Achieving 20% Toluene-Processed Binary Organic Solar Cells via Secondary Regulation of Donor Aggregation in Sequential Processing
Corresponding Author: Guangye Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 206
Abstract
Sequential processing (SqP) of the active layer offers independent optimization of the donor and acceptor with more targeted solvent design, which is considered the most promising strategy for achieving efficient organic solar cells (OSCs). In the SqP method, the favorable interpenetrating network seriously depends on the fine control of the bottom layer swelling. However, the choice of solvent(s) for both the donor and acceptor have been mostly based on a trial-and-error manner. A single solvent often cannot achieve sufficient yet not excessive swelling, which has long been a difficulty in the high efficient SqP OSCs. Herein, two new isomeric molecules are introduced to fine-tune the nucleation and crystallization dynamics that allows judicious control over the swelling of the bottom layer. The strong non-covalent interaction between the isomeric molecule and active materials provides an excellent driving force for optimize the swelling-process. Among them, the molecule with high dipole moment promotes earlier nucleation of the PM6 and provides extended time for crystallization during SqP, improving bulk morphology and vertical phase segregation. As a result, champion efficiencies of 17.38% and 20.00% (certified 19.70%) are achieved based on PM6/PYF-T-o (all-polymer) and PM6/BTP-eC9 devices casted by toluene solvent.
Highlights:
1 Isomeric molecules are introduced to fine-tune the secondary nucleation process of the donor underlayer.
2 Binary organic solar cell processed with non-halogen solvent shows a champion efficiency of 20.0% (certified 19.7%).
3 Mechanism of the film formation processes and the sequential processing community about solvent design rules are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Liu, W. Xu, R. Ma, J.-W. Lee, T.A. Dela Peña et al., Isomerized green solid additive engineering for thermally stable and eco-friendly all-polymer solar cells with approaching 19% efficiency. Adv. Mater. 35(49), e2308334 (2023). https://doi.org/10.1002/adma.202308334
- Y. Wang, K. Sun, C. Li, C. Zhao, C. Gao et al., A novel upside-down thermal annealing method toward high-quality active layers enables organic solar cells with efficiency approaching 20. Adv. Mater. 36(47), e2411957 (2024). https://doi.org/10.1002/adma.202411957
- M. Gao, J. Wu, X. Yuan, C. He, H. Jiang et al., Tuning the solution aggregation and molecular order for efficient and thermally stable polymer solar cells. Energy Environ. Sci. 16(12), 5822–5831 (2023). https://doi.org/10.1039/D3EE02354K
- W. Kong, J. Wang, Y. Hu, N. Cui, C. Yan et al., P-type polymers in semitransparent organic photovoltaics. Angew. Chem. Int. Ed. 62(45), e202307622 (2023). https://doi.org/10.1002/anie.202307622
- S. Xu, Y. Zhang, Y. Sun, P. Cheng, Z. Yao et al., An unprecedented efficiency with approaching 21% enabled by additive-assisted layer-by-layer processing in organic solar cells. Nano-Micro Lett. 17(1), 37 (2024). https://doi.org/10.1007/s40820-024-01529-8
- G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett. 15(1), 92 (2023). https://doi.org/10.1007/s40820-023-01057-x
- W. Gao, M. Jiang, Z. Wu, B. Fan, W. Jiang et al., Intramolecular chloro-sulfur interaction and asymmetric side-chain isomerization to balance crystallinity and miscibility in all-small-molecule solar cells. Angew. Chem. Int. Ed. 61(33), e202205168 (2022). https://doi.org/10.1002/anie.202205168
- C. Li, J. Zhou, J. Song, J. Xu, H. Zhang et al., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6(6), 605–613 (2021). https://doi.org/10.1038/s41560-021-00820-x
