Dual-Donor-Induced Crystallinity Modulation Enables 19.23% Efficiency Organic Solar Cells
Corresponding Author: Zhipeng Kan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 72
Abstract
Trap-assisted charge recombination is one of the primary limitations of restricting the performance of organic solar cells. However, effectively reducing the presence of traps in the photoactive layer remains challenging. Herein, wide bandgap polymer donor PTzBI-dF is demonstrated as an effective modulator for enhancing the crystallinity of the bulk heterojunction active layers composed of D18 derivatives blended with Y6, leading to dense and ordered molecular packings, and thus, improves photoluminescence quenching properties. As a result, the photovoltaic devices exhibit reduced trap-assisted charge recombination losses, achieving an optimized power conversion efficiency of over 19%. Besides the efficiency enhancement, the devices comprised of PTzBI-dF as a third component simultaneously attain decreased current leakage, improved charge carrier mobilities, and suppressed bimolecular charge recombination, leading to reduced energy losses. The advanced crystalline structures induced by PTzBI-dF and its characteristics, such as well-aligned energy level, and complementary absorption spectra, are ascribed to the promising performance improvements. Our findings suggest that donor phase engineering is a feasible approach to tuning the molecular packings in the active layer, providing guidelines for designing effective morphology modulators for high-performance organic solar cells.
Highlights:
1 By modulating the crystalline properties of the active layer with dual donors, the efficiency of organic solar cells reaches 19.23%.
2 The introduction of PTzBI-dF suppresses the accumulation of traps and charge recombination, allowing ternary devices to maintain 82% of their initial power conversion efficiency (PCE) after illumination for 800 h.
3 The dual-donor strategy for modulating the crystallinity of the active layer is applicable to a variety of Y6 derivatives, and the increase in PCE exceeds 1%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni et al., Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014). https://doi.org/10.1021/ja509703k
- D. Corzo, K. Almasabi, E. Bihar, S. Macphee, D. Rosas-Villalva et al., Digital inkjet printing of high-efficiency large-area nonfullerene organic solar cells. Adv. Mater. Technol. 4, 1900040 (2019). https://doi.org/10.1002/admt.201900040
- J. Han, F. Bao, D. Huang, X. Wang, C. Yang et al., A universal method to enhance flexibility and stability of organic solar cells by constructing insulating matrices in active layers. Adv. Funct. Mater. 30, 2003654 (2020). https://doi.org/10.1002/adfm.202003654
- C. Liu, C. Xiao, C. Xie, W. Li, Flexible organic solar cells: materials, large-area fabrication techniques and potential applications. Nano Energy 89, 106399 (2021). https://doi.org/10.1016/j.nanoen.2021.106399
- N. Kaur, M. Singh, D. Pathak, T. Wagner, J.M. Nunzi, Organic materials for photovoltaic applications: review and mechanism. Synth. Met. 190, 20–26 (2014). https://doi.org/10.1016/j.synthmet.2014.01.022
- K. Fukuda, K. Yu, T. Someya, The future of flexible organic solar cells. Adv. Energy Mater. 10, 2000765 (2020). https://doi.org/10.1002/aenm.202000765
- L. Xie, Z. Chen, D. Yang, X. Yu, X. Tong et al., Modulation of crystallization kinetics using a guest acceptor for high-performance organic solar cells with 19.8% efficiency. Energy Environ. Sci. 17, 7838–7849 (2024). https://doi.org/10.1039/D4EE02657H
