Sorting Gold and Sand (Silica) Using Atomic Force Microscope-Based Dielectrophoresis
Corresponding Author: Wonho Jhe
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 13
Abstract
Additive manufacturing–also known as 3D printing–has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures. However, the current technology still exhibits a limitation in realizing the selective deposition and sorting of various materials contained in the same reservoir, which can contribute significantly to additive printing or manufacturing by enabling simultaneous sorting and deposition of different substances through a single nozzle. Here, we propose a dielectrophoresis (DEP)-based material-selective deposition and sorting technique using a pipette-based quartz tuning fork (QTF)-atomic force microscope (AFM) platform DEPQA and demonstrate multi-material sorting through a single nozzle in ambient conditions. We used Au and silica nanoparticles for sorting and obtained 95% accuracy for spatial separation, which confirmed the surface-enhanced Raman spectroscopy (SERS). To validate the scheme, we also performed a simulation for the system and found qualitative agreement with the experimental results. The method that combines DEP, pipette-based AFM, and SERS may widely expand the unique capabilities of 3D printing and nano-micro patterning for multi-material patterning, materials sorting, and diverse advanced applications.
Highlights:
1 The dielectrophoresis-based platform combined with micropipette-based atomic force microscope is demonstrated for material- and position-selective deposition.
2 The feasibility of on-demand sorting and printing using multi-materials in the single reservoir through a (sub)-microscale nozzle in the ambient condition is presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.O. Delawder, J.C. Barnes, Precise patterning driven by droplets. Nat. Chem. 12, 328–330 (2020). https://doi.org/10.1038/s41557-020-0449-9
- R. Zhang, S.A. Redford, P.V. Ruijgrok, N. Kumar, A. Mozaffari et al., Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. Nat. Mater. 20, 875–882 (2021). https://doi.org/10.1038/s41563-020-00901-4
- S. Wang, Z. Shen, Z. Shen, Y. Dong, Y. Li et al., Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021). https://doi.org/10.1016/j.nantod.2021.101152
- A.A. Nawaz, M. Urbanska, M. Herbig, M. Nötzel, M. Kräter et al., Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat. Methods 17, 595–599 (2020). https://doi.org/10.1038/s41592-020-0831-y
- M.S. Chowdhury, X. Zhang, L. Amini, P. Dey, A.K. Singh et al., Functional surfactants for molecular fishing, capsule creation, and single-cell gene expression. Nano-Micro Lett. 13, 147 (2021). https://doi.org/10.1007/s40820-021-00663-x
- M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5
- Y. Wang, L. Lu, G. Zheng, X. Zhang, Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano 14, 9861–9872 (2020). https://doi.org/10.1021/acsnano.0c02701
- H. Fujiwara, K. Yamauchi, T. Wada, H. Ishihara, K. Sasaki, Optical selection and sorting of nanoparticles according to quantum mechanical properties. Sci. Adv. 7(3), eabd9551 (2021). https://doi.org/10.1126/sciadv.abd9551
- L. Liu, N. Xiang, Z. Ni, X. Huang, J. Zheng et al., Step emulsification: high throughput production of monodisperse droplets. BioTechniques 68, 114–116 (2020). https://doi.org/10.2144/btn-2019-0134
- W. Jung, Y.-H. Jung, P.V. Pikhitsa, J. Feng, Y. Yang et al., Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021). https://doi.org/10.1038/s41586-021-03353-1
- G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain et al., Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019). https://doi.org/10.1038/s41467-019-11986-0
