Biomimetic Micro-Nanostructured Evaporator with Dual-Transition-Metal MXene for Efficient Solar Steam Generation and Multifunctional Salt Harvesting
Corresponding Author: Hongzhi Cui
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 102
Abstract
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology. Attractively, the double‐transition‐metal (V1/2Mo1/2)2CTx MXene nanomaterials as a photothermal layer, exhibiting the enhanced photothermal conversion performance due to elevated joint densities of states, which enables high populations of photoexcited carrier relaxation and heat release, provides a new insight into the photothermal conversion mechanism for multiple principal element MXene. Hence, the (V1/2Mo1/2)2CTx MXene-200 composite membrane can achieve a high evaporation rate of 2.23 kg m−2 h−1 under one sun, owing to the enhanced “light trap” effect, photothermal conversion, and high-throughput water transfer. Synergetically, the membrane can induce the directed precipitation of salt at the membrane edge, thus enabling salt harvesting for recycling and zero-emission of brine water. Moreover, the composite membrane is endowed with excellent multifunctionality of anti‐/de‐icing, anti-fouling, and antibacterial, overcoming the disadvantage that versatility is difficult to be compatible. Therefore, the evaporator and the promising strategy hold great potential for the practical application of solar evaporation.
Highlights:
1 The design of composite membrane with biomimetic micro-nanostructured superhydrophobic surface and (V1/2Mo1/2)2C MXene photothermal nanomaterials.
2 The double‐transition‐metal (V1/2Mo1/2)2CTx MXene exhibits enhanced photothermal conversion performance via the elevated joint densities of states.
3 The (V1/2Mo1/2)2CTx MXene-200 composite membrane achieves an evaporation rate of 2.23 kg m−2 h−1 under one sun, directed salt harvesting, and excellent multifunctionality of anti-/de-icing, anti-fouling, and antibacterial.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Belmehdi, S. Otmani, M. Taha-Janan, Global trends of solar desalination research: a bibliometric analysis during 2010–2021 and focus on Morocco. Desalination 555, 116490 (2023). https://doi.org/10.1016/j.desal.2023.116490
- X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu et al., Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, e2313090 (2024). https://doi.org/10.1002/adma.202313090
- Y. Hu, H. Ma, M. Wu, T. Lin, H. Yao et al., A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nat. Commun. 13, 4335 (2022). https://doi.org/10.1038/s41467-022-32051-3
- H. Yu, D. Wang, H. Jin, P. Wu, X. Wu et al., 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Adv. Funct. Mater. 33, 2214828 (2023). https://doi.org/10.1002/adfm.202214828
- S.M. Shalaby, F.A. Hammad, M.E. Zayed, Current progress in integrated solar desalination systems: prospects from coupling configurations to energy conversion and desalination processes. Process. Saf. Environ. Prot. 178, 494–510 (2023). https://doi.org/10.1016/j.psep.2023.08.058
- M.S. Irshad, N. Arshad, X. Wang, Nanoenabled photothermal materials for clean water production. Glob. Chall. 5, 2000055 (2020). https://doi.org/10.1002/gch2.202000055
- Y. Shi, O. Ilic, H.A. Atwater, J.R. Greer, All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021). https://doi.org/10.1038/s41467-021-23174-0
- B. Shao, Y. Wang, X. Wu, Y. Lu, X. Yang et al., Stackable nickel–cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 8, 11665–11673 (2020). https://doi.org/10.1039/D0TA03799K
- J. Huang, H. Zheng, H. Kong, Key pathways for efficient solar thermal desalination. Energy Convers. Manag. 299, 117806 (2024). https://doi.org/10.1016/j.enconman.2023.117806
- P. Cheng, D. Wang, P. Schaaf, A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Adv. Sustainable Syst. 6, 2200115 (2022). https://doi.org/10.1002/adsu.202200115
- X. Dong, S. Gao, S. Li, T. Zhu, J. Huang et al., Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Mater. Chem. Front. 5, 1510–1524 (2021). https://doi.org/10.1039/D0QM00766H
- Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens et al., Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 65, 1380–1388 (2020). https://doi.org/10.1016/j.scib.2020.04.036
- H. Liu, Z. Huang, K. Liu, X. Hu, J. Zhou, Interfacial solar-to-heat conversion for desalination. Adv. Energy Mater. 9, 1900310 (2019). https://doi.org/10.1002/aenm.201900310
