Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces
Corresponding Author: Gyula Eres
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 2
Abstract
Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior. The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice. Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite (BM) phase in a model oxide La0.7Sr0.3MnO3 (LSMO). Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO. Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO. Using the NiO nominal ratio as a single control parameter, we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase, which enables systematic tuning of magnetic and electrical transport properties. The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.
Highlights:
1 An epitaxial nanocomposite approach is developed for exploring spatial control of oxygen vacancy-driven topotactic phase transition of La0.7Sr0.3MnO3-x (LSMO).
2 The ultrahigh density of epitaxial interfaces created in the self-assembled LSMO-NiO nanocomposite films strongly influence the oxygen vacancy formation and topotactic phase distribution in LSMO.
3 The distinct intermediate topotactic nanostructures controlled by the NiO fraction broadens the tuning range of correlated magnetic and transport properties of LSMO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak et al., Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7–δ. Nature 329, 423–425 (1987). https://doi.org/10.1038/329423a0
- N. Biškup, J. Salafranca, V. Mehta, M.P. Oxley, Y. Suzuki et al., Insulating ferromagnetic LaCoO3 films: A phase induced by ordering of oxygen vacancies. Phys. Rev. Lett. 112, 087202 (2014). https://doi.org/10.1103/PhysRevLett.112.087202
- W. Zhang, A.R. Mazza, E. Skoropata, D. Mukherjee, B. Musico et al., Applying configurational complexity to the 2D ruddlesden–popper crystal structure. ACS Nano 14, 13030–13037 (2020). https://doi.org/10.1021/acsnano.0c04487
- J.H. Lee, R.H. Shin, W. Jo, Polarization switching and relaxation dynamics of bismuth layered ferroelectric thin films: Role of oxygen defect sites and crystallinity. Phys. Rev. B 84, 094112 (2011). https://doi.org/10.1103/PhysRevB.84.094112
- Y.-M. Kim, J. He, M.D. Biegalski, H. Ambaye, V. Lauter et al., Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 11, 888–894 (2012). https://doi.org/10.1038/nmat3393
- W. Zhang, J.L. Lyons, J. Cen, M.Y. Sfeir, M. Liu, Multicomponent oxynitride thin films: Precise growth control and excited state dynamics. Chem. Mater. 31, 3461–3467 (2019). https://doi.org/10.1021/acs.chemmater.9b00656
- M. Kim, B. Lee, H. Ju, J.Y. Kim, J. Kim et al., Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, 1903316 (2019). https://doi.org/10.1002/adma.201903316
- W. Zhang, F. Wu, J. Li, D. Yan, J. Tao et al., Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting. ACS Energy Lett. 3, 2232–2239 (2018). https://doi.org/10.1021/acsenergylett.8b01445
- J. Seidel, W. Luo, S.J. Suresha, P.K. Nguyen, A.S. Lee et al., Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 3, 799 (2012). https://doi.org/10.1038/ncomms1799
- J. Gazquez, S. Bose, M. Sharma, M.A. Torija, S.J. Pennycook et al., Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-δ thin films. APL Mater. 1, 012105 (2013). https://doi.org/10.1063/1.4809547
- X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448
- W. Zhang, L. Song, J. Cen, M. Liu, Mechanistic insights into defect-assisted carrier transport in bismuth vanadate photoanodes. J. Phys. Chem. C 123, 20730–20736 (2019). https://doi.org/10.1021/acs.jpcc.9b04583
- T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic et al., Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017). https://doi.org/10.1038/nmat4799