- W. Song, Q. Ye, Z. Chen, J. Ge, L. Xie et al., Advances in stretchable organic photovoltaics: flexible transparent electrodes and deformable active layer design. Adv. Mater. 36, e2311170 (2024). https://doi.org/10.1002/adma.202311170
- Z. Wang, X. Wang, L. Tu, H. Wang, M. Du et al., Dithienoquinoxalineimide-based polymer donor enables all-polymer solar cells over 19% efficiency. Angew. Chem. Int. Ed. 63, e202319755 (2024). https://doi.org/10.1002/anie.202319755
- Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao et al., Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 9, 975–986 (2024). https://doi.org/10.1038/s41560-024-01557-z
- Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022). https://doi.org/10.1016/j.joule.2021.12.017
- D. He, F. Zhao, C. Wang, Y. Lin, Non-radiative recombination energy losses in non-fullerene organic solar cells. Adv. Funct. Mater. 32, 2111855 (2022). https://doi.org/10.1002/adfm.202111855
- S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie et al., High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 14, 300–305 (2020). https://doi.org/10.1038/s41566-019-0573-5
- H. Zhou, Y. Sun, M. Zhang, Y. Ni, F. Zhang et al., Over 18.2% efficiency of layer–by–layer all–polymer solar cells enabled by homoleptic iridium(III) carbene complex as solid additive. Sci. Bull. 69, 2862–2869 (2024). https://doi.org/10.1016/j.scib.2024.07.027
- T. Liu, R. Ma, Z. Luo, Y. Guo, G. Zhang et al., Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy Environ. Sci. 13, 2115–2123 (2020). https://doi.org/10.1039/d0ee00662a
- X. He, L. Yin, Y. Li, Design of organic small molecules for photovoltaic application with high open-circuit voltage (Voc). J. Mater. Chem. C 7, 2487–2521 (2019). https://doi.org/10.1039/C8TC06589F
- X.-K. Chen, D. Qian, Y. Wang, T. Kirchartz, W. Tress et al., A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021). https://doi.org/10.1038/s41560-021-00843-4
- J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong et al., Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Applied 4, 014020 (2015). https://doi.org/10.1103/physrevapplied.4.014020
- W. Li, K.H. Hendriks, A. Furlan, M.M. Wienk, R.A.J. Janssen, High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015). https://doi.org/10.1021/ja5131897
- H. Tian, Y. Ni, W. Zhang, Y. Xu, B. Zheng et al., Over 19.2% efficiency of layer-by-layer organic photovoltaics enabled by a highly crystalline material as an energy donor and nucleating agent. Energy Environ. Sci. 17, 5173–5182 (2024). https://doi.org/10.1039/D4EE01717J
- J. Zhang, H.S. Tan, X. Guo, A. Facchetti, H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018). https://doi.org/10.1038/s41560-018-0181-5
- X. Liu, Y. Yan, Y. Yao, Z. Liang, Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved. Adv. Funct. Mater. 28, 1802004 (2018). https://doi.org/10.1002/adfm.201802004
- X. Duan, W. Song, J. Qiao, X. Li, Y. Cai et al., Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ. Sci. 15, 1563–1572 (2022). https://doi.org/10.1039/D1EE03989J
- Z. Zhao, J. Zhao, S. Chung, K. Cho, W. Xu et al., Suppressing bimolecular charge recombination and energetic disorder with planar heterojunction active layer enables 18.1% efficiency binary organic solar cells. ACS Mater. Lett. 5, 1718–1726 (2023). https://doi.org/10.1021/acsmaterialslett.3c00236
- C. Zhu, S. Chung, J. Zhao, Y. Sun, B. Zhao et al., Vertical phase regulation with 1, 3, 5-tribromobenzene leads to 18.5% efficiency binary organic solar cells. Adv. Sci. 10, e2303150 (2023). https://doi.org/10.1002/advs.202303150