- B.-J. Ku, D.H. Kim, A.S. Yasin, A. Mnoyan, M.-J. Kim et al., Solar-driven desalination using salt-rejecting plasmonic cellulose nanofiber membrane. J. Colloid Interface Sci. 634, 543–552 (2023). https://doi.org/10.1016/j.jcis.2022.12.059
- K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
- B. Yu, Y. Zhang, Y. Wang, Z. Zhang, Recent advances and challenges of metal-based materials for solar steam generation. Adv. Funct. Mater. 33, 2307533 (2023). https://doi.org/10.1002/adfm.202307533
- W. Cai, X. Luo, Z. Lian, G. Chen, H.-C. Kuo et al., Optical-concentrating solar distillation based on three-dimensional copper foam cubes coated with CuS nanops and agarose gel. ACS Appl. Mater. Interfaces 15, 20120–20129 (2023). https://doi.org/10.1021/acsami.3c00838
- P. Liu, L. Xu, Z.-Y. Wang, Y. Huo, Y.-B. Hu et al., A salt-resistant and antibacterial Cu2 ZnSnS4-based hydrogel for high efficient photothermal distillation in seawater desalination and sewage purification. Chemsuschem 16, e202300611 (2023). https://doi.org/10.1002/cssc.202300611
- Y. Yang, Y. He, S. Yang, D. Dong, J. Zhang et al., Tough, durable and saline-tolerant CNT@Gel-nacre nanocomposite for interfacial solar steam generation. J. Colloid Interface Sci. 650, 182–192 (2023). https://doi.org/10.1016/j.jcis.2023.06.148
- P. Cheng, D. Wang, Easily repairable and high-performance carbon nanostructure absorber for solar photothermoelectric conversion and photothermal water evaporation. ACS Appl. Mater. Interfaces 15, 8761–8769 (2023). https://doi.org/10.1021/acsami.2c22077
- X.-J. Guo, X. Wang, C.-H. Xue, B.-Y. Liu, Y.-G. Wu et al., Salt-blocking three-dimensional Janus evaporator with superwettability gradient for efficient and stable solar desalination. J. Colloid Interface Sci. 644, 157–166 (2023). https://doi.org/10.1016/j.jcis.2023.04.073
- H. Chen, S.-L. Wu, H.-L. Wang, Q.-Y. Wu, H.-C. Yang, Photothermal devices for sustainable uses beyond desalination. Adv. Energy Sustain. Res. 2, 2000056 (2021). https://doi.org/10.1002/aesr.202000056
- X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu et al., Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023). https://doi.org/10.1021/acs.chemrev.3c00159
- D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
- Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161
- X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin, Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
- M. Berkani, A. Smaali, F. Almomani, Y. Vasseghian, Recent advances in MXene-based nanomaterials for desalination at water interfaces. Environ. Res. 203, 111845 (2022). https://doi.org/10.1016/j.envres.2021.111845
- P.O.Å. Persson, J. Rosen, Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr. Opin. Solid State Mater. Sci. 23, 100774 (2019). https://doi.org/10.1016/j.cossms.2019.100774
- Z. Wang, K. Yu, S. Gong, H. Mao, R. Huang et al., Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 13, 16246–16258 (2021). https://doi.org/10.1021/acsami.0c22761
- C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
- Y. Lee, S.J. Kim, Y.-J. Kim, Y. Lim, Y. Chae et al., Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8, 573–581 (2020). https://doi.org/10.1039/c9ta07036b
- X. Mu, L. Chen, N. Qu, J. Yu, X. Jiang et al., MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation. J. Colloid Interface Sci. 636, 291–304 (2023). https://doi.org/10.1016/j.jcis.2023.01.018
- R. Xu, N. Wei, Z. Li, X. Song, Q. Li et al., Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. J. Colloid Interface Sci. 584, 125–133 (2021). https://doi.org/10.1016/j.jcis.2020.09.052
- Z. Guo, P. Ren, F. Yang, T. Wu, L. Zhang et al., MOF-derived Co/C and MXene co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 7308–7318 (2023). https://doi.org/10.1021/acsami.2c22447
- L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu et al., Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018). https://doi.org/10.1039/C8TA09600G
- Z. Du, C. Wu, Y. Chen, Q. Zhu, Y. Cui et al., High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 12, 2103228 (2022). https://doi.org/10.1002/aenm.202103228
- Y. Cui, Y. Zhang, Z. Cao, J. Gu, Z. Du et al., A perspective on high-entropy two-dimensional materials. SusMat 2, 65–75 (2022). https://doi.org/10.1002/sus2.47