- W. Zhang, D. Yan, J. Li, Q. Wu, J. Cen et al., Anomalous conductivity tailored by domain-boundary transport in crystalline bismuth vanadate photoanodes. Chem. Mater. 30, 1677–1685 (2018). https://doi.org/10.1021/acs.chemmater.7b05093
- H. Jeen, W.S. Choi, M.D. Biegalski, C.M. Folkman, I.C. Tung et al., Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nat. Mater. 12, 1057–1063 (2013). https://doi.org/10.1038/nmat3736
- A. Khare, D. Shin, T.S. Yoo, M. Kim, T.D. Kang et al., Topotactic metal–insulator transition in epitaxial SrFeOx thin films. Adv. Mater. 29, 1606566 (2017). https://doi.org/10.1002/adma.201606566
- J.D. Ferguson, Y. Kim, L.F. Kourkoutis, A. Vodnick, A.R. Woll et al., Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv. Mater. 23, 1226–1230 (2011). https://doi.org/10.1002/adma.201003581
- J. Young, J.M. Rondinelli, Crystal structure and electronic properties of bulk and thin film brownmillerite oxides. Phys. Rev. B 92, 174111 (2015). https://doi.org/10.1103/PhysRevB.92.174111
- H. Jeen, W.S. Choi, J.W. Freeland, H. Ohta, C.U. Jung et al., Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ. Adv. Mater. 25, 3651–3656 (2013). https://doi.org/10.1002/adma.201300531
- L. Cao, O. Petracic, P. Zakalek, A. Weber, U. Rücker et al., Reversible control of physical properties via an oxygen-vacancy-driven topotactic transition in epitaxial La0.7Sr0.3MnO3–δ thin films. Adv. Mater. 31, 1806183 (2019). https://doi.org/10.1002/adma.201806183
- S. Chen, H. Zhou, X. Ye, Z. Chen, J. Zhao et al., Versatile and highly efficient controls of reversible topotactic metal–insulator transitions through proton intercalation. Adv. Funct. Mater. 29, 1907072 (2019). https://doi.org/10.1002/adfm.201907072
- L. Yao, S. Majumdar, L. Äkäslompolo, S. Inkinen, Q.H. Qin et al., Electron-beam-induced perovskite–brownmillerite–perovskite structural phase transitions in epitaxial La2/3Sr1/3MnO3 films. Adv. Mater. 26, 2789–2793 (2014). https://doi.org/10.1002/adma.201305656
- L. Yao, S. Inkinen, S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 8, 14544 (2017). https://doi.org/10.1038/ncomms14544
- K.T. Kang, B. Zhang, Y. Sharma, B. Paudel, H. Wang et al., Substrate oxygen sponge effect: A parameter for epitaxial manganite thin film growth. Appl. Phys. Lett. 117, 151601 (2020). https://doi.org/10.1063/5.0020426
- S. Ning, Q. Zhang, C. Occhialini, R. Comin, X. Zhong et al., Voltage control of magnetism above room temperature in epitaxial SrCo1–xFexO3−δ. ACS Nano 14, 8949–8957 (2020). https://doi.org/10.1021/acsnano.0c03750
- D. Wang, L. Meng, L. Wei, P. Shi, Y. Chen et al., Reversible phase switching between antiferromagnetic SrCoO2.5 and ferromagnetic SrCoO3−δ by a flexible solid-state electrolyte gate. J. Magn. Magn. Mater. 496, 165926 (2020). https://doi.org/10.1016/j.jmmm.2019.165926
- L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003). https://doi.org/10.1103/PhysRevB.68.134103
- D. Lee, X. Gao, L. Sun, Y. Jee, J. Poplawsky et al., Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nat. Commun. 11, 1371 (2020). https://doi.org/10.1038/s41467-020-15153-8
- W. Zhang, L. Li, P. Lu, M. Fan, Q. Su et al., Perpendicular exchange-biased magnetotransport at the vertical interfaces in La0.7Sr0.3MnO3:NiO nanocomposites. ACS Appl. Mater. Interfaces 7, 21646–21651 (2015). https://doi.org/10.1021/acsami.5b06314
- W. Zhang, S. Cheng, C.M. Rouleau, K.P. Kelley, J. Keum et al., Unusual electrical conductivity driven by localized stoichiometry modification at vertical epitaxial interfaces. Mater. Horiz. 7, 3217–3225 (2020). https://doi.org/10.1039/D0MH01324B