- T. Huang, Y. Zhang, J. Wang, Z. Cao, S. Geng et al., Dual-donor organic solar cells with 19.13% efficiency through optimized active layer crystallization behavior. Nano Energy 121, 109226 (2024). https://doi.org/10.1016/j.nanoen.2023.109226
- X. Li, A. Tang, H. Wang, Z. Wang, M. Du et al., Benzotriazole-based 3D four-arm small molecules enable 19.1% efficiency for PM6: Y6-based ternary organic solar cells. Angew. Chem. Int. Ed. 62, e202306847 (2023). https://doi.org/10.1002/anie.202306847
- Z. Liu, M. Zhang, L. Zhang, S.Y. Jeong, S. Geng et al., Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem. Eng. J. 471, 144711 (2023). https://doi.org/10.1016/j.cej.2023.144711
- J. Zhang, R. Peng, K. Yu, J. Ge, Y. Guo et al., Isogenous acceptor strategy enables highly efficient ternary organic solar cells via synergistic morphology regulation and charge recombination reduction. Sol. RRL 6, 2200508 (2022). https://doi.org/10.1002/solr.202200508
- X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu et al., Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35, e2208997 (2023). https://doi.org/10.1002/adma.202208997
- A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Sci. 10, 2302460 (2023). https://doi.org/10.1002/adhm.202302460
- J. Zhao, S. Chung, H. Li, Z. Zhao, C. Zhu et al., Impact of intermolecular interactions between halogenated volatile solid additives and the nonfullerene acceptor in organic solar cells. Adv. Funct. Mater. 33, 2307355 (2023). https://doi.org/10.1002/adfm.202307355
- Q. An, J. Wang, X. Ma, J. Gao, Z. Hu et al., Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 13, 5039–5047 (2020). https://doi.org/10.1039/D0EE02516J
- J. Gao, N. Yu, Z. Chen, Y. Wei, C. Li et al., Over 19.2% efficiency of organic solar cells enabled by precisely tuning the charge transfer state via donor alloy strategy. Adv. Sci. 9, 2203606 (2022). https://doi.org/10.1002/advs.202203606
- M. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu et al., Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12, 309 (2021). https://doi.org/10.1038/s41467-020-20580-8
- G. Zhang, K. Zhang, Q. Yin, X.-F. Jiang, Z. Wang et al., High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139, 2387–2395 (2017). https://doi.org/10.1021/jacs.6b11991
- J.-S. Huang, T. Goh, X. Li, M.Y. Sfeir, E.A. Bielinski et al., Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nat. Photonics 7, 479–485 (2013). https://doi.org/10.1038/nphoton.2013.82
- R. Yu, S. Zhang, H. Yao, B. Guo, S. Li et al., Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv. Mater. 29, 1700437 (2017). https://doi.org/10.1002/adma.201700437
- W. Gao, H. Fu, Y. Li, F. Lin, R. Sun et al., Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss. Adv. Energy Mater. 11, 2003177 (2021). https://doi.org/10.1002/aenm.202003177
- X. Liu, X. Du, J. Wang, C. Duan, X. Tang et al., Efficient organic solar cells with extremely high open-circuit voltages and low voltage losses by suppressing nonradiative recombination losses. Adv. Energy Mater. 8, 1801699 (2018). https://doi.org/10.1002/aenm.201801699
- J. Ko, J. Kim, H.-J. Song, Y. Park, J. Kwak et al., Effect of solvent on the interfacial crystallinity in sequentially processed organic solar cells. Adv. Mater. Interfaces 8, 2100029 (2021). https://doi.org/10.1002/admi.202100029
- Z. Wang, X. Liu, H. Jiang, X. Zhou, L. Zhang et al., Organic solar cells based on high hole mobility conjugated polymer and nonfullerene acceptor with comparable bandgaps and suitable energy level offsets showing significant suppression of Jsc–Voc trade-off. Sol. RRL 3, 1900079 (2019). https://doi.org/10.1002/solr.201900079