- B. Anasori, Y. Gogotsi, MXenes: trends, growth, and future directions. Graphene 2D Mater. 7(3–4), 75–79 (2022). https://doi.org/10.1007/s41127-022-00053-z
- Z. Wang, Z. Huang, H. Wang, W. Li, B. Wang et al., 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 16, 9105–9116 (2022). https://doi.org/10.1021/acsnano.2c01186
- S. Zada, H. Lu, F. Yang, Y. Zhang, Y. Cheng et al., V2C nanosheets as dual-functional antibacterial agents. ACS Appl. Bio Mater. 4, 4215–4223 (2021). https://doi.org/10.1021/acsabm.1c00008
- S. Zada, W. Dai, Z. Kai, H. Lu, X. Meng et al., Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 59, 6601–6606 (2020). https://doi.org/10.1002/anie.201916748
- R. Xu, H. Cui, N. Wei, J. Zhao, X. Song et al., Advanced design of bimetal sulfide/V2CTX MXene photothermal nanocomposites for integrated solar steam generation, electricity generation, and water purification. Desalination 570, 117094 (2024). https://doi.org/10.1016/j.desal.2023.117094
- G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
- D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
- B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang et al., Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3
- Y. Yang, H. Feng, W. Que, Y. Qiu, Y. Li et al., A diode-like scalable asymmetric solar evaporator with ultra-high salt resistance. Adv. Funct. Mater. 33, 2210972 (2023). https://doi.org/10.1002/adfm.202210972
- X. Fan, S. Zhang, H. Wang, L. Liu, L. Wang et al., A facile MXene/PPy modified asymmetry sponge solar absorber enabling efficient and high salt resistance evaporation. Chem. Eng. J. 483, 149304 (2024). https://doi.org/10.1016/j.cej.2024.149304
- H. Guo, P. Yan, X. Sun, J. Song, F. Zhu et al., Ion-engineered solar desalination: enhancing salt resistance and activated water yield. Chem. Eng. J. 485, 149918 (2024). https://doi.org/10.1016/j.cej.2024.149918
- L. Li, C. Xue, Q. Chang, X. Ren, N. Li et al., Polyelectrolyte hydrogel-functionalized photothermal sponge enables simultaneously continuous solar desalination and electricity generation without salt accumulation. Adv. Mater. 36, e2401171 (2024). https://doi.org/10.1002/adma.202401171
- W. Wu, M. Zhao, S. Miao, X. Li, Y. Wu et al., A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating. Carbon 217, 118593 (2024). https://doi.org/10.1016/j.carbon.2023.118593
- R. Xu, H. Cui, K. Sun, X. Song, K. Yang et al., Controllable 3D interconnected featured pore structure of transition metal borides-carbonitride/MoS2 for efficiently solar evaporation and wastewater purification. Chem. Eng. J. 446, 137275 (2022). https://doi.org/10.1016/j.cej.2022.137275
- J. Dai, H. Wang, X. Yang, L. Lan, S. Li et al., Spontaneous thermal energy transfer and anti-gravitational water pumping using Al2O3 fiber-enhanced flexible nonwoven material as a high-performance and self-floating solar evaporator. Mater. Horiz. 11, 2095–2105 (2024). https://doi.org/10.1039/d3mh02204h
- Z. Wu, D. Sun, C. Shi, S. Chen, S. Tang et al., Moisture-thermal stable, superhydrophilic alumina-based ceramics fabricated by a selective laser sintering 3D printing strategy for solar steam generation. Adv. Funct. Mater. 33, 2304897 (2023). https://doi.org/10.1002/adfm.202304897
- Y. Liu, X. Tan, Z. Liu, E. Zeng, J. Mei et al., Heat-localized and salt-resistant 3D hierarchical porous ceramic platform for efficient solar-driven interfacial evaporation. Small 20, 2400796 (2024). https://doi.org/10.1002/smll.202400796
- S. Miao, X. Liu, Y. Chen, Freezing as a path to build micro-nanostructured icephobic coatings. Adv. Funct. Mater. 33, 2212245 (2023). https://doi.org/10.1002/adfm.202212245
- H. Xie, W.-H. Xu, Y. Du, J. Gong, R. Niu et al., Cost-effective fabrication of micro-nanostructured superhydrophobic polyethylene/graphene foam with self-floating, optical trapping, acid-/ alkali resistance for efficient photothermal deicing and interfacial evaporation. Small 18, e2200175 (2022). https://doi.org/10.1002/smll.202200175
- A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
- X. Wu, J. Wang, Z. Wang, F. Sun, Y. Liu et al., Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem. Int. Ed. 60, 9416–9420 (2021). https://doi.org/10.1002/anie.202016181
- N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10, 13520–13530 (2018). https://doi.org/10.1039/c8nr03221a