- J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon et al., Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314–320 (2008). https://doi.org/10.1038/nmat2124
- A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783–2792 (2013). https://doi.org/10.1016/j.actamat.2012.09.072
- J. Huang, J.L. MacManus-Driscoll, H. Wang, New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 32, 4054–4066 (2017). https://doi.org/10.1557/jmr.2017.281
- X. Sun, J.L. MacManus-Driscoll, H. Wang, Spontaneous ordering of oxide-oxide epitaxial vertically aligned nanocomposite thin films. Annu. Rev. Mater. Res. 50, 229–253 (2020). https://doi.org/10.1146/annurev-matsci-091719-112806
- P. Gyanendra, A. Panchwanee, M. Kumar, K. Fritsch, R.J. Choudhary et al., Synthesis and characterization of vertically aligned La0.7Sr0.3MnO3:NiO nanocomposite thin films for spintronic applications. ACS Appl. Nano Mater. 4, 102–112 (2021). https://doi.org/10.1021/acsanm.0c02394
- Y.J. Wu, Z.J. Wang, X.K. Ning, Q. Wang, W. Liu et al., Room temperature magnetoresistance properties in self-assembled epitaxial La0.7Sr0.3MnO3:NiO nanocomposite thin films. Mater. Res. Lett. 6, 489–494 (2018). https://doi.org/10.1080/21663831.2018.1482838
- Y. Zhu, C. Ophus, J. Ciston, H. Wang, Interface lattice displacement measurement to 1pm by geometric phase analysis on aberration-corrected haadf stem images. Acta Mater. 61(15), 5646–5663 (2013). https://doi.org/10.1016/j.actamat.2013.06.006
- J.F. Ding, O.I. Lebedev, S. Turner, Y.F. Tian, W.J. Hu et al., Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders. Phys. Rev. B 87, 054428 (2013). https://doi.org/10.1103/PhysRevB.87.054428
- X. Ning, Z. Wang, Z. Zhang, Large, temperature-tunable low-field magnetoresistance in La0.7Sr0.3MnO3:NiO nanocomposite films modulated by microstructures. Adv. Funct. Mater. 24, 5393–5401 (2014). https://doi.org/10.1002/adfm.201400735
- A. Chen, J.-M. Hu, P. Lu, T. Yang, W. Zhang et al., Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2, e1600245 (2016). https://doi.org/10.1126/sciadv.1600245
- D. Zhou, W. Sigle, M. Kelsch, H.-U. Habermeier, P.A. van Aken, Linking atomic structure and local chemistry at manganese-segregated antiphase boundaries in ZrO2–La2/3Sr1/3MnO3 thin films. Adv. Mater. Interfaces 2, 1500377 (2015). https://doi.org/10.1002/admi.201500377
- A. Chen, Q. Su, H. Han, E. Enriquez, Q. Jia, Metal oxide nanocomposites: A perspective from strain, defect, and interface. Adv. Mater. 31, 1803241 (2019). https://doi.org/10.1002/adma.201803241
References
R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak et al., Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7–δ. Nature 329, 423–425 (1987). https://doi.org/10.1038/329423a0
N. Biškup, J. Salafranca, V. Mehta, M.P. Oxley, Y. Suzuki et al., Insulating ferromagnetic LaCoO3 films: A phase induced by ordering of oxygen vacancies. Phys. Rev. Lett. 112, 087202 (2014). https://doi.org/10.1103/PhysRevLett.112.087202
W. Zhang, A.R. Mazza, E. Skoropata, D. Mukherjee, B. Musico et al., Applying configurational complexity to the 2D ruddlesden–popper crystal structure. ACS Nano 14, 13030–13037 (2020). https://doi.org/10.1021/acsnano.0c04487
J.H. Lee, R.H. Shin, W. Jo, Polarization switching and relaxation dynamics of bismuth layered ferroelectric thin films: Role of oxygen defect sites and crystallinity. Phys. Rev. B 84, 094112 (2011). https://doi.org/10.1103/PhysRevB.84.094112
Y.-M. Kim, J. He, M.D. Biegalski, H. Ambaye, V. Lauter et al., Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 11, 888–894 (2012). https://doi.org/10.1038/nmat3393
W. Zhang, J.L. Lyons, J. Cen, M.Y. Sfeir, M. Liu, Multicomponent oxynitride thin films: Precise growth control and excited state dynamics. Chem. Mater. 31, 3461–3467 (2019). https://doi.org/10.1021/acs.chemmater.9b00656