- J. Lv, Q. Yang, W. Deng, H. Chen, M. Kumar et al., Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination. Chem. Eng. J. 465, 142822 (2023). https://doi.org/10.1016/j.cej.2023.142822
- X. Wu, X. Zhang, J. Zhang, Y. Wu, J. Li et al., 19.36% efficiency organic solar cells based on low-cost terpolymer donors with simple molecular structures. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405168
- K. An, W. Zhong, F. Peng, W. Deng, Y. Shang et al., Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nat. Commun. 14, 2688 (2023). https://doi.org/10.1038/s41467-023-38306-x
- Z. Zhao, S. Chung, Y.Y. Kim, M. Jeong, X. Li et al., Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells. Energy Environ. Sci. 17, 5666–5678 (2024). https://doi.org/10.1039/D4EE02330G
- M. Neukom, S. Züfle, S. Jenatsch, B. Ruhstaller, Opto-electronic characterization of third-generation solar cells. Sci. Technol. Adv. Mater. 19, 291–316 (2018). https://doi.org/10.1080/14686996.2018.1442091
- B.C. O’Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling et al., Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanop films. J. Phys. Chem. B 110, 17155–17160 (2006). https://doi.org/10.1021/jp062761f
- R.C.I. MacKenzie, C.G. Shuttle, M.L. Chabinyc, J. Nelson, Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv. Energy Mater. 2, 662–669 (2012). https://doi.org/10.1002/aenm.201100709
- Y. Xie, T. Li, J. Guo, P. Bi, X. Xue et al., Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 4, 1196–1203 (2019). https://doi.org/10.1021/acsenergylett.9b00681
- C.G. Shuttle, B. O’Regan, A.M. Ballantyne, J. Nelson, D.D.C. Bradley et al., Bimolecular recombination losses in polythiophene: fullerene solar cells. Phys. Rev. B 78, 113201 (2008). https://doi.org/10.1103/physrevb.78.113201
- H. Tang, T. Xu, C. Yan, J. Gao, H. Yin et al., Donor derivative incorporation: an effective strategy toward high performance all-small-molecule ternary organic solar cells. Adv. Sci. 6, 1901613 (2019). https://doi.org/10.1002/advs.201901613
- Y. Sun, S. Chung, X. Huang, K. Cho, Z. Kan, Suppressing nongeminate recombination with two well-compatible polymer donors enables 16.6% efficiency all-polymer solar cells. Chem. Eng. J. 470, 144186 (2023). https://doi.org/10.1016/j.cej.2023.144186
- K. Chong, X. Xu, H. Meng, J. Xue, L. Yu et al., Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 34, e2109516 (2022). https://doi.org/10.1002/adma.202109516
- H. Chen, S.Y. Jeong, J. Tian, Y. Zhang, D.R. Naphade et al., A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 16, 1062–1070 (2023). https://doi.org/10.1039/D2EE03483B
References
B. Kan, Q. Zhang, M. Li, X. Wan, W. Ni et al., Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014). https://doi.org/10.1021/ja509703k
D. Corzo, K. Almasabi, E. Bihar, S. Macphee, D. Rosas-Villalva et al., Digital inkjet printing of high-efficiency large-area nonfullerene organic solar cells. Adv. Mater. Technol. 4, 1900040 (2019). https://doi.org/10.1002/admt.201900040
J. Han, F. Bao, D. Huang, X. Wang, C. Yang et al., A universal method to enhance flexibility and stability of organic solar cells by constructing insulating matrices in active layers. Adv. Funct. Mater. 30, 2003654 (2020). https://doi.org/10.1002/adfm.202003654
C. Liu, C. Xiao, C. Xie, W. Li, Flexible organic solar cells: materials, large-area fabrication techniques and potential applications. Nano Energy 89, 106399 (2021). https://doi.org/10.1016/j.nanoen.2021.106399