- H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu et al., 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020). https://doi.org/10.1038/s41467-020-15316-7
- S.C. Daminabo, S. Goel, S.A. Grammatikos, H.Y. Nezhad, V.K. Thakur, Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater. Today Chem. 16, 100248 (2020). https://doi.org/10.1016/j.mtchem.2020.100248
- H. Yin, Y. Ding, Y. Zhai, W. Tan, X. Yin, Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography. Nat. Commun. 9, 4096 (2018). https://doi.org/10.1038/s41467-018-06685-1
- D. Helmer, B.E. Rapp, Divide and print. Nat. Mater. 19, 131–133 (2020). https://doi.org/10.1038/s41563-019-0594-y
- M. Eisenstein, Divide and conquer. Nature 441, 1179–1185 (2006). https://doi.org/10.1038/4411179a
- X. Wang, Y. Xin, L. Ren, Z. Sun, P. Zhu et al., Positive dielectrophoresis–based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo. Sci. Adv. 6(32), eabb3521 (2020). https://doi.org/10.1126/sciadv.abb3521
- Q. Wang, A.A. Jones, J.A. Gralnick, L. Lin, C.R. Buie et al., Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci. Adv. 5(1), eaat5664 (2019). https://doi.org/10.1126/sciadv.aat5664
- A. Gérard, A. Woolfe, G. Mottet, M. Reichen, C. Castrillon et al., High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020). https://doi.org/10.1038/s41587-020-0466-7
- A. Isozaki, Y. Nakagawa, M.H. Loo, Y. Shibata, N. Tanaka et al., Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Sci. Adv. 6(22), 6712 (2020). https://doi.org/10.1126/sciadv.aba6712
- E.-S. Yu, H. Lee, S.-M. Lee, J. Kim, T. Kim et al., Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures. Nat. Commun. 11, 2804 (2020). https://doi.org/10.1038/s41467-020-16630-w
- R. Krupke, F. Hennrich, H.V. Löhneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631), 344–347 (2003). https://doi.org/10.1126/science.1086534
- L. Tang, B.P. Nadappuram, P. Cadinu, Z. Zhao, L. Xue et al., Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 12, 913 (2021). https://doi.org/10.1038/s41467-021-21101-x
- S. An, C. Stambaugh, G. Kim, M. Lee, Y. Kim et al., Low-volume liquid delivery and nanolithography using a nanopipette combined with a quartz tuning fork-atomic force microscope. Nanoscale 4, 6493–6500 (2012). https://doi.org/10.1039/C2NR30972F
- M. Lee, B. Kim, Q. Kim, J. Hwang, S. An et al., Viscometry of single nanoliter-volume droplets using dynamic force spectroscopy. Phys. Chem. Chem. Phys. 18, 27684–27690 (2016). https://doi.org/10.1039/C6CP05896E
- S. Kim, D. Kim, J. Kim, S. An, W. Jhe, Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale. Phys. Rev. X 8, 041046 (2018). https://doi.org/10.1103/PhysRevX.8.041046
- S. An, C. Kim, W. Jhe, Buckling tip-based nanoscratching with in situ direct measurement of shear dynamics. Appl. Nanosci. 9, 67–76 (2019). https://doi.org/10.1007/s13204-018-0897-3
- J. Oh, R. Hart, J. Capurroa, H. Noh, Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel. Lab Chip 9, 62–78 (2009). https://doi.org/10.1039/B801594E
- T. Honegger, K. Berton, E. Picard, D. Peyrade, Determination of Clausius-Mossotti factors and surface capacitances for colloidal particles. Appl. Phys. Lett. 98, 181906 (2011). https://doi.org/10.1063/1.3583441
- S. An, K. Lee, B. Kim, J. Kim, S. Kwon et al., Compensation of stray capacitance of the quartz tuning fork for a quantitative force spectroscopy. Curr. Appl. Phys. 13, 1899–1905 (2013). https://doi.org/10.1016/j.cap.2013.07.024
- A. Castellanos-Gomez, N. Agrait, G. Rubio-Bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20, 215502 (2009). https://doi.org/10.1088/0957-4484/20/21/215502