M. Kim, B. Lee, H. Ju, J.Y. Kim, J. Kim et al., Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, 1903316 (2019). https://doi.org/10.1002/adma.201903316
W. Zhang, F. Wu, J. Li, D. Yan, J. Tao et al., Unconventional relation between charge transport and photocurrent via boosting small polaron hopping for photoelectrochemical water splitting. ACS Energy Lett. 3, 2232–2239 (2018). https://doi.org/10.1021/acsenergylett.8b01445
J. Seidel, W. Luo, S.J. Suresha, P.K. Nguyen, A.S. Lee et al., Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 3, 799 (2012). https://doi.org/10.1038/ncomms1799
J. Gazquez, S. Bose, M. Sharma, M.A. Torija, S.J. Pennycook et al., Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-δ thin films. APL Mater. 1, 012105 (2013). https://doi.org/10.1063/1.4809547
X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011). https://doi.org/10.1126/science.1200448
W. Zhang, L. Song, J. Cen, M. Liu, Mechanistic insights into defect-assisted carrier transport in bismuth vanadate photoanodes. J. Phys. Chem. C 123, 20730–20736 (2019). https://doi.org/10.1021/acs.jpcc.9b04583
T. Rojac, A. Bencan, G. Drazic, N. Sakamoto, H. Ursic et al., Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017). https://doi.org/10.1038/nmat4799
W. Zhang, D. Yan, J. Li, Q. Wu, J. Cen et al., Anomalous conductivity tailored by domain-boundary transport in crystalline bismuth vanadate photoanodes. Chem. Mater. 30, 1677–1685 (2018). https://doi.org/10.1021/acs.chemmater.7b05093
H. Jeen, W.S. Choi, M.D. Biegalski, C.M. Folkman, I.C. Tung et al., Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nat. Mater. 12, 1057–1063 (2013). https://doi.org/10.1038/nmat3736
A. Khare, D. Shin, T.S. Yoo, M. Kim, T.D. Kang et al., Topotactic metal–insulator transition in epitaxial SrFeOx thin films. Adv. Mater. 29, 1606566 (2017). https://doi.org/10.1002/adma.201606566
J.D. Ferguson, Y. Kim, L.F. Kourkoutis, A. Vodnick, A.R. Woll et al., Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv. Mater. 23, 1226–1230 (2011). https://doi.org/10.1002/adma.201003581
J. Young, J.M. Rondinelli, Crystal structure and electronic properties of bulk and thin film brownmillerite oxides. Phys. Rev. B 92, 174111 (2015). https://doi.org/10.1103/PhysRevB.92.174111
H. Jeen, W.S. Choi, J.W. Freeland, H. Ohta, C.U. Jung et al., Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ. Adv. Mater. 25, 3651–3656 (2013). https://doi.org/10.1002/adma.201300531
L. Cao, O. Petracic, P. Zakalek, A. Weber, U. Rücker et al., Reversible control of physical properties via an oxygen-vacancy-driven topotactic transition in epitaxial La0.7Sr0.3MnO3–δ thin films. Adv. Mater. 31, 1806183 (2019). https://doi.org/10.1002/adma.201806183
S. Chen, H. Zhou, X. Ye, Z. Chen, J. Zhao et al., Versatile and highly efficient controls of reversible topotactic metal–insulator transitions through proton intercalation. Adv. Funct. Mater. 29, 1907072 (2019). https://doi.org/10.1002/adfm.201907072
L. Yao, S. Majumdar, L. Äkäslompolo, S. Inkinen, Q.H. Qin et al., Electron-beam-induced perovskite–brownmillerite–perovskite structural phase transitions in epitaxial La2/3Sr1/3MnO3 films. Adv. Mater. 26, 2789–2793 (2014). https://doi.org/10.1002/adma.201305656
L. Yao, S. Inkinen, S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 8, 14544 (2017). https://doi.org/10.1038/ncomms14544
K.T. Kang, B. Zhang, Y. Sharma, B. Paudel, H. Wang et al., Substrate oxygen sponge effect: A parameter for epitaxial manganite thin film growth. Appl. Phys. Lett. 117, 151601 (2020). https://doi.org/10.1063/5.0020426
