021). https://doi.org/10.1101/2020.12.30.20249034
- P. Wang, M.S. Nair, L. Liu, S. Iketani, Y. Luo et al., Antibody resistance of SARS-CoV-2 variants B1.351 and B.1.1.7. Nature 593(7857), 130–135 (2021). https://doi.org/10.1038/s41586-021-03398-2
- D. Zhou, W. Dejnirattisai, P. Supasa, C. Liu, A.J. Mentzer et al., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184(9), 2348–2361 (2021). https://doi.org/10.1016/j.cell.2021.02.037
- Centers for Disease Control and Prevention, Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). (CDC, 2020). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
- S. Zaim, J.H. Chong, V. Sankaranarayanan, A. Harky, COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45(8), 100618 (2020). https://doi.org/10.1016/j.cpcardiol.2020.100618
- Mayo Clinic, Coronavirus disease 2019 (COVID-19). (Mayo Clinic, 2020). https://www.mayoclinic.org/diseases-conditions/coronavirus/symptoms-causes/syc-20479963
- M.D. Bhavsar, M.M. Amiji, Polymeric nano- and microp technologies for oral gene delivery. Expert Opin. Drug Deliv. 4(3), 197–213 (2007). https://doi.org/10.1517/17425247.4.3.197
- K.E. Bissati, Y. Zhou, S.M. Paulillo, S.K. Raman, C.P. Karch et al., Protein nanovaccine confers robust immunity against Toxoplasma. npj Vaccines 2, 24 (2017). https://doi.org/10.1038/s41541-017-0024-6
- M. Amidi, S.G. Romeijn, J.C. Verhoef, H.E. Junginger, L. Bungener et al., N-trimethyl chitosan (TMC) nanops loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25(1), 144–153 (2007). https://doi.org/10.1016/j.vaccine.2006.06.086
- Y. Guo, D. Wang, Q. Song, T. Wu, X. Zhuang et al., Erythrocyte membrane-enveloped polymeric nanops as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 9(7), 6918–6933 (2015). https://doi.org/10.1021/acsnano.5b01042
- S. Jong, G. Chikh, L. Sekirov, S. Raney, S. Semple et al., Encapsulation in liposomal nanops enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol. Immunother. 56(8), 1251–1264 (2007). https://doi.org/10.1007/s00262-006-0276-x
- E. Farris, D.M. Brown, A.E. Ramer-Tait, A.K. Pannier, Micro- and nanoparticulates for DNA vaccine delivery. Exp. Biol. Med. 241(9), 919–929 (2016). https://doi.org/10.1177/1535370216643771
- D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, S. Krishnaswamy, M.M. Essa et al., Therapeutic efficacy of nanops and routes of administration. Biomater. Res. 23, 20 (2019). https://doi.org/10.1186/s40824-019-0166-x
- J. Lu, G. Lu, S. Tan, J. Xia, H. Xiong et al., A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like ps induces a strong antiviral-like immune response in mice. Cell Res. 30(10), 936–939 (2020). https://doi.org/10.1038/s41422-020-00392-7
- A.C. Anselmo, S. Mitragotri, Nanops in the clinic: an update. Bioeng. Transl. Med. 4(3), e10143 (2019). https://doi.org/10.1002/btm2.10143
- L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood et al., Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015). https://doi.org/10.3389/fphar.2015.00286
- R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanops—from liposomes to mRNA vaccine selivery, a landscape of research diversity and advancement. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c04996
- R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanops-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c04996
- C. Rinoldi, S.S. Zargarian, P. Nakielski, X. Li, A. Liguori et al., Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID-19 vaccines. Small Methods 5(9), 2100402 (2021). https://doi.org/10.1002/smtd.202100402
- Editorial, Let’s talk about lipid nanops. Nat. Rev. Mater. 6(2), 99 (2021). https://doi.org/10.1038/s41578-021-00281-4
- O.S. Fenton, K.N. Olafson, P.S. Pillai, M.J. Mitchell, R. Langer, Advances in biomaterials for drug delivery. Adv. Mater. 30(29), 1705328 (2018). https://doi.org/10.1002/adma.201705328
- X. Cheng, R.J. Lee, The role of helper lipids in lipid nanops (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016). https://doi.org/10.1016/j.addr.2016.01.022
- S.M. Moghimi, Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol. Ther. 29(3), 898–900 (2021). https://doi.org/10.1016/j.ymthe.2021.01.030
- L.P. Mendes, J. Pan, V.P. Torchilin, Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9), 1401 (2017). https://doi.org/10.3390/molecules22091401
- M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas et al., Engineering precision nanops for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8
- F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanops. Mol. Pharm. 5(4), 505–515 (2008). https://doi.org/10.1021/mp800051m
- J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.P. Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology. 16(1), 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
- A.M. Jhaveri, V.P. Torchilin, Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol. 5, 77 (2014). https://doi.org/10.3389/fphar.2014.00077
- E. Rideau, R. Dimova, P. Schwille, F.R. Wurm, K. Landfester, Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47(23), 8572–8610 (2018). https://doi.org/10.1039/c8cs00162f
- Z. Mhlwatika, B.A. Aderibigbe, Application of dendrimers for the treatment of infectious diseases. Molecules 23(9), 2205 (2018). https://doi.org/10.3390/molecules23092205
- I. Tariq, M.Y. Ali, M.F. Sohail, M.U. Amin, S. Ali et al., Lipodendriplexes mediated enhanced gene delivery: a cellular to pre-clinical investigation. Sci. Rep. 10(1), 21446 (2020). https://doi.org/10.1038/s41598-020-78123-6
- J. Chen, A. Ellert-Miklaszewska, S. Garofalo, A.K. Dey, J. Tang et al., Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells. Nat. Protoc. 16(1), 327–351 (2021). https://doi.org/10.1038/s41596-020-00418-9
- S. Ahn, I.H. Lee, S. Kang, D. Kim, M. Choi et al., Gold nanops displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv. Healthc. Mater. 3(8), 1194–1199 (2014). https://doi.org/10.1002/adhm.201300597
- R. Gottardi, B. Douradinha, Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. J. Nanobiotechn. 11, 30 (2013). https://doi.org/10.1186/1477-3155-11-30
- K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
- A.K. Pearce, T.R. Wilks, M.C. Arno, R.K. O’Reilly, Synthesis and applications of anisotropic nanops with precisely defined dimensions. Nat. Rev. Chem. 5(1), 21–45 (2021). https://doi.org/10.1038/s41570-020-00232-7
- A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019). https://doi.org/10.1016/j.actbio.2019.05.022
- R. Kumar, P.C. Ray, D. Datta, G.P. Bansal, E. Angov et al., Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanops. Vaccine 33(39), 5064–5071 (2015). https://doi.org/10.1016/j.vaccine.2015.08.025
- D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanops in drug and gene delivery systems. J. Control. Release 149(1), 65–71 (2011). https://doi.org/10.1016/j.jconrel.2009.12.006
- D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanop-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016). https://doi.org/10.1007/s11095-016-1958-5
- F. Yu, J. Wang, J. Dou, H. Yang, X. He et al., Nanop-based adjuvant for enhanced protective efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 against Mycobacterium tuberculosis infection. Nanomed. Nanotechnol. Biol. Med. 8(8), 1337–1344 (2012). https://doi.org/10.1016/j.nano.2012.02.015
- K.J. McHugh, L. Jing, S.Y. Severt, M. Cruz, M. Sarmadi et al., Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 11(523), aay7162 (2019). https://doi.org/10.1126/scitranslmed.aay7162
- E.M. Plummer, M. Manchester, Viral nanops and virus-like ps: platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3(2), 174–196 (2011). https://doi.org/10.1002/wnan.119
- S. Chattopadhyay, J.Y. Chen, H.W. Chen, C.M.J. Hu, Nanop vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics 1(3), 244–260 (2017). https://doi.org/10.7150/ntno.19796
- M. Perotti, L. Perez, Virus-like ps and nanops for vaccine development against HCMV. Viruses 12(1), 35 (2019). https://doi.org/10.3390/v12010035
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
- M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15(8), 646–655 (2020). https://doi.org/10.1038/s41565-020-0737-y
- L. Xu, Y. Liu, Z. Chen, W. Li, Y. Liu et al., Morphologically virus-like fullerenol nanops act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv. Mater. 25(41), 5928–5936 (2013). https://doi.org/10.1002/adma.201300583
- R. Ribeiro-Viana, M. Sánchez-Navarro, J. Luczkowiak, J.R. Koeppe, R. Delgado et al., Virus-like glycodendrinanops displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 3(1), 1303 (2012). https://doi.org/10.1038/ncomms2302
- W. Wang, X. Zhou, Y. Bian, S. Wang, Q. Chai et al., Dual-targeting nanop vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat. Nanotechnol. 15(5), 406–416 (2020). https://doi.org/10.1038/s41565-020-0648-y
- E.A. Evtushenko, E.M. Ryabchevskaya, N.A. Nikitin, J.G. Atabekov, O.V. Karpova, Plant virus ps with various shapes as potential adjuvants. Sci. Rep. 10(1), 10365 (2020). https://doi.org/10.1038/s41598-020-67023-4