N. Kaur, M. Singh, D. Pathak, T. Wagner, J.M. Nunzi, Organic materials for photovoltaic applications: review and mechanism. Synth. Met. 190, 20–26 (2014). https://doi.org/10.1016/j.synthmet.2014.01.022
K. Fukuda, K. Yu, T. Someya, The future of flexible organic solar cells. Adv. Energy Mater. 10, 2000765 (2020). https://doi.org/10.1002/aenm.202000765
L. Xie, Z. Chen, D. Yang, X. Yu, X. Tong et al., Modulation of crystallization kinetics using a guest acceptor for high-performance organic solar cells with 19.8% efficiency. Energy Environ. Sci. 17, 7838–7849 (2024). https://doi.org/10.1039/D4EE02657H
W. Song, Q. Ye, Z. Chen, J. Ge, L. Xie et al., Advances in stretchable organic photovoltaics: flexible transparent electrodes and deformable active layer design. Adv. Mater. 36, e2311170 (2024). https://doi.org/10.1002/adma.202311170
Z. Wang, X. Wang, L. Tu, H. Wang, M. Du et al., Dithienoquinoxalineimide-based polymer donor enables all-polymer solar cells over 19% efficiency. Angew. Chem. Int. Ed. 63, e202319755 (2024). https://doi.org/10.1002/anie.202319755
Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao et al., Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 9, 975–986 (2024). https://doi.org/10.1038/s41560-024-01557-z
Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang et al., Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022). https://doi.org/10.1016/j.joule.2021.12.017
D. He, F. Zhao, C. Wang, Y. Lin, Non-radiative recombination energy losses in non-fullerene organic solar cells. Adv. Funct. Mater. 32, 2111855 (2022). https://doi.org/10.1002/adfm.202111855
S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie et al., High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 14, 300–305 (2020). https://doi.org/10.1038/s41566-019-0573-5
H. Zhou, Y. Sun, M. Zhang, Y. Ni, F. Zhang et al., Over 18.2% efficiency of layer–by–layer all–polymer solar cells enabled by homoleptic iridium(III) carbene complex as solid additive. Sci. Bull. 69, 2862–2869 (2024). https://doi.org/10.1016/j.scib.2024.07.027
T. Liu, R. Ma, Z. Luo, Y. Guo, G. Zhang et al., Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy Environ. Sci. 13, 2115–2123 (2020). https://doi.org/10.1039/d0ee00662a
X. He, L. Yin, Y. Li, Design of organic small molecules for photovoltaic application with high open-circuit voltage (Voc). J. Mater. Chem. C 7, 2487–2521 (2019). https://doi.org/10.1039/C8TC06589F
X.-K. Chen, D. Qian, Y. Wang, T. Kirchartz, W. Tress et al., A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021). https://doi.org/10.1038/s41560-021-00843-4
J. Yao, T. Kirchartz, M.S. Vezie, M.A. Faist, W. Gong et al., Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Applied 4, 014020 (2015). https://doi.org/10.1103/physrevapplied.4.014020
W. Li, K.H. Hendriks, A. Furlan, M.M. Wienk, R.A.J. Janssen, High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015). https://doi.org/10.1021/ja5131897
H. Tian, Y. Ni, W. Zhang, Y. Xu, B. Zheng et al., Over 19.2% efficiency of layer-by-layer organic photovoltaics enabled by a highly crystalline material as an energy donor and nucleating agent. Energy Environ. Sci. 17, 5173–5182 (2024). https://doi.org/10.1039/D4EE01717J
J. Zhang, H.S. Tan, X. Guo, A. Facchetti, H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018). https://doi.org/10.1038/s41560-018-0181-5
X. Liu, Y. Yan, Y. Yao, Z. Liang, Ternary blend strategy for achieving high-efficiency organic solar cells with nonfullerene acceptors involved. Adv. Funct. Mater. 28, 1802004 (2018). https://doi.org/10.1002/adfm.201802004