- T. Xu, Z. Luo, R. Ma, Z. Chen, T.A. Dela-Peña et al., High-performance organic solar cells containing pyrido [2, 3-b] quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew. Chem. Int. Ed. 62(30), e202304127 (2023). https://doi.org/10.1002/anie.202304127
- M. An, Q. Bai, S.Y. Jeong, J. Ding, C. Zhao et al., Polythiophene derivatives for efficient all-polymer solar cells. Adv. Energy Mater. 13(30), 2301110 (2023). https://doi.org/10.1002/aenm.202301110
- L. Chen, R. Ma, J. Yi, T.A. Dela Peña, H. Li et al., Exploiting the donor-acceptor-additive interaction’s morphological effect on the performance of organic solar cells. Aggregate 5(2), e455 (2024). https://doi.org/10.1002/agt2.455
- B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
- L. Chen, J. Yi, R. Ma, T.A. Dela Peña, Y. Luo et al., 19% efficiency in organic solar cells of Benzo [1, 2-b: 4, 5-b’] Difuran-based donor polymer realized by volatile + non-volatile dual-solid-additive strategy. Mater. Sci. Eng. R. Rep. 159, 100794 (2024). https://doi.org/10.1016/j.mser.2024.100794
- K. Zhou, K. Xian, R. Ma, J. Liu, M. Gao et al., Correlating miscibility, mechanical parameters, and stability of ternary polymer blends for high-performance solar cells. Energy Environ. Sci. 16(11), 5052–5064 (2023). https://doi.org/10.1039/D3EE01683H
- S. Lee, D. Jeong, C. Kim, C. Lee, H. Kang et al., Eco-friendly polymer solar cells: advances in green-solvent processing and material design. ACS Nano 14(11), 14493–14527 (2020). https://doi.org/10.1021/acsnano.0c07488
- K. Wang, W. Li, X. Guo, Q. Zhu, Q. Fan et al., Optimizing the alkyl side-chain design of a wide band-gap polymer donor for attaining nonfullerene organic solar cells with high efficiency using a nonhalogenated solvent. Chem. Mater. 33(15), 5981–5990 (2021). https://doi.org/10.1021/acs.chemmater.1c01307
- W. Gao, R. Ma, T.A. Dela Peña, C. Yan, H. Li et al., Efficient all-small-molecule organic solar cells processed with non-halogen solvent. Nat. Commun. 15, 1946 (2024). https://doi.org/10.1038/s41467-024-46144-8
- X. Ma, C. Wang, D. Deng, H. Zhang, L. Zhang et al., Small molecule donors design rules for non-halogen solvent fabricated organic solar cells. Small 20(19), e2309042 (2024). https://doi.org/10.1002/smll.202309042
- T. Hu, X. Zheng, C. Xiao, J. Su, A. Saparbaev et al., Composite side chain induced ordered preaggregation in liquid state for high-performance non-halogen solvent processed organic solar cells. Nano Energy 130, 110172 (2024). https://doi.org/10.1016/j.nanoen.2024.110172
- S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4(9), 2004–2016 (2020). https://doi.org/10.1016/j.joule.2020.07.028
- A.L. Ayzner, C.J. Tassone, S.H. Tolbert, B.J. Schwartz, Reappraising the need for bulk heterojunctions in polymer−fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. 113, 20050–20060 (2009). https://doi.org/10.1021/jp9050897
- J.S. Moon, C.J. Takacs, Y. Sun, A.J. Heeger, Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. Nano Lett. 11(3), 1036–1039 (2011). https://doi.org/10.1021/nl200056p
- S.A. Hawks, J.C. Aguirre, L.T. Schelhas, R.J. Thompson, R.C. Huber et al., Comparing matched polymer:fullerene solar cells made by solution-sequential processing and traditional blend casting: nanoscale structure and device performance. J. Phys. Chem. C 118(17413), 17425 (2014). https://doi.org/10.1021/jp504560r
- G. Zhang, R.C. Huber, A.S. Ferreira, S.D. Boyd, C.K. Luscombe et al., Crystallinity effects in sequentially processed and blend-cast bulk-heterojunction polymer/fullerene photovoltaics. J. Phys. Chem. C 118, 18424–18435 (2014). https://doi.org/10.1021/jp5054315