- M.O. Mohsen, I. Balke, S. Zinkhan, V. Zeltina, X. Liu et al., A scalable and highly immunogenic virus-like p-based vaccine against SARS-CoV-2. Allergy (2021). https://doi.org/10.1111/all.15080
- A. Biddlecome, H.H. Habte, K.M. McGrath, S. Sambanthamoorthy, M. Wurm et al., Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like ps. PLoS ONE 14(6), e0215031 (2019). https://doi.org/10.1371/journal.pone.0215031
- C. Qian, X. Liu, Q. Xu, Z. Wang, J. Chen et al., Recent progress on the versatility of virus-like ps. Vaccines 8(1), 139 (2020). https://doi.org/10.3390/vaccines8010139
- H. Garg, T. Mehmetoglu-Gurbuz, A. Joshi, Virus like ps (VLP) as multivalent vaccine candidate against chikungunya, Japanese encephalitis, yellow fever and Zika virus. Sci. Rep. 10(1), 4017 (2020). https://doi.org/10.1038/s41598-020-61103-1
- C.N. Fries, E.J. Curvino, J.L. Chen, S.R. Permar, G.G. Fouda et al., Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 16(4), 1–14 (2021). https://doi.org/10.1038/s41565-020-0739-9
- P. Krause, T.R. Fleming, I. Longini, A.M. Henao-Restrepo, R. Peto et al., COVID-19 vaccine trials should seek worthwhile efficacy. Lancet 396(10253), 741–743 (2020). https://doi.org/10.1016/S0140-6736(20)31821-3
- World Health Organization, Draft landscape and tracker of COVID-19 candidate vaccines. (WHO, 2021). https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
- S. Han, Clinical vaccine development. Clin. Exp. Vaccine Res. 4(1), 46–53 (2015). https://doi.org/10.7774/cevr.2015.4.1.46
- U.S. Food and Drug Administration, Vaccine product approval process. (Silver Spring: U.S. Food and Drug Administration, 2014). https://www.fda.gov/vaccines-blood-biologics/development-approval-process-cber/vaccine-product-approval-process
- K. Singh, S. Mehta, The clinical development process for a novel preventive vaccine: an overview. J. Postgrad. Med. 62(1), 4–11 (2016). https://doi.org/10.4103/0022-3859.173187
- World Health Organization, Guidelines on clinical evaluation of vaccines: regulatory expectations. (WHO, 2020). https://www.who.int/publications/m/item/WHO-TRS-1004-web-annex-9
- Centers for Disease Control and Prevention, Vaccine testing and the approval process. (National Center for Immunization and Respiratory Diseases (NCIRD), 2014). https://www.cdc.gov/vaccines/basics/test-approve.html
- C.H. Wong, K.W. Siah, A.W. Lo, Estimation of clinical trial success rates and related parameters. Biostatistics 20(2), 273–286 (2019). https://doi.org/10.1093/biostatistics/kxx069
- Centers for Disease Control and Prevention, Epidemiology and prevention of vaccine-preventable diseases: mumps. (CDC, 2019). https://www.cdc.gov/vaccines/pubs/pinkbook/mumps.html
- R. Khamsi, If a coronavirus vaccine arrives, can the world make enough? Nature 580(7805), 578–580 (2020). https://doi.org/10.1038/d41586-020-01063-8
- Moderna, Moderna receives FDA fast track designation for mRNA vaccine (mRNA-1273) against novel coronavirus. (Moderna, 2020). https://investors.modernatx.com/news-releases/news-release-details/moderna-receives-fda-fast-track-designation-mrna-vaccine-mrna#:~:text=%2D%2D(BUSINESS%20WIRE)%2D%2DMay,FDA)%20has%20granted%20Fast%20Track
- Pfizer, Pfizer and BioNTech granted FDA fast track designation for two investigational mRNA-based vaccine candidates against SARS-CoV-2. (Pfizer, 2020). https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-granted-fda-fast-track-designation-two
- G. Forni, A. Mantovani, G. Forni, A. Mantovani, L. Moretta et al., COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 28(2), 626–639 (2021). https://doi.org/10.1038/s41418-020-00720-9
- N. Thiel, C. Selwyn, G. Murphy, S. Simpson, A.C. Chakrabarti, Recommendations for acceleration of vaccine development and emergency use filings for COVID-19 leveraging lessons from the novel oral polio vaccine. npj Vaccines 6(1), 63 (2021). https://doi.org/10.1038/s41541-021-00325-4
- A. Bolhassani, S.R. Yazdi, DNA immunization as an efficient strategy for vaccination. Avicenna J. Med. Biotechnol. 1(2), 71–88 (2009)
- N. Pardi, M.J. Hogan, F.W. Porter, D. Weissman, mRNA vaccines: a new era in vaccinology. Nat. Rev. Drug Discov. 17(4), 261–279 (2018). https://doi.org/10.1038/nrd.2017.243
- C. Zhang, G. Maruggi, H. Shan, J. Li, Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594 (2019). https://doi.org/10.3389/fimmu.2019.00594
- N.P. Restifo, H. Ying, L. Hwang, W.W. Leitner, The promise of nucleic acid vaccines. Gene Ther. 7(2), 89–92 (2000). https://doi.org/10.1038/sj.gt.3301117
- K. Zhao, G. Rong, Y. Hao, L. Yu, H. Kang et al., IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanops. Sci. Rep. 6(1), 25720 (2016). https://doi.org/10.1038/srep25720
- S. Boyoglu, K. Vig, S. Pillai, V. Rangari, V.A. Dennis et al., Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomed. Nanotechnol. Biol. Med. 5(4), 463–472 (2009). https://doi.org/10.1016/j.nano.2009.02.004
- D.S. Watson, A.N. Endsley, L. Huang, Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13), 2256–2272 (2012). https://doi.org/10.1016/j.vaccine.2012.01.070
- K. Hadinoto, A. Sundaresan, W.S. Cheow, Lipid-polymer hybrid nanops as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 85(3), 427–443 (2013). https://doi.org/10.1016/j.ejpb.2013.07.002
- N. Armbruster, E. Jasny, B. Petsch, Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccines 7(4), 132 (2019). https://doi.org/10.3390/vaccines7040132
- H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanop uptake: the phagocyte problem. Nano Today 10(4), 487–510 (2015). https://doi.org/10.1016/j.nantod.2015.06.006
- S. Rauch, E. Jasny, K.E. Schmidt, B. Petsch, New vaccine technologies to combat outbreak situations. Front. Immunol. 9, 1963 (2018). https://doi.org/10.3389/fimmu.2018.01963
- I. Yanagihara, Y. Kaneda, K. Inui, S. Okada, Liposome-mediated gene transfer. Molecular and Cell Biology of Human Gene Therapeutics, 64–82 (Springer, Dordrecht, 1995). https://doi.org/10.1007/978-94-011-0547-7_4
- D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4(7), 581–593 (2005). https://doi.org/10.1038/nrd1775
- A. Wadhwa, A. Aljabbari, A. Lokras, C. Foged, A. Thakur, Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 12(2), 102 (2020). https://doi.org/10.3390/pharmaceutics12020102
- W.B. Liechty, N.A. Peppas, Expert opinion: responsive polymer nanops in cancer therapy. Eur. J. Pharm. Biopharm. 80(2), 241–246 (2012). https://doi.org/10.1016/j.ejpb.2011.08.004
- L. Versteeg, M.M. Almutairi, P.J. Hotez, J. Pollet, Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines 7(4), 122 (2019). https://doi.org/10.3390/vaccines7040122
- D. Hobernik, M. Bros, DNA vaccines-how far from clinical use? Int. J. Mol. Sci. 19(11), 3605 (2018). https://doi.org/10.3390/ijms19113605
- G. Dauphin, S. Zientara, West Nile virus: recent trends in diagnosis and vaccine development. Vaccine 25(30), 5563–5576 (2007). https://doi.org/10.1016/j.vaccine.2006.12.005
- M.A. Kutzler, D.B. Weiner, DNA vaccines: ready for prime time? Nat. Rev. Genet. 9(10), 776–788 (2008). https://doi.org/10.1038/nrg2432
- L.M. Kranz, M. Diken, H. Haas, S. Kreiter, C. Loquai et al., Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607), 396–401 (2016). https://doi.org/10.1038/nature18300
- K. Bahl, J.J. Senn, O. Yuzhakov, A. Bulychev, L.A. Brito et al., Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25(6), 1316–1327 (2017). https://doi.org/10.1016/j.ymthe.2017.03.035
- J.M. Richner, S. Himansu, K.A. Dowd, S.L. Butler, V. Salazar et al., Modified mRNA vaccines protect against Zika virus infection. Cell 168(6), 1114–1125 (2017). https://doi.org/10.1016/j.cell.2017.02.017
- J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi et al., Direct gene transfer into mouse muscle in vivo. Science 247(4949), 1465–1468 (1990). https://doi.org/10.1126/science.1690918
- C. Iavarone, D.T. O’Hagan, D. Yu, N.F. Delahaye, J.B. Ulmer, Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines 16(9), 871–881 (2017). https://doi.org/10.1080/14760584.2017.1355245
- Pfizer, COVID-19 R&D presentation. (Pfizer, 2020). Accessed 8 November 2021. https://s21.q4cdn.com/317678438/files/doc_presentations/2020/09/Covid-19-Programs_FINAL.pdf
- U.S. National Library of Medicine, Study to describe the safety, tolerability, immunogenicity, and potential efficacy of RNA vaccine candidates against COVID-19 in healthy adults. (NIH, 2020). Accessed 8 November 2021. https://clinicaltrials.gov/ct2/show/NCT04368728
- J. Hodgson, The pandemic pipeline. Nat. Biotechnol. 38(5), 523–532 (2020). https://doi.org/10.1038/d41587-020-00005-z
- A.B. Vogel, I. Kanevsky, Y. Che, K.A. Swanson, A. Muik et al., BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 592(7853), 283–289 (2021). https://doi.org/10.1038/s41586-021-03275-y
- NIH. A Trial Investigating the Safety and Effects of Four BNT162 Vaccines Against COVID-2019 in Healthy and Immunocompromised Adults, (2020).