X. Duan, W. Song, J. Qiao, X. Li, Y. Cai et al., Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ. Sci. 15, 1563–1572 (2022). https://doi.org/10.1039/D1EE03989J
Z. Zhao, J. Zhao, S. Chung, K. Cho, W. Xu et al., Suppressing bimolecular charge recombination and energetic disorder with planar heterojunction active layer enables 18.1% efficiency binary organic solar cells. ACS Mater. Lett. 5, 1718–1726 (2023). https://doi.org/10.1021/acsmaterialslett.3c00236
C. Zhu, S. Chung, J. Zhao, Y. Sun, B. Zhao et al., Vertical phase regulation with 1, 3, 5-tribromobenzene leads to 18.5% efficiency binary organic solar cells. Adv. Sci. 10, e2303150 (2023). https://doi.org/10.1002/advs.202303150
T. Huang, Y. Zhang, J. Wang, Z. Cao, S. Geng et al., Dual-donor organic solar cells with 19.13% efficiency through optimized active layer crystallization behavior. Nano Energy 121, 109226 (2024). https://doi.org/10.1016/j.nanoen.2023.109226
X. Li, A. Tang, H. Wang, Z. Wang, M. Du et al., Benzotriazole-based 3D four-arm small molecules enable 19.1% efficiency for PM6: Y6-based ternary organic solar cells. Angew. Chem. Int. Ed. 62, e202306847 (2023). https://doi.org/10.1002/anie.202306847
Z. Liu, M. Zhang, L. Zhang, S.Y. Jeong, S. Geng et al., Over 19.1% efficiency for sequentially spin-coated polymer solar cells by employing ternary strategy. Chem. Eng. J. 471, 144711 (2023). https://doi.org/10.1016/j.cej.2023.144711
J. Zhang, R. Peng, K. Yu, J. Ge, Y. Guo et al., Isogenous acceptor strategy enables highly efficient ternary organic solar cells via synergistic morphology regulation and charge recombination reduction. Sol. RRL 6, 2200508 (2022). https://doi.org/10.1002/solr.202200508
X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu et al., Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35, e2208997 (2023). https://doi.org/10.1002/adma.202208997
A. Yu, M. Zhu, C. Chen, Y. Li, H. Cui et al., Implantable flexible sensors for health monitoring. Adv. Sci. 10, 2302460 (2023). https://doi.org/10.1002/adhm.202302460
J. Zhao, S. Chung, H. Li, Z. Zhao, C. Zhu et al., Impact of intermolecular interactions between halogenated volatile solid additives and the nonfullerene acceptor in organic solar cells. Adv. Funct. Mater. 33, 2307355 (2023). https://doi.org/10.1002/adfm.202307355
Q. An, J. Wang, X. Ma, J. Gao, Z. Hu et al., Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 13, 5039–5047 (2020). https://doi.org/10.1039/D0EE02516J
J. Gao, N. Yu, Z. Chen, Y. Wei, C. Li et al., Over 19.2% efficiency of organic solar cells enabled by precisely tuning the charge transfer state via donor alloy strategy. Adv. Sci. 9, 2203606 (2022). https://doi.org/10.1002/advs.202203606
M. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu et al., Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 12, 309 (2021). https://doi.org/10.1038/s41467-020-20580-8
G. Zhang, K. Zhang, Q. Yin, X.-F. Jiang, Z. Wang et al., High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139, 2387–2395 (2017). https://doi.org/10.1021/jacs.6b11991
J.-S. Huang, T. Goh, X. Li, M.Y. Sfeir, E.A. Bielinski et al., Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nat. Photonics 7, 479–485 (2013). https://doi.org/10.1038/nphoton.2013.82
R. Yu, S. Zhang, H. Yao, B. Guo, S. Li et al., Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv. Mater. 29, 1700437 (2017). https://doi.org/10.1002/adma.201700437
W. Gao, H. Fu, Y. Li, F. Lin, R. Sun et al., Asymmetric acceptors enabling organic solar cells to achieve an over 17% efficiency: conformation effects on regulating molecular properties and suppressing nonradiative energy loss. Adv. Energy Mater. 11, 2003177 (2021). https://doi.org/10.1002/aenm.202003177