- C. Zhao, J. Yi, L. Wang, G. Lu, H. Huang et al., An improved performance of all polymer solar cells enabled by sequential processing via non-halogenated solvents. Nano Energy 104, 107872 (2022). https://doi.org/10.1016/j.nanoen.2022.107872
- C. Zhao, R. Ma, Y. Hou, L. Zhu, X. Zou et al., 18.1% ternary all-polymer solar cells sequentially processed from hydrocarbon solvent with enhanced stability. Adv. Energy Mater. 13(31), 2300904 (2023). https://doi.org/10.1002/aenm.202300904
- S. Luo, C. Li, J. Zhang, X. Zou, H. Zhao et al., Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat. Commun. 14, 6964 (2023). https://doi.org/10.1038/s41467-023-41978-0
- G. Zhang, C. Zhao, L. Zhu, L. Wang, W. Xiong et al., Toluene processed all-polymer solar cells with 18% efficiency and enhanced stability enabled by solid additive: comparison between sequential-processing and blend-casting. Energy Environ. Mater. 7(4), e12683 (2024). https://doi.org/10.1002/eem2.12683
- Y. Wang, X. Zhan, Layer-by-layer processed organic solar cells. Adv. Energy Mater. 6(17), 1600414 (2016). https://doi.org/10.1002/aenm.201600414
- J. Wan, L. Zeng, X. Liao, Z. Chen, S. Liu et al., All-green solvent-processed planar heterojunction organic solar cells with outstanding power conversion efficiency of 16%. Adv. Funct. Mater. 32(5), 2107567 (2022). https://doi.org/10.1002/adfm.202107567
- Q. Zhou, C. Yan, H. Li, Z. Zhu, Y. Gao et al., Polymer fiber rigid network with high glass transition temperature reinforces stability of organic photovoltaics. Nano-Micro Lett. 16(1), 224 (2024). https://doi.org/10.1007/s40820-024-01442-0
- Y. Wang, Z. Liang, X. Liang, X. Wen, Z. Cai et al., Easy isomerization strategy for additives enables high-efficiency organic solar cells. Adv. Energy Mater. 13(22), 2300524 (2023). https://doi.org/10.1002/aenm.202300524
- H. Zhao, B. Lin, J. Xue, H.B. Naveed, C. Zhao et al., Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating. Adv. Mater. 34(7), e2105114 (2022). https://doi.org/10.1002/adma.202105114
- R. Ma, H. Li, T.A. Dela Peña, H. Wang, C. Yan et al., In-situ understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells. Natl. Sci. Rev. 11(12), nwae384 (2024). https://doi.org/10.1093/nsr/nwae384
- X. Jiang, P. Chotard, K. Luo, F. Eckmann, S. Tu et al., Revealing donor–acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv. Energy Mater. 12(14), 2103977 (2022). https://doi.org/10.1002/aenm.202103977
- W. Wu, Y. Luo, T.A. Dela Peña, J. Yao, M. Qammar et al., Defining solid additive’s pivotal role on morphology regulation in organic solar cells produced by layer-by-layer deposition Adv. Energy Mater. 14(22), 2400354 (2024). https://doi.org/10.1002/aenm.202400354
- X. Xie, R. Ma, Y. Luo, T.A. Dela Peña, P.W.K. Fong et al., Thickness insensitive organic solar cells with high figure-of-merit-X enabled by simultaneous D/A interpenetration and stratification. Adv. Energy Mater. 14(35), 2401355 (2024). https://doi.org/10.1002/aenm.202401355
- L. Lu, T. Xu, W. Chen, E.S. Landry, L. Yu, Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8(9), 716–722 (2014). https://doi.org/10.1038/nphoton.2014.172
- V. Shrotriya, Y. Yao, G. Li, Y. Yang, Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl. Phys. Lett. 89(6), 063505 (2006). https://doi.org/10.1063/1.2335377
- X. Song, N. Gasparini, D. Baran, The influence of solvent additive on polymer solar cells employing fullerene and non-fullerene acceptors. Adv. Electron. Mater. 4(10), 1700358 (2018). https://doi.org/10.1002/aelm.201700358
- J. Zhang, L. Zhang, X. Wang, Z. Xie, L. Hu et al., Reducing photovoltaic property loss of organic solar cells in blade-coating by optimizing micro-nanomorphology via nonhalogenated solvent. Adv. Energy Mater. 12(14), 2200165 (2022). https://doi.org/10.1002/aenm.202200165