- M.J. Mulligan, K.E. Lyke, N. Kitchin, J. Absalon, A. Gurtman et al., Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586(7830), 589–593 (2020). https://doi.org/10.1038/s41586-020-2639-4
- S. Güthe, L. Kapinos, A. Möglich, S. Meier, S. Grzesiek et al., Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin. J. Mol. Biol. 337(4), 905–915 (2004). https://doi.org/10.1016/j.jmb.2004.02.020
- U. Sahin, A. Muik, E. Derhovanessian, I. Vogler, L.M. Kranz et al., Concurrent human antibody and Th1 type T-cell responses elicited by a COVID-19 RNA vaccine. medRxiv (2020). https://doi.org/10.1101/2020.07.17.20140533
- Pfizer, Pfizer and BioNTech choose lead mRNA vaccine candidate against COVID-19 and commence pivotal Phase 2/3 global study. (Pfizer, 2020). Accessed 8 November 2021. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-choose-lead-mrna-vaccine-candidate-0
- F.P. Polack, S.J. Thomas, N. Kitchin, J. Absalon, A. Gurtman et al., Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 383(27), 2603–2615 (2020). https://doi.org/10.1056/NEJMoa2034577
- L.J. Abu-Raddad, H. Chemaitelly, A.A. Butt, Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N. Engl. J. Med. 385(2), 187–189 (2021). https://doi.org/10.1056/NEJMc2104974
- Z. Wang, F. Schmidt, Y. Weisblum, F. Muecksch, C.O. Barnes et al., mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592(7855), 616–622 (2021). https://doi.org/10.1038/s41586-021-03324-6
- K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586(7830), 567–571 (2020). https://doi.org/10.1038/s41586-020-2622-0
- V.A. Fulginiti, J.J. Eller, A.W. Downie, C.H. Kempe, Altered reactivity to measles virus: atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202(12), 1075–1080 (1967). https://doi.org/10.1001/jama.1967.03130250057008
- H.W. Kim, J.G. Canchola, C.D. Brandt, G. Pyles, R.M. Chanock et al., Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89(4), 422–434 (1969). https://doi.org/10.1093/oxfordjournals.aje.a120955
- K.S. Corbett, B. Flynn, K.E. Foulds, J.R. Francica, S. Boyoglu-Barnum et al., Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383(16), 1544–1555 (2020). https://doi.org/10.1056/NEJMoa2024671
- National Institute of Allergy and Infectious Diseases. Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19), U.S. National Library of Medicine, (2020).
- Moderna, Moderna announces positive interim phase 1 data for its mRNA vaccine (mRNA-1273) against novel coronavirus. (Moderna, 2020). Accessed 8 November 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-interim-phase-1-data-its-mrna-vaccine/
- L.A. Jackson, E.J. Anderson, N.G. Rouphael, P.C. Roberts, M. Makhene et al., An mRNA vaccine against SARS-CoV-2 - preliminary report. N. Engl. J. Med. 383(20), 1920–1931 (2020). https://doi.org/10.1056/NEJMoa2022483
- U.S. National Library of Medicine, Dose-confirmation study to evaluate the safety, reactogenicity, and immunogenicity of mRNA-1273 COVID-19 vaccine in adults aged 18 years and older. (2020). Accessed 8 November 2021. https://clinicaltrials.gov/ct2/show/NCT04405076
- L. Chu, R. McPhee, W. Huang, H. Bennett, R. Pajon et al., A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39(20), 2791–2799 (2021). https://doi.org/10.1016/j.vaccine.2021.02.007
- E.J. Anderson, N.G. Rouphael, A.T. Widge, L.A. Jackson, P.C. Roberts et al., Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383(25), 2427–2438 (2020). https://doi.org/10.1056/NEJMoa2028436
- L.R. Baden, H.M.E. Sahly, B. Essink, K. Kotloff, S. Frey et al., Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384(5), 403–416 (2021). https://doi.org/10.1056/NEJMoa2035389
- Moderna, Moderna announces positive initial booster data against SARS-CoV-2 variants of concern. (Moderna, 2021). Accessed 8 November 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov/
- X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanops for mRNA delivery. Nat. Rev. Mater. (2021). https://doi.org/10.1038/s41578-021-00358-0
- E. Blanco, H. Shen, M. Ferrari, Principles of nanop design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
- Z.I. Rajput, S.H. Hu, C.W. Xiao, A.G. Arijo, Adjuvant effects of saponins on animal immune responses. J. Zhejiang Univ. Sci. B 8(3), 153–161 (2007). https://doi.org/10.1631/jzus.2007.B0153
- B. Petsch, M. Schnee, A.B. Vogel, E. Lange, B. Hoffmann et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 30(12), 1210–1216 (2012). https://doi.org/10.1038/nbt.2436
- N.C. Kyriakidis, A. López-Cortés, E.V. González, A.B. Grimaldos, E.O. Prado, SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines 6(1), 28 (2021). https://doi.org/10.1038/s41541-021-00292-w
- R.T. Shroff, P. Chalasani, R. Wei, D. Pennington, G. Quirk et al., Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nat. Med. (2021). https://doi.org/10.1038/s41591-021-01542-z
- U.S. Food and Drug Administration, FDA Authorizes Pfizer-BioNTech COVID-19 vaccine for emergency use in children 5 through 11 years of age. (FDA, 2021). Accessed 8 November 2021. https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age#:~:text=Press%20Announcements-,FDA%20Authorizes%20Pfizer%2DBioNTech%20COVID%2D19%20Vaccine%20for%20Emergency%20Use,through%2011%20Years%20of%20Age&text=Today%2C%20the%20U.S.%20Food%20and,through%2011%20years%20of%20age
- A.D. Praticò, M. Ruggieri, COVID-19 vaccination for children: may be necessary for the full eradication of the disease. Pediatr. Res. (2021). https://doi.org/10.1038/s41390-021-01643-y
- World Bank, Global economic prospects, January 2021. (2021). https://doi.org/10.1596/978-1-4648-1612-3
- Y. Huang, C. Tan, J. Wu, M. Chen, Z. Wang et al., Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 21(1), 163 (2020). https://doi.org/10.1186/s12931-020-01429-6
- A. Jaffri, U.A. Jaffri, Post-Intensive care syndrome and COVID-19: crisis after a crisis? Heart Lung 49(6), 883–884 (2020). https://doi.org/10.1016/j.hrtlng.2020.06.006
- Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5(11), 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
- Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang et al., Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021). https://doi.org/10.1016/j.nantod.2020.101019
- S. Danese, B. Sands, S.C. Ng, L. Peyrin-Biroulet, The day after COVID-19 in IBD: how to go back to ‘normal.’ Nat. Rev. Gastroenterol. Hepatol. 17, 441–443 (2020). https://doi.org/10.1038/s41575-020-0322-8
- K.B. Habersaat, C. Betsch, M. Danchin, C.R. Sunstein, R. Böhm et al., Ten considerations for effectively managing the COVID-19 transition. Nat. Hum. Behav. 4, 677–687 (2020). https://doi.org/10.1038/s41562-020-0906-x
- Centers for Disease Control and Prevention, CDC activities and initiatives supporting the COVID-19 response and the President’s plan for opening America up again. (CDC, 2020). Accessed 8 November 2021. https://stacks.cdc.gov/view/cdc/88478
- M. Kidd, A. Richter, A. Best, N. Cumley, J. Mirza et al., S-Variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral load in samples tested by TaqPath polymerase chain reaction. J. Infect. Dis. 223(10), 1666–1670 (2021). https://doi.org/10.1093/infdis/jiab082
- D.A. Collier, A.D. Marco, I. Ferreira, B. Meng, R.P. Datir et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593(7857), 136–141 (2021). https://doi.org/10.1038/s41586-021-03412-7