X. Liu, X. Du, J. Wang, C. Duan, X. Tang et al., Efficient organic solar cells with extremely high open-circuit voltages and low voltage losses by suppressing nonradiative recombination losses. Adv. Energy Mater. 8, 1801699 (2018). https://doi.org/10.1002/aenm.201801699
J. Ko, J. Kim, H.-J. Song, Y. Park, J. Kwak et al., Effect of solvent on the interfacial crystallinity in sequentially processed organic solar cells. Adv. Mater. Interfaces 8, 2100029 (2021). https://doi.org/10.1002/admi.202100029
Z. Wang, X. Liu, H. Jiang, X. Zhou, L. Zhang et al., Organic solar cells based on high hole mobility conjugated polymer and nonfullerene acceptor with comparable bandgaps and suitable energy level offsets showing significant suppression of Jsc–Voc trade-off. Sol. RRL 3, 1900079 (2019). https://doi.org/10.1002/solr.201900079
J. Lv, Q. Yang, W. Deng, H. Chen, M. Kumar et al., Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination. Chem. Eng. J. 465, 142822 (2023). https://doi.org/10.1016/j.cej.2023.142822
X. Wu, X. Zhang, J. Zhang, Y. Wu, J. Li et al., 19.36% efficiency organic solar cells based on low-cost terpolymer donors with simple molecular structures. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405168
K. An, W. Zhong, F. Peng, W. Deng, Y. Shang et al., Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nat. Commun. 14, 2688 (2023). https://doi.org/10.1038/s41467-023-38306-x
Z. Zhao, S. Chung, Y.Y. Kim, M. Jeong, X. Li et al., Room-temperature-modulated polymorphism of nonfullerene acceptors enables efficient bilayer organic solar cells. Energy Environ. Sci. 17, 5666–5678 (2024). https://doi.org/10.1039/D4EE02330G
M. Neukom, S. Züfle, S. Jenatsch, B. Ruhstaller, Opto-electronic characterization of third-generation solar cells. Sci. Technol. Adv. Mater. 19, 291–316 (2018). https://doi.org/10.1080/14686996.2018.1442091
B.C. O’Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling et al., Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanop films. J. Phys. Chem. B 110, 17155–17160 (2006). https://doi.org/10.1021/jp062761f
R.C.I. MacKenzie, C.G. Shuttle, M.L. Chabinyc, J. Nelson, Extracting microscopic device parameters from transient photocurrent measurements of P3HT:PCBM solar cells. Adv. Energy Mater. 2, 662–669 (2012). https://doi.org/10.1002/aenm.201100709
Y. Xie, T. Li, J. Guo, P. Bi, X. Xue et al., Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 4, 1196–1203 (2019). https://doi.org/10.1021/acsenergylett.9b00681
C.G. Shuttle, B. O’Regan, A.M. Ballantyne, J. Nelson, D.D.C. Bradley et al., Bimolecular recombination losses in polythiophene: fullerene solar cells. Phys. Rev. B 78, 113201 (2008). https://doi.org/10.1103/physrevb.78.113201
H. Tang, T. Xu, C. Yan, J. Gao, H. Yin et al., Donor derivative incorporation: an effective strategy toward high performance all-small-molecule ternary organic solar cells. Adv. Sci. 6, 1901613 (2019). https://doi.org/10.1002/advs.201901613
Y. Sun, S. Chung, X. Huang, K. Cho, Z. Kan, Suppressing nongeminate recombination with two well-compatible polymer donors enables 16.6% efficiency all-polymer solar cells. Chem. Eng. J. 470, 144186 (2023). https://doi.org/10.1016/j.cej.2023.144186
K. Chong, X. Xu, H. Meng, J. Xue, L. Yu et al., Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 34, e2109516 (2022). https://doi.org/10.1002/adma.202109516
H. Chen, S.Y. Jeong, J. Tian, Y. Zhang, D.R. Naphade et al., A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 16, 1062–1070 (2023). https://doi.org/10.1039/D2EE03483B