Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction
Corresponding Author: Cheng‑Te Lin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 9
Abstract
Developing advanced thermal interface materials (TIMs) to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices. Based on the ultra-high basal-plane thermal conductivity, graphene is an ideal candidate for preparing high-performance TIMs, preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM. However, the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory. In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved, another critical factor is the limited actual contact area leading to relatively high contact thermal resistance (20–30 K mm2 W−1) of the “solid–solid” mating interface formed by the vertical graphene and the rough chip/heat sink. To solve this common problem faced by vertically aligned graphene, in this work, we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces. Based on rational graphene orientation regulation in the middle tier, the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m−1 K−1. Additionally, we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a “liquid–solid” mating interface, significantly increasing the effective heat transfer area and giving a low contact thermal conductivity of 4–6 K mm2 W−1 under packaging conditions. This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
Highlights:
1 A three-tiered thermal interface materials was proposed with the through-plane thermal conductivity up to176 W m−1 K−1 and contact thermal resistance as low as 4–6 K mm2 W−1 (double sides).
2 The liquid metal acts as a buffer layer to connect vertically aligned graphene with the rough heater/heat sink, improving effective contact thermal conductance by more than an order of magnitude.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Zhang, P. Yuan, X. Jiang, S. Zhai, J. Zeng et al., A theoretical review on interfacial thermal transport at the nanoscale. Small 14(2), 1702769 (2018). https://doi.org/10.1002/smll.201702769
- N.Q. Zhang, S. Keller, G. Parish, S. Heikman, S.P. DenBaars et al., High breakdown GaN HEMT with overlapping gate structure. IEEE Electron Device Lett. 21(9), 421–423 (2000). https://doi.org/10.1109/55.863096
- M. Ruff, H. Mitlehner, R. Helbig, Sic devices: physics and numerical simulation. IEEE Trans. Electron Devices 41(6), 1040–1054 (1994). https://doi.org/10.1109/16.293319
- S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang et al., High thermal conductivity in cubic boron arsenide crystals. Science 361(6402), 579–581 (2018). https://doi.org/10.1126/science.aat8982
- M.M. Waldrop, The chips are down for Moore’s law. Nature 530(7589), 144 (2016). https://doi.org/10.1038/530144a
- A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Inter. Mater. Rev. 63(1), 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605
- G. Xia, L. Chai, H. Wang, M. Zhou, Z. Cui, Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Appl. Therm. Eng. 31(6), 1208–1219 (2011). https://doi.org/10.1016/j.applthermaleng.2010.12.022
- K. Matsumoto, S. Ibaraki, K. Sueoka, K. Sakuma, H. Kikuchi et al., Thermal design guidelines for a three-dimensional (3D) chip stack, including cooling solutions. in 29th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA (March, 2013). https://doi.org/10.1109/SEMI-THERM.2013.6526797
- J. Hansson, T.M. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials: a review. Inter. Mater. Rev. 63(1), 22–45 (2018). https://doi.org/10.1080/09506608.2017.1301014
- W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2), 1547–1554 (2019). https://doi.org/10.1021/acsnano.8b07337
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
- A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30(8), 1903857 (2020). https://doi.org/10.1002/adfm.201903857
- W. Zhang, Q.Q. Kong, Z. Tao, J. Wei, L. Xie et al., 3D thermally cross-linked graphene aerogel–enhanced silicone rubber elastomer as thermal interface material. Adv. Mater. Interfaces 6(12), 1900147 (2019). https://doi.org/10.1002/admi.201900147
- J. Gu, Q. Zhang, J. Dang, C. Xie, Thermal conductivity epoxy resin composites filled with boron nitride. Polym. Adv. Technol. 23(6), 1025–1028 (2012). https://doi.org/10.1002/pat.2063
- R. Prasher, Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94(8), 1571–1586 (2006). https://doi.org/10.1109/JPROC.2006.879796
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- S. Ganguli, A.K. Roy, D.P. Anderson, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5), 806–817 (2008). https://doi.org/10.1016/j.carbon.2008.02.008
- K.M. Shahil, A.A. Balandin, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1016/j.carbon.2008.02.008
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- A.A. Balandin, Phononics of graphene and related materials. ACS Nano 14(5), 5170–5178 (2020). https://doi.org/10.1021/acsnano.0c02718
- X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang et al., Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014). https://doi.org/10.1038/ncomms4689
- Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5(3), 2392–2401 (2011). https://doi.org/10.1021/nn200181e