- C.K. Wibmer, F. Ayres, T. Hermanus, M. Madzivhandila, P. Kgagudi et al., SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27(4), 622–625 (2021). https://doi.org/10.1038/s41591-021-01285-x
- A. Alrubayyi, D. Peppa, Seeing SARS-CoV-2 variants through the eyes of T cells. Nat. Rev. Immunol. 21(5), 274–274 (2021). https://doi.org/10.1038/s41577-021-00551-w
- A. Tarke, J. Sidney, N. Methot, E.D. Yu, Y. Zhang et al., Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2(7), 100355 (2021). https://doi.org/10.1016/j.xcrm.2021.100355
- D. Planas, D. Veyer, A. Baidaliuk, I. Staropoli, F. Guivel-Benhassine et al., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596(7871), 276–280 (2021). https://doi.org/10.1038/s41586-021-03777-9
- B. Bozkurt, I. Kamat, P.J. Hotez, Myocarditis with COVID-19 mRNA vaccines. Circulation 144(6), 471–484 (2021). https://doi.org/10.1161/CIRCULATIONAHA.121.056135
- Centers for Disease Control and Prevention, Selected adverse events reported after COVID-19 vaccination. (CDC, 2021). Accessed 8 November 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html
- G. Sinagra, M. Merlo, A. Porcari, Exploring the possible link between myocarditis and mRNA COVID-19 vaccines. Eur. J. Intern. Med. 92, 28–30 (2021). https://doi.org/10.1016/j.ejim.2021.08.018
- M. Marshall, I.D. Ferguson, P. Lewis, P. Jaggi, C. Gagliardo et al., Symptomatic acute myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination. Pediatrics 148(3), 2021052478 (2021). https://doi.org/10.1542/peds.2021-052478
- A.K. Verma, K.J. Lavine, C.Y. Lin, Myocarditis after Covid-19 mRNA vaccination. N. Engl. J. Med. 385(14), 1332–1334 (2021). https://doi.org/10.1056/NEJMc2109975
- W.S. Lee, A.K. Wheatley, S.J. Kent, B.J. DeKosky, Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5(10), 1185–1191 (2020). https://doi.org/10.1038/s41564-020-00789-5
- Y. Zhou, Z. Liu, S. Li, W. Xu, Q. Zhang et al., Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 34(5), 108699 (2021). https://doi.org/10.1016/j.celrep.2021.108699
- U.S. Food and Drug Administration, FDA briefing document Pfizer-BioNTech COVID-19 vaccine. (FDA, 2020). Accessed 8 November 2021. https://www.fda.gov/media/144245/download
- T. Pilishvili, K.E. Fleming-Dutra, J.L. Farrar, R. Gierke, N.M. Mohr et al., Interim estimates of vaccine effectiveness of Pfizer-BioNTech and Moderna COVID-19 vaccines among health care personnel - 33 U.S. Sites, January-March 2021. MMWR 70(20), 753–758 (2021). https://doi.org/10.15585/mmwr.mm7020e2
- S.E. Oliver, J.W. Gargano, M. Marin, M. Wallace, K.G. Curran et al., The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine - United States, December 2020. MMWR 69(50), 1922–1924 (2020). https://doi.org/10.15585/mmwr.mm6950e2
- Food and Drug Administration, Fact sheet for recipients and caregivers Emergency Use Authorization (EUA) of the Moderna COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19) in individuals 18 years of age and older. (FDA, 2021). Accessed 8 November 2021. https://www.fda.gov/media/144638/download#:~:text=The%20Moderna%20COVID%2D19%20Vaccine%20contains%20the%20following%20ingredients%3A%20messenger,hydrochloride%2C%20acetic%20acid%2C%20sodium%20acetate
- V. Shinde, S. Bhikha, Z. Hoosain, M. Archary, Q. Bhorat et al., Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N. Engl. J. Med. 384(20), 1899–1809 (2021). https://doi.org/10.1056/NEJMoa2103055
- P.T. Heath, E.P. Galiza, D.N. Baxter, M. Boffito, D. Browne et al., Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B.1.1.7 variant. medRxiv (2021). https://doi.org/10.1101/2021.05.13.21256639
- National Institutes of Health, U.S. clinical trial results show Novavax vaccine is safe and prevents COVID-19. (NIH, 2021). Accessed 8 November 2021. https://www.nih.gov/news-events/news-releases/us-clinical-trial-results-show-novavax-vaccine-safe-prevents-covid-19
References
J.K. Taubenberger, The origin and virulence of the 1918 “Spanish” influenza virus. Proc. Am. Philos. Soc. 150(1), 86–112 (2006)
E.C. Holmes, S.A. Goldstein, A.L. Rasmussen, D.L. Robertson, A. Crits-Christoph et al., The origins of SARS-CoV-2: a critical review. Cell 184(19), 4848–4856 (2021). https://doi.org/10.1016/j.cell.2021.08.017
World Health Organization, Timeline of WHO’s response to COVID-19. (WHO, 2020). Accessed 8 November 2021. https://www.who.int/news-room/detail/29-06-2020-covidtimeline
World Health Organization, WHO coronavirus (COVID-19) dashboard. (WHO, 2021). Accessed 8 November 2021. https://covid19.who.int/
J. Wolfram, M. Ferrari, Clinical cancer nanomedicine. Nano Today 25, 85–98 (2019). https://doi.org/10.1016/j.nantod.2019.02.005
D.M. Smith, J.K. Simon, J.R. Baker, Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13(8), 592–605 (2013). https://doi.org/10.1038/nri3488
L.J. Cruz, P.J. Tacken, R. Fokkink, B. Joosten, M.C. Stuart et al., Targeted PLGA nano- but not microps specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release 144(2), 118–126 (2010). https://doi.org/10.1016/j.jconrel.2010.02.013
A. Iwasaki, Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol. 10(10), 699–711 (2010). https://doi.org/10.1038/nri2836
A.R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology 1282, 1–23 (Humana Press, New York, 2015). https://doi.org/10.1007/978-1-4939-2438-7_1
N. Wang, J. Shang, S. Jiang, L. Du, Subunit vaccines against emerging pathogenic human coronaviruses. Front. Microbiol. 11, 298 (2020). https://doi.org/10.3389/fmicb.2020.00298
K.G. Andersen, A. Rambaut, W.I. Lipkin, E.C. Holmes, R.F. Garry, The proximal origin of SARS-CoV-2. Nat. Med. 26(4), 450–452 (2020). https://doi.org/10.1038/s41591-020-0820-9
L. Kuo, K.R. Hurst, P.S. Masters, Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol. 81(5), 2249 (2007). https://doi.org/10.1128/JVI.01577-06
D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019). https://doi.org/10.1186/s12985-019-1182-0
M. Nishiga, D.W. Wang, Y. Han, D.B. Lewis, J.C. Wu, COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17(9), 543–558 (2020). https://doi.org/10.1038/s41569-020-0413-9
A. Gupta, M.V. Madhavan, K. Sehgal, N. Nair, S. Mahajan et al., Extrapulmonary manifestations of COVID-19. Nat. Med. 26(7), 1017–1032 (2020). https://doi.org/10.1038/s41591-020-0968-3
M.Z. Tay, C.M. Poh, L. Rénia, P.A. MacAry, L.F.P. Ng, The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20(6), 363–374 (2020). https://doi.org/10.1038/s41577-020-0311-8
I. Hamming, W. Timens, M.L. Bulthuis, A.T. Lely, G. Navis et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus, a first step in understanding SARS pathogenesis. J. Pathol. 203(2), 631–637 (2004). https://doi.org/10.1002/path.1570
H.P. Jia, D.C. Look, L. Shi, M. Hickey, L. Pewe et al., ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79(23), 14614–14621 (2005). https://doi.org/10.1128/JVI.79.23.14614-14621.2005
M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kruger, T. Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2), 271–280 (2020). https://doi.org/10.1016/j.cell.2020.02.052
R.J. Mason, Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 55(4), 2000607 (2020). https://doi.org/10.1183/13993003.00607-2020