- J. Kim, D. Won, B. Sung, S. An, W. Jhe, Effective stiffness of qPlus sensor and quartz tuning fork. Ultramicroscopy 141, 56–62 (2014). https://doi.org/10.1016/j.ultramic.2014.03.009
- H. Morgan, N.G. Green, A.C. Electrokinetics, Colloids and Nanoparticles (Research Studies Press, Philadelphia, PA, 2003), pp. 152–159
- A. Ramos, H. Morgan, N.G. Green, A. Castellanos, AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338–2353 (1998). https://doi.org/10.1088/0022-3727/31/18/021
- W. Wang, Y. Yin, Z. Tan, J. Liu, Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis. Nanoscale 6, 9588–9593 (2014). https://doi.org/10.1039/C4NR03198A
- D. Shin, J. Hwang, W. Jhe, Ice-VII-like molecular structure of ambient water nanomeniscus. Nat. Commun. 10, 286 (2019). https://doi.org/10.1038/s41467-019-08292-0
References
A.O. Delawder, J.C. Barnes, Precise patterning driven by droplets. Nat. Chem. 12, 328–330 (2020). https://doi.org/10.1038/s41557-020-0449-9
R. Zhang, S.A. Redford, P.V. Ruijgrok, N. Kumar, A. Mozaffari et al., Spatiotemporal control of liquid crystal structure and dynamics through activity patterning. Nat. Mater. 20, 875–882 (2021). https://doi.org/10.1038/s41563-020-00901-4
S. Wang, Z. Shen, Z. Shen, Y. Dong, Y. Li et al., Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021). https://doi.org/10.1016/j.nantod.2021.101152
A.A. Nawaz, M. Urbanska, M. Herbig, M. Nötzel, M. Kräter et al., Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat. Methods 17, 595–599 (2020). https://doi.org/10.1038/s41592-020-0831-y
M.S. Chowdhury, X. Zhang, L. Amini, P. Dey, A.K. Singh et al., Functional surfactants for molecular fishing, capsule creation, and single-cell gene expression. Nano-Micro Lett. 13, 147 (2021). https://doi.org/10.1007/s40820-021-00663-x
M.S. Chowdhury, W. Zheng, S. Kumari, J. Heyman, X. Zhang et al., Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10, 4546 (2019). https://doi.org/10.1038/s41467-019-12462-5
Y. Wang, L. Lu, G. Zheng, X. Zhang, Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano 14, 9861–9872 (2020). https://doi.org/10.1021/acsnano.0c02701
H. Fujiwara, K. Yamauchi, T. Wada, H. Ishihara, K. Sasaki, Optical selection and sorting of nanoparticles according to quantum mechanical properties. Sci. Adv. 7(3), eabd9551 (2021). https://doi.org/10.1126/sciadv.abd9551
L. Liu, N. Xiang, Z. Ni, X. Huang, J. Zheng et al., Step emulsification: high throughput production of monodisperse droplets. BioTechniques 68, 114–116 (2020). https://doi.org/10.2144/btn-2019-0134
W. Jung, Y.-H. Jung, P.V. Pikhitsa, J. Feng, Y. Yang et al., Three-dimensional nanoprinting via charged aerosol jets. Nature 592, 54–59 (2021). https://doi.org/10.1038/s41586-021-03353-1
G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain et al., Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019). https://doi.org/10.1038/s41467-019-11986-0
H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu et al., 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020). https://doi.org/10.1038/s41467-020-15316-7
S.C. Daminabo, S. Goel, S.A. Grammatikos, H.Y. Nezhad, V.K. Thakur, Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater. Today Chem. 16, 100248 (2020). https://doi.org/10.1016/j.mtchem.2020.100248
H. Yin, Y. Ding, Y. Zhai, W. Tan, X. Yin, Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography. Nat. Commun. 9, 4096 (2018). https://doi.org/10.1038/s41467-018-06685-1
D. Helmer, B.E. Rapp, Divide and print. Nat. Mater. 19, 131–133 (2020). https://doi.org/10.1038/s41563-019-0594-y
M. Eisenstein, Divide and conquer. Nature 441, 1179–1185 (2006). https://doi.org/10.1038/4411179a