- Y.F. Zhang, D. Han, Y.H. Zhao, S.L. Bai, High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109, 552–557 (2016). https://doi.org/10.1016/j.carbon.2016.08.051
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
- X.H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- F. An, X. Li, P. Min, P. Liu, Z.G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10(20), 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
- X. Tan, J. Ying, J. Gao, Q. Yan, L. Lv et al., Rational design of high-performance thermal interface materials based on gold-nanocap-modified vertically aligned graphene architecture. Compos. Commun. 24, 100621 (2021). https://doi.org/10.1016/j.coco.2020.100621
- J. Li, Y. Zhang, T. Liang, X. Bai, Y. Pang et al., Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance. Chem. Mater. 33(22), 8926–8937 (2021). https://doi.org/10.1021/acs.chemmater.1c03275
- Q. Yan, J. Gao, D. Chen, P. Tao, L. Chen et al., A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 14(31), 11171–11178 (2022). https://doi.org/10.1039/D2NR02265F
- H. Ci, H. Chang, R. Wang, T. Wei, Y. Wang et al., Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv. Mater. 31(29), 1901624 (2019). https://doi.org/10.1002/adma.201901624
- S. Xu, J. Zhang, Vertically aligned graphene for thermal interface materials. Small Struct. 1(3), 2000034 (2020). https://doi.org/10.1002/sstr.202000034
- S. Xu, T. Cheng, Q. Yan, C. Shen, Y. Yu et al., Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 9(15), 2200737 (2022). https://doi.org/10.1002/advs.202200737
- Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31(36), 2104062 (2021). https://doi.org/10.1002/adfm.202104062
- F.E. Alam, W. Dai, M. Yang, S. Du, X. Li et al., In-situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A 5(13), 6164–6169 (2017). https://doi.org/10.1039/C7TA00750G
- M.T. Barako, S.G. Isaacson, F. Lian, E. Pop, R.H. Dauskardt et al., Dense vertically aligned copper nanowire composites as high performance thermal interface materials. ACS Appl. Mater. Interfaces 9(48), 42067–42074 (2017). https://doi.org/10.1021/acsami.7b12313
- W. Gong, P. Li, Y. Zhang, X. Feng, J. Major et al., Ultracompliant heterogeneous copper–tin nanowire arrays making a supersolder. Nano Lett. 18(6), 3586–3592 (2018). https://doi.org/10.1021/acs.nanolett.8b00692
- K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura et al., Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26(33), 5857–5862 (2014). https://doi.org/10.1002/adma.201401736
- W. Lin, J. Shang, W. Gu, C.P. Wong, Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique. Carbon 50(4), 1591–1603 (2012). https://doi.org/10.1016/j.carbon.2011.11.038
- W. Lin, K.S. Moon, C.P. Wong, A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube–polymer nanocomposites: toward applications as thermal interface materials. Adv. Mater. 21(23), 2421–2424 (2009). https://doi.org/10.1002/adma.200803548
- A.M. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, K.E. Goodson, Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6), 4818–4825 (2011). https://doi.org/10.1021/nn200847u
- M. Wang, H. Chen, W. Lin, Z. Li, Q. Li et al., Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl. Mater. Interfaces 6(1), 539–544 (2014). https://doi.org/10.1021/am404594m
- P.G. Klemens, D.F. Pedraza, Thermal conductivity of graphite in the basal plane. Carbon 32(4), 735–741 (1994). https://doi.org/10.1016/0008-6223(94)90096-5
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
References
P. Zhang, P. Yuan, X. Jiang, S. Zhai, J. Zeng et al., A theoretical review on interfacial thermal transport at the nanoscale. Small 14(2), 1702769 (2018). https://doi.org/10.1002/smll.201702769
N.Q. Zhang, S. Keller, G. Parish, S. Heikman, S.P. DenBaars et al., High breakdown GaN HEMT with overlapping gate structure. IEEE Electron Device Lett. 21(9), 421–423 (2000). https://doi.org/10.1109/55.863096
M. Ruff, H. Mitlehner, R. Helbig, Sic devices: physics and numerical simulation. IEEE Trans. Electron Devices 41(6), 1040–1054 (1994). https://doi.org/10.1109/16.293319
S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang et al., High thermal conductivity in cubic boron arsenide crystals. Science 361(6402), 579–581 (2018). https://doi.org/10.1126/science.aat8982
M.M. Waldrop, The chips are down for Moore’s law. Nature 530(7589), 144 (2016). https://doi.org/10.1038/530144a
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Inter. Mater. Rev. 63(1), 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605
G. Xia, L. Chai, H. Wang, M. Zhou, Z. Cui, Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Appl. Therm. Eng. 31(6), 1208–1219 (2011). https://doi.org/10.1016/j.applthermaleng.2010.12.022
K. Matsumoto, S. Ibaraki, K. Sueoka, K. Sakuma, H. Kikuchi et al., Thermal design guidelines for a three-dimensional (3D) chip stack, including cooling solutions. in 29th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA (March, 2013). https://doi.org/10.1109/SEMI-THERM.2013.6526797
J. Hansson, T.M. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials: a review. Inter. Mater. Rev. 63(1), 22–45 (2018). https://doi.org/10.1080/09506608.2017.1301014