A. Heurich, H. Hofmann-Winkler, S. Gierer, T. Liepold, O. Jahn et al., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88(2), 1293–1307 (2014). https://doi.org/10.1128/JVI.02202-13
R. Zang, M.F.G. Castro, B.T. McCune, Q. Zeng, P.W. Rothlauf et al., TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5(47), abc3582 (2020). https://doi.org/10.1126/sciimmunol.abc3582
Z.Y. Yang, Y. Huang, L. Ganesh, K. Leung, W.P. Kong et al., pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78(11), 5642–5650 (2004). https://doi.org/10.1128/JVI.78.11.5642-5650.2004
D.A. Groneberg, R. Hilgenfeld, P. Zabel, Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir. Res. 6, 8 (2005). https://doi.org/10.1186/1465-9921-6-8
H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433 (2020). https://doi.org/10.1016/j.jaut.2020.102433
W.T. Harvey, A.M. Carabelli, B. Jackson, R.K. Gupta, E.C. Thomson et al., SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19(7), 409–424 (2021). https://doi.org/10.1038/s41579-021-00573-0
A.J. Greaney, A.N. Loes, K.H.D. Crawford, T.N. Starr, K.D. Malone et al., Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 29(3), 463–476 (2021). https://doi.org/10.1016/j.chom.2021.02.003
E.C. Sabino, L.F. Buss, M.P.S. Carvalho, C.A. Prete, M.A.E. Crispim et al., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397(10273), 452–455 (2021). https://doi.org/10.1016/S0140-6736(21)00183-5
H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca et al., Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, (2020). https://doi.org/10.1101/2020.12.21.20248640
E. Volz, S. Mishra, M. Chand, J.C. Barrett, R. Johnson et al., Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv, (2021). https://doi.org/10.1101/2020.12.30.20249034
P. Wang, M.S. Nair, L. Liu, S. Iketani, Y. Luo et al., Antibody resistance of SARS-CoV-2 variants B1.351 and B.1.1.7. Nature 593(7857), 130–135 (2021). https://doi.org/10.1038/s41586-021-03398-2
D. Zhou, W. Dejnirattisai, P. Supasa, C. Liu, A.J. Mentzer et al., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184(9), 2348–2361 (2021). https://doi.org/10.1016/j.cell.2021.02.037
Centers for Disease Control and Prevention, Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). (CDC, 2020). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
S. Zaim, J.H. Chong, V. Sankaranarayanan, A. Harky, COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45(8), 100618 (2020). https://doi.org/10.1016/j.cpcardiol.2020.100618
Mayo Clinic, Coronavirus disease 2019 (COVID-19). (Mayo Clinic, 2020). https://www.mayoclinic.org/diseases-conditions/coronavirus/symptoms-causes/syc-20479963
M.D. Bhavsar, M.M. Amiji, Polymeric nano- and microp technologies for oral gene delivery. Expert Opin. Drug Deliv. 4(3), 197–213 (2007). https://doi.org/10.1517/17425247.4.3.197
K.E. Bissati, Y. Zhou, S.M. Paulillo, S.K. Raman, C.P. Karch et al., Protein nanovaccine confers robust immunity against Toxoplasma. npj Vaccines 2, 24 (2017). https://doi.org/10.1038/s41541-017-0024-6
M. Amidi, S.G. Romeijn, J.C. Verhoef, H.E. Junginger, L. Bungener et al., N-trimethyl chitosan (TMC) nanops loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25(1), 144–153 (2007). https://doi.org/10.1016/j.vaccine.2006.06.086
Y. Guo, D. Wang, Q. Song, T. Wu, X. Zhuang et al., Erythrocyte membrane-enveloped polymeric nanops as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 9(7), 6918–6933 (2015). https://doi.org/10.1021/acsnano.5b01042
S. Jong, G. Chikh, L. Sekirov, S. Raney, S. Semple et al., Encapsulation in liposomal nanops enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol. Immunother. 56(8), 1251–1264 (2007). https://doi.org/10.1007/s00262-006-0276-x
E. Farris, D.M. Brown, A.E. Ramer-Tait, A.K. Pannier, Micro- and nanoparticulates for DNA vaccine delivery. Exp. Biol. Med. 241(9), 919–929 (2016). https://doi.org/10.1177/1535370216643771
D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, S. Krishnaswamy, M.M. Essa et al., Therapeutic efficacy of nanops and routes of administration. Biomater. Res. 23, 20 (2019). https://doi.org/10.1186/s40824-019-0166-x
J. Lu, G. Lu, S. Tan, J. Xia, H. Xiong et al., A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like ps induces a strong antiviral-like immune response in mice. Cell Res. 30(10), 936–939 (2020). https://doi.org/10.1038/s41422-020-00392-7
A.C. Anselmo, S. Mitragotri, Nanops in the clinic: an update. Bioeng. Transl. Med. 4(3), e10143 (2019). https://doi.org/10.1002/btm2.10143
L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood et al., Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015). https://doi.org/10.3389/fphar.2015.00286
R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanops—from liposomes to mRNA vaccine selivery, a landscape of research diversity and advancement. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c04996
R. Tenchov, R. Bird, A.E. Curtze, Q. Zhou, Lipid nanops-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c04996
C. Rinoldi, S.S. Zargarian, P. Nakielski, X. Li, A. Liguori et al., Nanotechnology-assisted RNA delivery: from nucleic acid therapeutics to COVID-19 vaccines. Small Methods 5(9), 2100402 (2021). https://doi.org/10.1002/smtd.202100402
Editorial, Let’s talk about lipid nanops. Nat. Rev. Mater. 6(2), 99 (2021). https://doi.org/10.1038/s41578-021-00281-4
O.S. Fenton, K.N. Olafson, P.S. Pillai, M.J. Mitchell, R. Langer, Advances in biomaterials for drug delivery. Adv. Mater. 30(29), 1705328 (2018). https://doi.org/10.1002/adma.201705328
X. Cheng, R.J. Lee, The role of helper lipids in lipid nanops (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016). https://doi.org/10.1016/j.addr.2016.01.022
S.M. Moghimi, Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol. Ther. 29(3), 898–900 (2021). https://doi.org/10.1016/j.ymthe.2021.01.030
L.P. Mendes, J. Pan, V.P. Torchilin, Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9), 1401 (2017). https://doi.org/10.3390/molecules22091401
M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas et al., Engineering precision nanops for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8
F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanops. Mol. Pharm. 5(4), 505–515 (2008). https://doi.org/10.1021/mp800051m
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.P. Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology. 16(1), 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
A.M. Jhaveri, V.P. Torchilin, Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol. 5, 77 (2014). https://doi.org/10.3389/fphar.2014.00077
E. Rideau, R. Dimova, P. Schwille, F.R. Wurm, K. Landfester, Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47(23), 8572–8610 (2018). https://doi.org/10.1039/c8cs00162f
Z. Mhlwatika, B.A. Aderibigbe, Application of dendrimers for the treatment of infectious diseases. Molecules 23(9), 2205 (2018). https://doi.org/10.3390/molecules23092205
I. Tariq, M.Y. Ali, M.F. Sohail, M.U. Amin, S. Ali et al., Lipodendriplexes mediated enhanced gene delivery: a cellular to pre-clinical investigation. Sci. Rep. 10(1), 21446 (2020). https://doi.org/10.1038/s41598-020-78123-6
J. Chen, A. Ellert-Miklaszewska, S. Garofalo, A.K. Dey, J. Tang et al., Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells. Nat. Protoc. 16(1), 327–351 (2021). https://doi.org/10.1038/s41596-020-00418-9