S. Ning, Q. Zhang, C. Occhialini, R. Comin, X. Zhong et al., Voltage control of magnetism above room temperature in epitaxial SrCo1–xFexO3−δ. ACS Nano 14, 8949–8957 (2020). https://doi.org/10.1021/acsnano.0c03750
D. Wang, L. Meng, L. Wei, P. Shi, Y. Chen et al., Reversible phase switching between antiferromagnetic SrCoO2.5 and ferromagnetic SrCoO3−δ by a flexible solid-state electrolyte gate. J. Magn. Magn. Mater. 496, 165926 (2020). https://doi.org/10.1016/j.jmmm.2019.165926
L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003). https://doi.org/10.1103/PhysRevB.68.134103
D. Lee, X. Gao, L. Sun, Y. Jee, J. Poplawsky et al., Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nat. Commun. 11, 1371 (2020). https://doi.org/10.1038/s41467-020-15153-8
W. Zhang, L. Li, P. Lu, M. Fan, Q. Su et al., Perpendicular exchange-biased magnetotransport at the vertical interfaces in La0.7Sr0.3MnO3:NiO nanocomposites. ACS Appl. Mater. Interfaces 7, 21646–21651 (2015). https://doi.org/10.1021/acsami.5b06314
W. Zhang, S. Cheng, C.M. Rouleau, K.P. Kelley, J. Keum et al., Unusual electrical conductivity driven by localized stoichiometry modification at vertical epitaxial interfaces. Mater. Horiz. 7, 3217–3225 (2020). https://doi.org/10.1039/D0MH01324B
J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon et al., Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314–320 (2008). https://doi.org/10.1038/nmat2124
A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783–2792 (2013). https://doi.org/10.1016/j.actamat.2012.09.072
J. Huang, J.L. MacManus-Driscoll, H. Wang, New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 32, 4054–4066 (2017). https://doi.org/10.1557/jmr.2017.281
X. Sun, J.L. MacManus-Driscoll, H. Wang, Spontaneous ordering of oxide-oxide epitaxial vertically aligned nanocomposite thin films. Annu. Rev. Mater. Res. 50, 229–253 (2020). https://doi.org/10.1146/annurev-matsci-091719-112806
P. Gyanendra, A. Panchwanee, M. Kumar, K. Fritsch, R.J. Choudhary et al., Synthesis and characterization of vertically aligned La0.7Sr0.3MnO3:NiO nanocomposite thin films for spintronic applications. ACS Appl. Nano Mater. 4, 102–112 (2021). https://doi.org/10.1021/acsanm.0c02394
Y.J. Wu, Z.J. Wang, X.K. Ning, Q. Wang, W. Liu et al., Room temperature magnetoresistance properties in self-assembled epitaxial La0.7Sr0.3MnO3:NiO nanocomposite thin films. Mater. Res. Lett. 6, 489–494 (2018). https://doi.org/10.1080/21663831.2018.1482838
Y. Zhu, C. Ophus, J. Ciston, H. Wang, Interface lattice displacement measurement to 1pm by geometric phase analysis on aberration-corrected haadf stem images. Acta Mater. 61(15), 5646–5663 (2013). https://doi.org/10.1016/j.actamat.2013.06.006
J.F. Ding, O.I. Lebedev, S. Turner, Y.F. Tian, W.J. Hu et al., Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders. Phys. Rev. B 87, 054428 (2013). https://doi.org/10.1103/PhysRevB.87.054428
X. Ning, Z. Wang, Z. Zhang, Large, temperature-tunable low-field magnetoresistance in La0.7Sr0.3MnO3:NiO nanocomposite films modulated by microstructures. Adv. Funct. Mater. 24, 5393–5401 (2014). https://doi.org/10.1002/adfm.201400735
A. Chen, J.-M. Hu, P. Lu, T. Yang, W. Zhang et al., Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2, e1600245 (2016). https://doi.org/10.1126/sciadv.1600245
D. Zhou, W. Sigle, M. Kelsch, H.-U. Habermeier, P.A. van Aken, Linking atomic structure and local chemistry at manganese-segregated antiphase boundaries in ZrO2–La2/3Sr1/3MnO3 thin films. Adv. Mater. Interfaces 2, 1500377 (2015). https://doi.org/10.1002/admi.201500377
A. Chen, Q. Su, H. Han, E. Enriquez, Q. Jia, Metal oxide nanocomposites: A perspective from strain, defect, and interface. Adv. Mater. 31, 1803241 (2019). https://doi.org/10.1002/adma.201803241