- D. Khatiwada, S. Venkatesan, Q. Chen, J. Chen, N. Adhikari et al., Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells. J. Mater. Chem. A 3(29), 15307–15313 (2015). https://doi.org/10.1039/c5ta02709h
- S. Venkatesan, E.C. Ngo, Q. Chen, A. Dubey, L. Mohammad et al., Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale 6(12), 7093–7100 (2014). https://doi.org/10.1039/c4nr01040j
- R.Z. Liang, M. Babics, V. Savikhin, W. Zhang, V.M. Le Corre et al., Carrier transport and recombination in efficient “all-small-molecule” solar cells with the nonfullerene acceptor IDTBR. Adv. Energy Mater. 8(19), 1800264 (2018). https://doi.org/10.1002/aenm.201800264
- A.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, T.Q. Nguyen et al., Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13(8), 3796–3801 (2013). https://doi.org/10.1021/nl401758g
- G.J. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila et al., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27(11), 1837–1841 (2015). https://doi.org/10.1002/adma.201405372
- K. Cho, J. Kim, S.Y. Yoon, K.Y. Ryu, S.R. Jang et al., Reducing trap-assisted recombination in small organic molecule-based photovoltaics by the addition of a conjugated block copolymer. Macromol. Rapid Commun. 39(5), 1700630 (2018). https://doi.org/10.1002/marc.201700630
- W. Liang, L. Chen, Z. Wang, Z. Peng, L. Zhu et al., Oligothiophene additive-assisted morphology control and recombination suppression enable high-performance organic solar cells. Adv. Energy Mater. 14(11), 2303661 (2024). https://doi.org/10.1002/aenm.202303661
- Y. Cui, P. Zhu, H. Hu, X. Xia, X. Lu et al., Impact of electrostatic interaction on non-radiative recombination energy losses in organic solar cells based on asymmetric acceptors. Angew. Chem. Int. Ed. 62(35), e202304931 (2023). https://doi.org/10.1002/anie.202304931
- K. Vandewal, Z. Ma, J. Bergqvist, Z. Tang, E. Wang et al., Quantification of quantum efficiency and energy losses in low bandgap polymer: fullerene solar cells with high open-circuit voltage. Adv. Funct. Mater. 22(16), 3480–3490 (2012). https://doi.org/10.1002/adfm.201200608
- Z. Wang, Y. Hu, T. Xiao, Y. Zhu, X. Chen et al., Correlations between performance of organic solar cells and film-depth-dependent optical and electronic variations. Adv. Opt. Mater. 7(10), 1900152 (2019). https://doi.org/10.1002/adom.201900152
- L. Bu, S. Gao, W. Wang, L. Zhou, S. Feng et al., Film-depth-dependent light absorption and charge transport for polymer electronics: a case study on semiconductor/insulator blends by plasma etching. Adv. Electron. Mater. 2(12), 1600359 (2016). https://doi.org/10.1002/aelm.201600359
- S. Gao, L. Bu, Z. Zheng, X. Wang, W. Wang et al., Probing film-depth-related light harvesting in polymer solar cells via plasma etching. AIP Adv. 7(4), 045312 (2017). https://doi.org/10.1063/1.4982242
References
B. Liu, W. Xu, R. Ma, J.-W. Lee, T.A. Dela Peña et al., Isomerized green solid additive engineering for thermally stable and eco-friendly all-polymer solar cells with approaching 19% efficiency. Adv. Mater. 35(49), e2308334 (2023). https://doi.org/10.1002/adma.202308334
Y. Wang, K. Sun, C. Li, C. Zhao, C. Gao et al., A novel upside-down thermal annealing method toward high-quality active layers enables organic solar cells with efficiency approaching 20. Adv. Mater. 36(47), e2411957 (2024). https://doi.org/10.1002/adma.202411957
M. Gao, J. Wu, X. Yuan, C. He, H. Jiang et al., Tuning the solution aggregation and molecular order for efficient and thermally stable polymer solar cells. Energy Environ. Sci. 16(12), 5822–5831 (2023). https://doi.org/10.1039/D3EE02354K
W. Kong, J. Wang, Y. Hu, N. Cui, C. Yan et al., P-type polymers in semitransparent organic photovoltaics. Angew. Chem. Int. Ed. 62(45), e202307622 (2023). https://doi.org/10.1002/anie.202307622