S. Ahn, I.H. Lee, S. Kang, D. Kim, M. Choi et al., Gold nanops displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv. Healthc. Mater. 3(8), 1194–1199 (2014). https://doi.org/10.1002/adhm.201300597
R. Gottardi, B. Douradinha, Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. J. Nanobiotechn. 11, 30 (2013). https://doi.org/10.1186/1477-3155-11-30
K.L. Hess, I.L. Medintz, C.M. Jewell, Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today 27, 73–98 (2019). https://doi.org/10.1016/j.nantod.2019.04.005
A.K. Pearce, T.R. Wilks, M.C. Arno, R.K. O’Reilly, Synthesis and applications of anisotropic nanops with precisely defined dimensions. Nat. Rev. Chem. 5(1), 21–45 (2021). https://doi.org/10.1038/s41570-020-00232-7
A.M. Wagner, J.M. Knipe, G. Orive, N.A. Peppas, Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019). https://doi.org/10.1016/j.actbio.2019.05.022
R. Kumar, P.C. Ray, D. Datta, G.P. Bansal, E. Angov et al., Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanops. Vaccine 33(39), 5064–5071 (2015). https://doi.org/10.1016/j.vaccine.2015.08.025
D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanops in drug and gene delivery systems. J. Control. Release 149(1), 65–71 (2011). https://doi.org/10.1016/j.jconrel.2009.12.006
D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanop-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016). https://doi.org/10.1007/s11095-016-1958-5
F. Yu, J. Wang, J. Dou, H. Yang, X. He et al., Nanop-based adjuvant for enhanced protective efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 against Mycobacterium tuberculosis infection. Nanomed. Nanotechnol. Biol. Med. 8(8), 1337–1344 (2012). https://doi.org/10.1016/j.nano.2012.02.015
K.J. McHugh, L. Jing, S.Y. Severt, M. Cruz, M. Sarmadi et al., Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 11(523), aay7162 (2019). https://doi.org/10.1126/scitranslmed.aay7162
E.M. Plummer, M. Manchester, Viral nanops and virus-like ps: platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3(2), 174–196 (2011). https://doi.org/10.1002/wnan.119
S. Chattopadhyay, J.Y. Chen, H.W. Chen, C.M.J. Hu, Nanop vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics 1(3), 244–260 (2017). https://doi.org/10.7150/ntno.19796
M. Perotti, L. Perez, Virus-like ps and nanops for vaccine development against HCMV. Viruses 12(1), 35 (2019). https://doi.org/10.3390/v12010035
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15(8), 646–655 (2020). https://doi.org/10.1038/s41565-020-0737-y
L. Xu, Y. Liu, Z. Chen, W. Li, Y. Liu et al., Morphologically virus-like fullerenol nanops act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv. Mater. 25(41), 5928–5936 (2013). https://doi.org/10.1002/adma.201300583
R. Ribeiro-Viana, M. Sánchez-Navarro, J. Luczkowiak, J.R. Koeppe, R. Delgado et al., Virus-like glycodendrinanops displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 3(1), 1303 (2012). https://doi.org/10.1038/ncomms2302
W. Wang, X. Zhou, Y. Bian, S. Wang, Q. Chai et al., Dual-targeting nanop vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat. Nanotechnol. 15(5), 406–416 (2020). https://doi.org/10.1038/s41565-020-0648-y
E.A. Evtushenko, E.M. Ryabchevskaya, N.A. Nikitin, J.G. Atabekov, O.V. Karpova, Plant virus ps with various shapes as potential adjuvants. Sci. Rep. 10(1), 10365 (2020). https://doi.org/10.1038/s41598-020-67023-4
M.O. Mohsen, I. Balke, S. Zinkhan, V. Zeltina, X. Liu et al., A scalable and highly immunogenic virus-like p-based vaccine against SARS-CoV-2. Allergy (2021). https://doi.org/10.1111/all.15080
A. Biddlecome, H.H. Habte, K.M. McGrath, S. Sambanthamoorthy, M. Wurm et al., Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like ps. PLoS ONE 14(6), e0215031 (2019). https://doi.org/10.1371/journal.pone.0215031
C. Qian, X. Liu, Q. Xu, Z. Wang, J. Chen et al., Recent progress on the versatility of virus-like ps. Vaccines 8(1), 139 (2020). https://doi.org/10.3390/vaccines8010139
H. Garg, T. Mehmetoglu-Gurbuz, A. Joshi, Virus like ps (VLP) as multivalent vaccine candidate against chikungunya, Japanese encephalitis, yellow fever and Zika virus. Sci. Rep. 10(1), 4017 (2020). https://doi.org/10.1038/s41598-020-61103-1
C.N. Fries, E.J. Curvino, J.L. Chen, S.R. Permar, G.G. Fouda et al., Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 16(4), 1–14 (2021). https://doi.org/10.1038/s41565-020-0739-9
P. Krause, T.R. Fleming, I. Longini, A.M. Henao-Restrepo, R. Peto et al., COVID-19 vaccine trials should seek worthwhile efficacy. Lancet 396(10253), 741–743 (2020). https://doi.org/10.1016/S0140-6736(20)31821-3
World Health Organization, Draft landscape and tracker of COVID-19 candidate vaccines. (WHO, 2021). https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
S. Han, Clinical vaccine development. Clin. Exp. Vaccine Res. 4(1), 46–53 (2015). https://doi.org/10.7774/cevr.2015.4.1.46
U.S. Food and Drug Administration, Vaccine product approval process. (Silver Spring: U.S. Food and Drug Administration, 2014). https://www.fda.gov/vaccines-blood-biologics/development-approval-process-cber/vaccine-product-approval-process
K. Singh, S. Mehta, The clinical development process for a novel preventive vaccine: an overview. J. Postgrad. Med. 62(1), 4–11 (2016). https://doi.org/10.4103/0022-3859.173187
World Health Organization, Guidelines on clinical evaluation of vaccines: regulatory expectations. (WHO, 2020). https://www.who.int/publications/m/item/WHO-TRS-1004-web-annex-9
Centers for Disease Control and Prevention, Vaccine testing and the approval process. (National Center for Immunization and Respiratory Diseases (NCIRD), 2014). https://www.cdc.gov/vaccines/basics/test-approve.html
C.H. Wong, K.W. Siah, A.W. Lo, Estimation of clinical trial success rates and related parameters. Biostatistics 20(2), 273–286 (2019). https://doi.org/10.1093/biostatistics/kxx069
Centers for Disease Control and Prevention, Epidemiology and prevention of vaccine-preventable diseases: mumps. (CDC, 2019). https://www.cdc.gov/vaccines/pubs/pinkbook/mumps.html
R. Khamsi, If a coronavirus vaccine arrives, can the world make enough? Nature 580(7805), 578–580 (2020). https://doi.org/10.1038/d41586-020-01063-8
Moderna, Moderna receives FDA fast track designation for mRNA vaccine (mRNA-1273) against novel coronavirus. (Moderna, 2020). https://investors.modernatx.com/news-releases/news-release-details/moderna-receives-fda-fast-track-designation-mrna-vaccine-mrna#:~:text=%2D%2D(BUSINESS%20WIRE)%2D%2DMay,FDA)%20has%20granted%20Fast%20Track
Pfizer, Pfizer and BioNTech granted FDA fast track designation for two investigational mRNA-based vaccine candidates against SARS-CoV-2. (Pfizer, 2020). https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-granted-fda-fast-track-designation-two
G. Forni, A. Mantovani, G. Forni, A. Mantovani, L. Moretta et al., COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. 28(2), 626–639 (2021). https://doi.org/10.1038/s41418-020-00720-9
N. Thiel, C. Selwyn, G. Murphy, S. Simpson, A.C. Chakrabarti, Recommendations for acceleration of vaccine development and emergency use filings for COVID-19 leveraging lessons from the novel oral polio vaccine. npj Vaccines 6(1), 63 (2021). https://doi.org/10.1038/s41541-021-00325-4