X. Wang, Y. Xin, L. Ren, Z. Sun, P. Zhu et al., Positive dielectrophoresis–based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo. Sci. Adv. 6(32), eabb3521 (2020). https://doi.org/10.1126/sciadv.abb3521
Q. Wang, A.A. Jones, J.A. Gralnick, L. Lin, C.R. Buie et al., Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci. Adv. 5(1), eaat5664 (2019). https://doi.org/10.1126/sciadv.aat5664
A. Gérard, A. Woolfe, G. Mottet, M. Reichen, C. Castrillon et al., High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020). https://doi.org/10.1038/s41587-020-0466-7
A. Isozaki, Y. Nakagawa, M.H. Loo, Y. Shibata, N. Tanaka et al., Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Sci. Adv. 6(22), 6712 (2020). https://doi.org/10.1126/sciadv.aba6712
E.-S. Yu, H. Lee, S.-M. Lee, J. Kim, T. Kim et al., Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures. Nat. Commun. 11, 2804 (2020). https://doi.org/10.1038/s41467-020-16630-w
R. Krupke, F. Hennrich, H.V. Löhneysen, M.M. Kappes, Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631), 344–347 (2003). https://doi.org/10.1126/science.1086534
L. Tang, B.P. Nadappuram, P. Cadinu, Z. Zhao, L. Xue et al., Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 12, 913 (2021). https://doi.org/10.1038/s41467-021-21101-x
S. An, C. Stambaugh, G. Kim, M. Lee, Y. Kim et al., Low-volume liquid delivery and nanolithography using a nanopipette combined with a quartz tuning fork-atomic force microscope. Nanoscale 4, 6493–6500 (2012). https://doi.org/10.1039/C2NR30972F
M. Lee, B. Kim, Q. Kim, J. Hwang, S. An et al., Viscometry of single nanoliter-volume droplets using dynamic force spectroscopy. Phys. Chem. Chem. Phys. 18, 27684–27690 (2016). https://doi.org/10.1039/C6CP05896E
S. Kim, D. Kim, J. Kim, S. An, W. Jhe, Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale. Phys. Rev. X 8, 041046 (2018). https://doi.org/10.1103/PhysRevX.8.041046
S. An, C. Kim, W. Jhe, Buckling tip-based nanoscratching with in situ direct measurement of shear dynamics. Appl. Nanosci. 9, 67–76 (2019). https://doi.org/10.1007/s13204-018-0897-3
J. Oh, R. Hart, J. Capurroa, H. Noh, Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel. Lab Chip 9, 62–78 (2009). https://doi.org/10.1039/B801594E
T. Honegger, K. Berton, E. Picard, D. Peyrade, Determination of Clausius-Mossotti factors and surface capacitances for colloidal particles. Appl. Phys. Lett. 98, 181906 (2011). https://doi.org/10.1063/1.3583441
S. An, K. Lee, B. Kim, J. Kim, S. Kwon et al., Compensation of stray capacitance of the quartz tuning fork for a quantitative force spectroscopy. Curr. Appl. Phys. 13, 1899–1905 (2013). https://doi.org/10.1016/j.cap.2013.07.024
A. Castellanos-Gomez, N. Agrait, G. Rubio-Bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20, 215502 (2009). https://doi.org/10.1088/0957-4484/20/21/215502
J. Kim, D. Won, B. Sung, S. An, W. Jhe, Effective stiffness of qPlus sensor and quartz tuning fork. Ultramicroscopy 141, 56–62 (2014). https://doi.org/10.1016/j.ultramic.2014.03.009
H. Morgan, N.G. Green, A.C. Electrokinetics, Colloids and Nanoparticles (Research Studies Press, Philadelphia, PA, 2003), pp. 152–159
A. Ramos, H. Morgan, N.G. Green, A. Castellanos, AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338–2353 (1998). https://doi.org/10.1088/0022-3727/31/18/021
W. Wang, Y. Yin, Z. Tan, J. Liu, Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis. Nanoscale 6, 9588–9593 (2014). https://doi.org/10.1039/C4NR03198A
D. Shin, J. Hwang, W. Jhe, Ice-VII-like molecular structure of ambient water nanomeniscus. Nat. Commun. 10, 286 (2019). https://doi.org/10.1038/s41467-019-08292-0