S. Xu, Y. Zhang, Y. Sun, P. Cheng, Z. Yao et al., An unprecedented efficiency with approaching 21% enabled by additive-assisted layer-by-layer processing in organic solar cells. Nano-Micro Lett. 17(1), 37 (2024). https://doi.org/10.1007/s40820-024-01529-8
G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett. 15(1), 92 (2023). https://doi.org/10.1007/s40820-023-01057-x
W. Gao, M. Jiang, Z. Wu, B. Fan, W. Jiang et al., Intramolecular chloro-sulfur interaction and asymmetric side-chain isomerization to balance crystallinity and miscibility in all-small-molecule solar cells. Angew. Chem. Int. Ed. 61(33), e202205168 (2022). https://doi.org/10.1002/anie.202205168
C. Li, J. Zhou, J. Song, J. Xu, H. Zhang et al., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6(6), 605–613 (2021). https://doi.org/10.1038/s41560-021-00820-x
T. Xu, Z. Luo, R. Ma, Z. Chen, T.A. Dela-Peña et al., High-performance organic solar cells containing pyrido [2, 3-b] quinoxaline-core-based small-molecule acceptors with optimized orbit overlap lengths and molecular packing. Angew. Chem. Int. Ed. 62(30), e202304127 (2023). https://doi.org/10.1002/anie.202304127
M. An, Q. Bai, S.Y. Jeong, J. Ding, C. Zhao et al., Polythiophene derivatives for efficient all-polymer solar cells. Adv. Energy Mater. 13(30), 2301110 (2023). https://doi.org/10.1002/aenm.202301110
L. Chen, R. Ma, J. Yi, T.A. Dela Peña, H. Li et al., Exploiting the donor-acceptor-additive interaction’s morphological effect on the performance of organic solar cells. Aggregate 5(2), e455 (2024). https://doi.org/10.1002/agt2.455
B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
L. Chen, J. Yi, R. Ma, T.A. Dela Peña, Y. Luo et al., 19% efficiency in organic solar cells of Benzo [1, 2-b: 4, 5-b’] Difuran-based donor polymer realized by volatile + non-volatile dual-solid-additive strategy. Mater. Sci. Eng. R. Rep. 159, 100794 (2024). https://doi.org/10.1016/j.mser.2024.100794
K. Zhou, K. Xian, R. Ma, J. Liu, M. Gao et al., Correlating miscibility, mechanical parameters, and stability of ternary polymer blends for high-performance solar cells. Energy Environ. Sci. 16(11), 5052–5064 (2023). https://doi.org/10.1039/D3EE01683H
S. Lee, D. Jeong, C. Kim, C. Lee, H. Kang et al., Eco-friendly polymer solar cells: advances in green-solvent processing and material design. ACS Nano 14(11), 14493–14527 (2020). https://doi.org/10.1021/acsnano.0c07488
K. Wang, W. Li, X. Guo, Q. Zhu, Q. Fan et al., Optimizing the alkyl side-chain design of a wide band-gap polymer donor for attaining nonfullerene organic solar cells with high efficiency using a nonhalogenated solvent. Chem. Mater. 33(15), 5981–5990 (2021). https://doi.org/10.1021/acs.chemmater.1c01307
W. Gao, R. Ma, T.A. Dela Peña, C. Yan, H. Li et al., Efficient all-small-molecule organic solar cells processed with non-halogen solvent. Nat. Commun. 15, 1946 (2024). https://doi.org/10.1038/s41467-024-46144-8
X. Ma, C. Wang, D. Deng, H. Zhang, L. Zhang et al., Small molecule donors design rules for non-halogen solvent fabricated organic solar cells. Small 20(19), e2309042 (2024). https://doi.org/10.1002/smll.202309042
T. Hu, X. Zheng, C. Xiao, J. Su, A. Saparbaev et al., Composite side chain induced ordered preaggregation in liquid state for high-performance non-halogen solvent processed organic solar cells. Nano Energy 130, 110172 (2024). https://doi.org/10.1016/j.nanoen.2024.110172
S. Dong, T. Jia, K. Zhang, J. Jing, F. Huang, Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 4(9), 2004–2016 (2020). https://doi.org/10.1016/j.joule.2020.07.028