W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan et al., A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 13(2), 1547–1554 (2019). https://doi.org/10.1021/acsnano.8b07337
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30(8), 1903857 (2020). https://doi.org/10.1002/adfm.201903857
W. Zhang, Q.Q. Kong, Z. Tao, J. Wei, L. Xie et al., 3D thermally cross-linked graphene aerogel–enhanced silicone rubber elastomer as thermal interface material. Adv. Mater. Interfaces 6(12), 1900147 (2019). https://doi.org/10.1002/admi.201900147
J. Gu, Q. Zhang, J. Dang, C. Xie, Thermal conductivity epoxy resin composites filled with boron nitride. Polym. Adv. Technol. 23(6), 1025–1028 (2012). https://doi.org/10.1002/pat.2063
R. Prasher, Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94(8), 1571–1586 (2006). https://doi.org/10.1109/JPROC.2006.879796
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
S. Ganguli, A.K. Roy, D.P. Anderson, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5), 806–817 (2008). https://doi.org/10.1016/j.carbon.2008.02.008
K.M. Shahil, A.A. Balandin, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1016/j.carbon.2008.02.008
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
A.A. Balandin, Phononics of graphene and related materials. ACS Nano 14(5), 5170–5178 (2020). https://doi.org/10.1021/acsnano.0c02718
X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang et al., Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014). https://doi.org/10.1038/ncomms4689
Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5(3), 2392–2401 (2011). https://doi.org/10.1021/nn200181e
Y.F. Zhang, D. Han, Y.H. Zhao, S.L. Bai, High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109, 552–557 (2016). https://doi.org/10.1016/j.carbon.2016.08.051
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
X.H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018). https://doi.org/10.1016/j.carbon.2018.09.016
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
F. An, X. Li, P. Min, P. Liu, Z.G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10(20), 17383–17392 (2018). https://doi.org/10.1021/acsami.8b04230
X. Tan, J. Ying, J. Gao, Q. Yan, L. Lv et al., Rational design of high-performance thermal interface materials based on gold-nanocap-modified vertically aligned graphene architecture. Compos. Commun. 24, 100621 (2021). https://doi.org/10.1016/j.coco.2020.100621
J. Li, Y. Zhang, T. Liang, X. Bai, Y. Pang et al., Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance. Chem. Mater. 33(22), 8926–8937 (2021). https://doi.org/10.1021/acs.chemmater.1c03275
Q. Yan, J. Gao, D. Chen, P. Tao, L. Chen et al., A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 14(31), 11171–11178 (2022). https://doi.org/10.1039/D2NR02265F
H. Ci, H. Chang, R. Wang, T. Wei, Y. Wang et al., Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv. Mater. 31(29), 1901624 (2019). https://doi.org/10.1002/adma.201901624
S. Xu, J. Zhang, Vertically aligned graphene for thermal interface materials. Small Struct. 1(3), 2000034 (2020). https://doi.org/10.1002/sstr.202000034
S. Xu, T. Cheng, Q. Yan, C. Shen, Y. Yu et al., Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 9(15), 2200737 (2022). https://doi.org/10.1002/advs.202200737
Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31(36), 2104062 (2021). https://doi.org/10.1002/adfm.202104062
F.E. Alam, W. Dai, M. Yang, S. Du, X. Li et al., In-situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A 5(13), 6164–6169 (2017). https://doi.org/10.1039/C7TA00750G
M.T. Barako, S.G. Isaacson, F. Lian, E. Pop, R.H. Dauskardt et al., Dense vertically aligned copper nanowire composites as high performance thermal interface materials. ACS Appl. Mater. Interfaces 9(48), 42067–42074 (2017). https://doi.org/10.1021/acsami.7b12313
W. Gong, P. Li, Y. Zhang, X. Feng, J. Major et al., Ultracompliant heterogeneous copper–tin nanowire arrays making a supersolder. Nano Lett. 18(6), 3586–3592 (2018). https://doi.org/10.1021/acs.nanolett.8b00692
K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura et al., Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26(33), 5857–5862 (2014). https://doi.org/10.1002/adma.201401736
W. Lin, J. Shang, W. Gu, C.P. Wong, Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique. Carbon 50(4), 1591–1603 (2012). https://doi.org/10.1016/j.carbon.2011.11.038
W. Lin, K.S. Moon, C.P. Wong, A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube–polymer nanocomposites: toward applications as thermal interface materials. Adv. Mater. 21(23), 2421–2424 (2009). https://doi.org/10.1002/adma.200803548
A.M. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, K.E. Goodson, Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6), 4818–4825 (2011). https://doi.org/10.1021/nn200847u
M. Wang, H. Chen, W. Lin, Z. Li, Q. Li et al., Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl. Mater. Interfaces 6(1), 539–544 (2014). https://doi.org/10.1021/am404594m
P.G. Klemens, D.F. Pedraza, Thermal conductivity of graphite in the basal plane. Carbon 32(4), 735–741 (1994). https://doi.org/10.1016/0008-6223(94)90096-5
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589