A. Bolhassani, S.R. Yazdi, DNA immunization as an efficient strategy for vaccination. Avicenna J. Med. Biotechnol. 1(2), 71–88 (2009)
N. Pardi, M.J. Hogan, F.W. Porter, D. Weissman, mRNA vaccines: a new era in vaccinology. Nat. Rev. Drug Discov. 17(4), 261–279 (2018). https://doi.org/10.1038/nrd.2017.243
C. Zhang, G. Maruggi, H. Shan, J. Li, Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594 (2019). https://doi.org/10.3389/fimmu.2019.00594
N.P. Restifo, H. Ying, L. Hwang, W.W. Leitner, The promise of nucleic acid vaccines. Gene Ther. 7(2), 89–92 (2000). https://doi.org/10.1038/sj.gt.3301117
K. Zhao, G. Rong, Y. Hao, L. Yu, H. Kang et al., IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanops. Sci. Rep. 6(1), 25720 (2016). https://doi.org/10.1038/srep25720
S. Boyoglu, K. Vig, S. Pillai, V. Rangari, V.A. Dennis et al., Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomed. Nanotechnol. Biol. Med. 5(4), 463–472 (2009). https://doi.org/10.1016/j.nano.2009.02.004
D.S. Watson, A.N. Endsley, L. Huang, Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13), 2256–2272 (2012). https://doi.org/10.1016/j.vaccine.2012.01.070
K. Hadinoto, A. Sundaresan, W.S. Cheow, Lipid-polymer hybrid nanops as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 85(3), 427–443 (2013). https://doi.org/10.1016/j.ejpb.2013.07.002
N. Armbruster, E. Jasny, B. Petsch, Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccines 7(4), 132 (2019). https://doi.org/10.3390/vaccines7040132
H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanop uptake: the phagocyte problem. Nano Today 10(4), 487–510 (2015). https://doi.org/10.1016/j.nantod.2015.06.006
S. Rauch, E. Jasny, K.E. Schmidt, B. Petsch, New vaccine technologies to combat outbreak situations. Front. Immunol. 9, 1963 (2018). https://doi.org/10.3389/fimmu.2018.01963
I. Yanagihara, Y. Kaneda, K. Inui, S. Okada, Liposome-mediated gene transfer. Molecular and Cell Biology of Human Gene Therapeutics, 64–82 (Springer, Dordrecht, 1995). https://doi.org/10.1007/978-94-011-0547-7_4
D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4(7), 581–593 (2005). https://doi.org/10.1038/nrd1775
A. Wadhwa, A. Aljabbari, A. Lokras, C. Foged, A. Thakur, Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics 12(2), 102 (2020). https://doi.org/10.3390/pharmaceutics12020102
W.B. Liechty, N.A. Peppas, Expert opinion: responsive polymer nanops in cancer therapy. Eur. J. Pharm. Biopharm. 80(2), 241–246 (2012). https://doi.org/10.1016/j.ejpb.2011.08.004
L. Versteeg, M.M. Almutairi, P.J. Hotez, J. Pollet, Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines 7(4), 122 (2019). https://doi.org/10.3390/vaccines7040122
D. Hobernik, M. Bros, DNA vaccines-how far from clinical use? Int. J. Mol. Sci. 19(11), 3605 (2018). https://doi.org/10.3390/ijms19113605
G. Dauphin, S. Zientara, West Nile virus: recent trends in diagnosis and vaccine development. Vaccine 25(30), 5563–5576 (2007). https://doi.org/10.1016/j.vaccine.2006.12.005
M.A. Kutzler, D.B. Weiner, DNA vaccines: ready for prime time? Nat. Rev. Genet. 9(10), 776–788 (2008). https://doi.org/10.1038/nrg2432
L.M. Kranz, M. Diken, H. Haas, S. Kreiter, C. Loquai et al., Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607), 396–401 (2016). https://doi.org/10.1038/nature18300
K. Bahl, J.J. Senn, O. Yuzhakov, A. Bulychev, L.A. Brito et al., Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25(6), 1316–1327 (2017). https://doi.org/10.1016/j.ymthe.2017.03.035
J.M. Richner, S. Himansu, K.A. Dowd, S.L. Butler, V. Salazar et al., Modified mRNA vaccines protect against Zika virus infection. Cell 168(6), 1114–1125 (2017). https://doi.org/10.1016/j.cell.2017.02.017
J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi et al., Direct gene transfer into mouse muscle in vivo. Science 247(4949), 1465–1468 (1990). https://doi.org/10.1126/science.1690918
C. Iavarone, D.T. O’Hagan, D. Yu, N.F. Delahaye, J.B. Ulmer, Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines 16(9), 871–881 (2017). https://doi.org/10.1080/14760584.2017.1355245
Pfizer, COVID-19 R&D presentation. (Pfizer, 2020). Accessed 8 November 2021. https://s21.q4cdn.com/317678438/files/doc_presentations/2020/09/Covid-19-Programs_FINAL.pdf
U.S. National Library of Medicine, Study to describe the safety, tolerability, immunogenicity, and potential efficacy of RNA vaccine candidates against COVID-19 in healthy adults. (NIH, 2020). Accessed 8 November 2021. https://clinicaltrials.gov/ct2/show/NCT04368728
J. Hodgson, The pandemic pipeline. Nat. Biotechnol. 38(5), 523–532 (2020). https://doi.org/10.1038/d41587-020-00005-z
A.B. Vogel, I. Kanevsky, Y. Che, K.A. Swanson, A. Muik et al., BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 592(7853), 283–289 (2021). https://doi.org/10.1038/s41586-021-03275-y
NIH. A Trial Investigating the Safety and Effects of Four BNT162 Vaccines Against COVID-2019 in Healthy and Immunocompromised Adults, (2020).
M.J. Mulligan, K.E. Lyke, N. Kitchin, J. Absalon, A. Gurtman et al., Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586(7830), 589–593 (2020). https://doi.org/10.1038/s41586-020-2639-4
S. Güthe, L. Kapinos, A. Möglich, S. Meier, S. Grzesiek et al., Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin. J. Mol. Biol. 337(4), 905–915 (2004). https://doi.org/10.1016/j.jmb.2004.02.020
U. Sahin, A. Muik, E. Derhovanessian, I. Vogler, L.M. Kranz et al., Concurrent human antibody and Th1 type T-cell responses elicited by a COVID-19 RNA vaccine. medRxiv (2020). https://doi.org/10.1101/2020.07.17.20140533
Pfizer, Pfizer and BioNTech choose lead mRNA vaccine candidate against COVID-19 and commence pivotal Phase 2/3 global study. (Pfizer, 2020). Accessed 8 November 2021. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-choose-lead-mrna-vaccine-candidate-0
F.P. Polack, S.J. Thomas, N. Kitchin, J. Absalon, A. Gurtman et al., Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med. 383(27), 2603–2615 (2020). https://doi.org/10.1056/NEJMoa2034577
L.J. Abu-Raddad, H. Chemaitelly, A.A. Butt, Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N. Engl. J. Med. 385(2), 187–189 (2021). https://doi.org/10.1056/NEJMc2104974
Z. Wang, F. Schmidt, Y. Weisblum, F. Muecksch, C.O. Barnes et al., mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592(7855), 616–622 (2021). https://doi.org/10.1038/s41586-021-03324-6
K.S. Corbett, D.K. Edwards, S.R. Leist, O.M. Abiona, S. Boyoglu-Barnum et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586(7830), 567–571 (2020). https://doi.org/10.1038/s41586-020-2622-0
V.A. Fulginiti, J.J. Eller, A.W. Downie, C.H. Kempe, Altered reactivity to measles virus: atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202(12), 1075–1080 (1967). https://doi.org/10.1001/jama.1967.03130250057008
H.W. Kim, J.G. Canchola, C.D. Brandt, G. Pyles, R.M. Chanock et al., Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89(4), 422–434 (1969). https://doi.org/10.1093/oxfordjournals.aje.a120955
K.S. Corbett, B. Flynn, K.E. Foulds, J.R. Francica, S. Boyoglu-Barnum et al., Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383(16), 1544–1555 (2020). https://doi.org/10.1056/NEJMoa2024671
National Institute of Allergy and Infectious Diseases. Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19), U.S. National Library of Medicine, (2020).