A.L. Ayzner, C.J. Tassone, S.H. Tolbert, B.J. Schwartz, Reappraising the need for bulk heterojunctions in polymer−fullerene photovoltaics: the role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. 113, 20050–20060 (2009). https://doi.org/10.1021/jp9050897
J.S. Moon, C.J. Takacs, Y. Sun, A.J. Heeger, Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. Nano Lett. 11(3), 1036–1039 (2011). https://doi.org/10.1021/nl200056p
S.A. Hawks, J.C. Aguirre, L.T. Schelhas, R.J. Thompson, R.C. Huber et al., Comparing matched polymer:fullerene solar cells made by solution-sequential processing and traditional blend casting: nanoscale structure and device performance. J. Phys. Chem. C 118(17413), 17425 (2014). https://doi.org/10.1021/jp504560r
G. Zhang, R.C. Huber, A.S. Ferreira, S.D. Boyd, C.K. Luscombe et al., Crystallinity effects in sequentially processed and blend-cast bulk-heterojunction polymer/fullerene photovoltaics. J. Phys. Chem. C 118, 18424–18435 (2014). https://doi.org/10.1021/jp5054315
C. Zhao, J. Yi, L. Wang, G. Lu, H. Huang et al., An improved performance of all polymer solar cells enabled by sequential processing via non-halogenated solvents. Nano Energy 104, 107872 (2022). https://doi.org/10.1016/j.nanoen.2022.107872
C. Zhao, R. Ma, Y. Hou, L. Zhu, X. Zou et al., 18.1% ternary all-polymer solar cells sequentially processed from hydrocarbon solvent with enhanced stability. Adv. Energy Mater. 13(31), 2300904 (2023). https://doi.org/10.1002/aenm.202300904
S. Luo, C. Li, J. Zhang, X. Zou, H. Zhao et al., Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat. Commun. 14, 6964 (2023). https://doi.org/10.1038/s41467-023-41978-0
G. Zhang, C. Zhao, L. Zhu, L. Wang, W. Xiong et al., Toluene processed all-polymer solar cells with 18% efficiency and enhanced stability enabled by solid additive: comparison between sequential-processing and blend-casting. Energy Environ. Mater. 7(4), e12683 (2024). https://doi.org/10.1002/eem2.12683
Y. Wang, X. Zhan, Layer-by-layer processed organic solar cells. Adv. Energy Mater. 6(17), 1600414 (2016). https://doi.org/10.1002/aenm.201600414
J. Wan, L. Zeng, X. Liao, Z. Chen, S. Liu et al., All-green solvent-processed planar heterojunction organic solar cells with outstanding power conversion efficiency of 16%. Adv. Funct. Mater. 32(5), 2107567 (2022). https://doi.org/10.1002/adfm.202107567
Q. Zhou, C. Yan, H. Li, Z. Zhu, Y. Gao et al., Polymer fiber rigid network with high glass transition temperature reinforces stability of organic photovoltaics. Nano-Micro Lett. 16(1), 224 (2024). https://doi.org/10.1007/s40820-024-01442-0
Y. Wang, Z. Liang, X. Liang, X. Wen, Z. Cai et al., Easy isomerization strategy for additives enables high-efficiency organic solar cells. Adv. Energy Mater. 13(22), 2300524 (2023). https://doi.org/10.1002/aenm.202300524
H. Zhao, B. Lin, J. Xue, H.B. Naveed, C. Zhao et al., Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating. Adv. Mater. 34(7), e2105114 (2022). https://doi.org/10.1002/adma.202105114
R. Ma, H. Li, T.A. Dela Peña, H. Wang, C. Yan et al., In-situ understanding on the formation of fibrillar morphology in green solvent processed all-polymer solar cells. Natl. Sci. Rev. 11(12), nwae384 (2024). https://doi.org/10.1093/nsr/nwae384
X. Jiang, P. Chotard, K. Luo, F. Eckmann, S. Tu et al., Revealing donor–acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv. Energy Mater. 12(14), 2103977 (2022). https://doi.org/10.1002/aenm.202103977
W. Wu, Y. Luo, T.A. Dela Peña, J. Yao, M. Qammar et al., Defining solid additive’s pivotal role on morphology regulation in organic solar cells produced by layer-by-layer deposition Adv. Energy Mater. 14(22), 2400354 (2024). https://doi.org/10.1002/aenm.202400354
X. Xie, R. Ma, Y. Luo, T.A. Dela Peña, P.W.K. Fong et al., Thickness insensitive organic solar cells with high figure-of-merit-X enabled by simultaneous D/A interpenetration and stratification. Adv. Energy Mater. 14(35), 2401355 (2024). https://doi.org/10.1002/aenm.202401355
L. Lu, T. Xu, W. Chen, E.S. Landry, L. Yu, Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8(9), 716–722 (2014). https://doi.org/10.1038/nphoton.2014.172
V. Shrotriya, Y. Yao, G. Li, Y. Yang, Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl. Phys. Lett. 89(6), 063505 (2006). https://doi.org/10.1063/1.2335377
X. Song, N. Gasparini, D. Baran, The influence of solvent additive on polymer solar cells employing fullerene and non-fullerene acceptors. Adv. Electron. Mater. 4(10), 1700358 (2018). https://doi.org/10.1002/aelm.201700358
J. Zhang, L. Zhang, X. Wang, Z. Xie, L. Hu et al., Reducing photovoltaic property loss of organic solar cells in blade-coating by optimizing micro-nanomorphology via nonhalogenated solvent. Adv. Energy Mater. 12(14), 2200165 (2022). https://doi.org/10.1002/aenm.202200165
D. Khatiwada, S. Venkatesan, Q. Chen, J. Chen, N. Adhikari et al., Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells. J. Mater. Chem. A 3(29), 15307–15313 (2015). https://doi.org/10.1039/c5ta02709h
S. Venkatesan, E.C. Ngo, Q. Chen, A. Dubey, L. Mohammad et al., Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale 6(12), 7093–7100 (2014). https://doi.org/10.1039/c4nr01040j
R.Z. Liang, M. Babics, V. Savikhin, W. Zhang, V.M. Le Corre et al., Carrier transport and recombination in efficient “all-small-molecule” solar cells with the nonfullerene acceptor IDTBR. Adv. Energy Mater. 8(19), 1800264 (2018). https://doi.org/10.1002/aenm.201800264
A.K. Kyaw, D.H. Wang, D. Wynands, J. Zhang, T.Q. Nguyen et al., Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 13(8), 3796–3801 (2013). https://doi.org/10.1021/nl401758g
G.J. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila et al., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27(11), 1837–1841 (2015). https://doi.org/10.1002/adma.201405372
K. Cho, J. Kim, S.Y. Yoon, K.Y. Ryu, S.R. Jang et al., Reducing trap-assisted recombination in small organic molecule-based photovoltaics by the addition of a conjugated block copolymer. Macromol. Rapid Commun. 39(5), 1700630 (2018). https://doi.org/10.1002/marc.201700630
W. Liang, L. Chen, Z. Wang, Z. Peng, L. Zhu et al., Oligothiophene additive-assisted morphology control and recombination suppression enable high-performance organic solar cells. Adv. Energy Mater. 14(11), 2303661 (2024). https://doi.org/10.1002/aenm.202303661
Y. Cui, P. Zhu, H. Hu, X. Xia, X. Lu et al., Impact of electrostatic interaction on non-radiative recombination energy losses in organic solar cells based on asymmetric acceptors. Angew. Chem. Int. Ed. 62(35), e202304931 (2023). https://doi.org/10.1002/anie.202304931
K. Vandewal, Z. Ma, J. Bergqvist, Z. Tang, E. Wang et al., Quantification of quantum efficiency and energy losses in low bandgap polymer: fullerene solar cells with high open-circuit voltage. Adv. Funct. Mater. 22(16), 3480–3490 (2012). https://doi.org/10.1002/adfm.201200608
Z. Wang, Y. Hu, T. Xiao, Y. Zhu, X. Chen et al., Correlations between performance of organic solar cells and film-depth-dependent optical and electronic variations. Adv. Opt. Mater. 7(10), 1900152 (2019). https://doi.org/10.1002/adom.201900152
L. Bu, S. Gao, W. Wang, L. Zhou, S. Feng et al., Film-depth-dependent light absorption and charge transport for polymer electronics: a case study on semiconductor/insulator blends by plasma etching. Adv. Electron. Mater. 2(12), 1600359 (2016). https://doi.org/10.1002/aelm.201600359
S. Gao, L. Bu, Z. Zheng, X. Wang, W. Wang et al., Probing film-depth-related light harvesting in polymer solar cells via plasma etching. AIP Adv. 7(4), 045312 (2017). https://doi.org/10.1063/1.4982242