Moderna, Moderna announces positive interim phase 1 data for its mRNA vaccine (mRNA-1273) against novel coronavirus. (Moderna, 2020). Accessed 8 November 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-interim-phase-1-data-its-mrna-vaccine/
L.A. Jackson, E.J. Anderson, N.G. Rouphael, P.C. Roberts, M. Makhene et al., An mRNA vaccine against SARS-CoV-2 - preliminary report. N. Engl. J. Med. 383(20), 1920–1931 (2020). https://doi.org/10.1056/NEJMoa2022483
U.S. National Library of Medicine, Dose-confirmation study to evaluate the safety, reactogenicity, and immunogenicity of mRNA-1273 COVID-19 vaccine in adults aged 18 years and older. (2020). Accessed 8 November 2021. https://clinicaltrials.gov/ct2/show/NCT04405076
L. Chu, R. McPhee, W. Huang, H. Bennett, R. Pajon et al., A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39(20), 2791–2799 (2021). https://doi.org/10.1016/j.vaccine.2021.02.007
E.J. Anderson, N.G. Rouphael, A.T. Widge, L.A. Jackson, P.C. Roberts et al., Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383(25), 2427–2438 (2020). https://doi.org/10.1056/NEJMoa2028436
L.R. Baden, H.M.E. Sahly, B. Essink, K. Kotloff, S. Frey et al., Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384(5), 403–416 (2021). https://doi.org/10.1056/NEJMoa2035389
Moderna, Moderna announces positive initial booster data against SARS-CoV-2 variants of concern. (Moderna, 2021). Accessed 8 November 2021. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov/
X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanops for mRNA delivery. Nat. Rev. Mater. (2021). https://doi.org/10.1038/s41578-021-00358-0
E. Blanco, H. Shen, M. Ferrari, Principles of nanop design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). https://doi.org/10.1038/nbt.3330
Z.I. Rajput, S.H. Hu, C.W. Xiao, A.G. Arijo, Adjuvant effects of saponins on animal immune responses. J. Zhejiang Univ. Sci. B 8(3), 153–161 (2007). https://doi.org/10.1631/jzus.2007.B0153
B. Petsch, M. Schnee, A.B. Vogel, E. Lange, B. Hoffmann et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 30(12), 1210–1216 (2012). https://doi.org/10.1038/nbt.2436
N.C. Kyriakidis, A. López-Cortés, E.V. González, A.B. Grimaldos, E.O. Prado, SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines 6(1), 28 (2021). https://doi.org/10.1038/s41541-021-00292-w
R.T. Shroff, P. Chalasani, R. Wei, D. Pennington, G. Quirk et al., Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors. Nat. Med. (2021). https://doi.org/10.1038/s41591-021-01542-z
U.S. Food and Drug Administration, FDA Authorizes Pfizer-BioNTech COVID-19 vaccine for emergency use in children 5 through 11 years of age. (FDA, 2021). Accessed 8 November 2021. https://www.fda.gov/news-events/press-announcements/fda-authorizes-pfizer-biontech-covid-19-vaccine-emergency-use-children-5-through-11-years-age#:~:text=Press%20Announcements-,FDA%20Authorizes%20Pfizer%2DBioNTech%20COVID%2D19%20Vaccine%20for%20Emergency%20Use,through%2011%20Years%20of%20Age&text=Today%2C%20the%20U.S.%20Food%20and,through%2011%20years%20of%20age
A.D. Praticò, M. Ruggieri, COVID-19 vaccination for children: may be necessary for the full eradication of the disease. Pediatr. Res. (2021). https://doi.org/10.1038/s41390-021-01643-y
World Bank, Global economic prospects, January 2021. (2021). https://doi.org/10.1596/978-1-4648-1612-3
Y. Huang, C. Tan, J. Wu, M. Chen, Z. Wang et al., Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 21(1), 163 (2020). https://doi.org/10.1186/s12931-020-01429-6
A. Jaffri, U.A. Jaffri, Post-Intensive care syndrome and COVID-19: crisis after a crisis? Heart Lung 49(6), 883–884 (2020). https://doi.org/10.1016/j.hrtlng.2020.06.006
Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5(11), 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang et al., Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021). https://doi.org/10.1016/j.nantod.2020.101019
S. Danese, B. Sands, S.C. Ng, L. Peyrin-Biroulet, The day after COVID-19 in IBD: how to go back to ‘normal.’ Nat. Rev. Gastroenterol. Hepatol. 17, 441–443 (2020). https://doi.org/10.1038/s41575-020-0322-8
K.B. Habersaat, C. Betsch, M. Danchin, C.R. Sunstein, R. Böhm et al., Ten considerations for effectively managing the COVID-19 transition. Nat. Hum. Behav. 4, 677–687 (2020). https://doi.org/10.1038/s41562-020-0906-x
Centers for Disease Control and Prevention, CDC activities and initiatives supporting the COVID-19 response and the President’s plan for opening America up again. (CDC, 2020). Accessed 8 November 2021. https://stacks.cdc.gov/view/cdc/88478
M. Kidd, A. Richter, A. Best, N. Cumley, J. Mirza et al., S-Variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral load in samples tested by TaqPath polymerase chain reaction. J. Infect. Dis. 223(10), 1666–1670 (2021). https://doi.org/10.1093/infdis/jiab082
D.A. Collier, A.D. Marco, I. Ferreira, B. Meng, R.P. Datir et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593(7857), 136–141 (2021). https://doi.org/10.1038/s41586-021-03412-7
C.K. Wibmer, F. Ayres, T. Hermanus, M. Madzivhandila, P. Kgagudi et al., SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27(4), 622–625 (2021). https://doi.org/10.1038/s41591-021-01285-x
A. Alrubayyi, D. Peppa, Seeing SARS-CoV-2 variants through the eyes of T cells. Nat. Rev. Immunol. 21(5), 274–274 (2021). https://doi.org/10.1038/s41577-021-00551-w
A. Tarke, J. Sidney, N. Methot, E.D. Yu, Y. Zhang et al., Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2(7), 100355 (2021). https://doi.org/10.1016/j.xcrm.2021.100355
D. Planas, D. Veyer, A. Baidaliuk, I. Staropoli, F. Guivel-Benhassine et al., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596(7871), 276–280 (2021). https://doi.org/10.1038/s41586-021-03777-9
B. Bozkurt, I. Kamat, P.J. Hotez, Myocarditis with COVID-19 mRNA vaccines. Circulation 144(6), 471–484 (2021). https://doi.org/10.1161/CIRCULATIONAHA.121.056135
Centers for Disease Control and Prevention, Selected adverse events reported after COVID-19 vaccination. (CDC, 2021). Accessed 8 November 2021. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html
G. Sinagra, M. Merlo, A. Porcari, Exploring the possible link between myocarditis and mRNA COVID-19 vaccines. Eur. J. Intern. Med. 92, 28–30 (2021). https://doi.org/10.1016/j.ejim.2021.08.018
M. Marshall, I.D. Ferguson, P. Lewis, P. Jaggi, C. Gagliardo et al., Symptomatic acute myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination. Pediatrics 148(3), 2021052478 (2021). https://doi.org/10.1542/peds.2021-052478
A.K. Verma, K.J. Lavine, C.Y. Lin, Myocarditis after Covid-19 mRNA vaccination. N. Engl. J. Med. 385(14), 1332–1334 (2021). https://doi.org/10.1056/NEJMc2109975
W.S. Lee, A.K. Wheatley, S.J. Kent, B.J. DeKosky, Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5(10), 1185–1191 (2020). https://doi.org/10.1038/s41564-020-00789-5
Y. Zhou, Z. Liu, S. Li, W. Xu, Q. Zhang et al., Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 34(5), 108699 (2021). https://doi.org/10.1016/j.celrep.2021.108699
U.S. Food and Drug Administration, FDA briefing document Pfizer-BioNTech COVID-19 vaccine. (FDA, 2020). Accessed 8 November 2021. https://www.fda.gov/media/144245/download
T. Pilishvili, K.E. Fleming-Dutra, J.L. Farrar, R. Gierke, N.M. Mohr et al., Interim estimates of vaccine effectiveness of Pfizer-BioNTech and Moderna COVID-19 vaccines among health care personnel - 33 U.S. Sites, January-March 2021. MMWR 70(20), 753–758 (2021). https://doi.org/10.15585/mmwr.mm7020e2
S.E. Oliver, J.W. Gargano, M. Marin, M. Wallace, K.G. Curran et al., The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine - United States, December 2020. MMWR 69(50), 1922–1924 (2020). https://doi.org/10.15585/mmwr.mm6950e2
Food and Drug Administration, Fact sheet for recipients and caregivers Emergency Use Authorization (EUA) of the Moderna COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19) in individuals 18 years of age and older. (FDA, 2021). Accessed 8 November 2021. https://www.fda.gov/media/144638/download#:~:text=The%20Moderna%20COVID%2D19%20Vaccine%20contains%20the%20following%20ingredients%3A%20messenger,hydrochloride%2C%20acetic%20acid%2C%20sodium%20acetate
V. Shinde, S. Bhikha, Z. Hoosain, M. Archary, Q. Bhorat et al., Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N. Engl. J. Med. 384(20), 1899–1809 (2021). https://doi.org/10.1056/NEJMoa2103055
P.T. Heath, E.P. Galiza, D.N. Baxter, M. Boffito, D. Browne et al., Efficacy of the NVX-CoV2373 Covid-19 vaccine against the B.1.1.7 variant. medRxiv (2021). https://doi.org/10.1101/2021.05.13.21256639
National Institutes of Health, U.S. clinical trial results show Novavax vaccine is safe and prevents COVID-19. (NIH, 2021). Accessed 8 November 2021. https://www.nih.gov/news-events/news-releases/us-clinical-trial-results-show-novavax-vaccine-safe-prevents-covid-19