- Q. Zhu, K. Ye, W. Zhu, W. Xu, C. Zou et al., A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J. Phys. Chem. Lett. 11, 2502–2509 (2020). https://doi.org/10.1021/acs.jpclett.0c00592
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- M. Aeschlimann, M. Bauer, S. Pawlik, Competing nonradiative channels for hot electron induced surface photochemistry. Chem. Phys. 205, 127–141 (1996). https://doi.org/10.1016/0301-0104(95)00372-X
- J. Sun, Y. Xin, B. Sun, Q. Yang, X. Fan, Plasma-assisted synthesis of Janus multifunctional solar evaporator for ultra-long-duration freshwater and thermoelectric co-generation. Chem. Eng. J. 497, 154621 (2024). https://doi.org/10.1016/j.cej.2024.154621
- X. Xiao, L. Pan, B. Chen, T. Chen, Y. Wang et al., A Janus and superhydrophilic design for stable and efficient high-salinity brine solar interfacial desalination. Chem. Eng. J. 455, 140777 (2023). https://doi.org/10.1016/j.cej.2022.140777
- Y.-G. Wu, C.-H. Xue, X.-J. Guo, M.-C. Huang, H.-D. Wang et al., Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient. Chem. Eng. J. 471, 144313 (2023). https://doi.org/10.1016/j.cej.2023.144313
- Y. Peng, W. Zhao, F. Ni, W. Yu, X. Liu, Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 15, 19490–19502 (2021). https://doi.org/10.1021/acsnano.1c06277
- H. Xie, Y. Du, W. Zhou, W. Xu, C. Zhang et al., Efficient fabrication of micro/nanostructured polyethylene/carbon nanotubes foam with robust superhydrophobicity, excellent photothermality, and sufficient adaptability for all-weather freshwater harvesting. Small 19, e2300915 (2023). https://doi.org/10.1002/smll.202300915
- C. Shi, Z. Wu, Y. Li, X. Zhang, Y. Xu et al., Superhydrophobic/superhydrophilic Janus evaporator for extreme high salt-resistance solar desalination by an integrated 3D printing method. ACS Appl. Mater. Interfaces 15, 23971–23979 (2023). https://doi.org/10.1021/acsami.3c03320
- Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
- R. Gu, Z. Yu, Y. Sun, P. Xie, Y. Li et al., Enhancing stability of interfacial solar evaporator in high-salinity solutions by managing salt precipitation with Janus-based directional salt transfer structure. Desalination 524, 115470 (2022). https://doi.org/10.1016/j.desal.2021.115470
- K. Sheng, M. Tian, J. Zhu, Y. Zhang, B. Van der Bruggen, When coordination polymers meet wood: from molecular design toward sustainable solar desalination. ACS Nano 17, 15482–15491 (2023). https://doi.org/10.1021/acsnano.3c01421
- X. Wang, Q. Liu, S. Wu, B. Xu, H. Xu, Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 31, e1807716 (2019). https://doi.org/10.1002/adma.201807716
- S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14, 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
References
F. Belmehdi, S. Otmani, M. Taha-Janan, Global trends of solar desalination research: a bibliometric analysis during 2010–2021 and focus on Morocco. Desalination 555, 116490 (2023). https://doi.org/10.1016/j.desal.2023.116490
X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu et al., Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, e2313090 (2024). https://doi.org/10.1002/adma.202313090
Y. Hu, H. Ma, M. Wu, T. Lin, H. Yao et al., A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nat. Commun. 13, 4335 (2022). https://doi.org/10.1038/s41467-022-32051-3
H. Yu, D. Wang, H. Jin, P. Wu, X. Wu et al., 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Adv. Funct. Mater. 33, 2214828 (2023). https://doi.org/10.1002/adfm.202214828
S.M. Shalaby, F.A. Hammad, M.E. Zayed, Current progress in integrated solar desalination systems: prospects from coupling configurations to energy conversion and desalination processes. Process. Saf. Environ. Prot. 178, 494–510 (2023). https://doi.org/10.1016/j.psep.2023.08.058
M.S. Irshad, N. Arshad, X. Wang, Nanoenabled photothermal materials for clean water production. Glob. Chall. 5, 2000055 (2020). https://doi.org/10.1002/gch2.202000055
Y. Shi, O. Ilic, H.A. Atwater, J.R. Greer, All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021). https://doi.org/10.1038/s41467-021-23174-0
B. Shao, Y. Wang, X. Wu, Y. Lu, X. Yang et al., Stackable nickel–cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 8, 11665–11673 (2020). https://doi.org/10.1039/D0TA03799K
J. Huang, H. Zheng, H. Kong, Key pathways for efficient solar thermal desalination. Energy Convers. Manag. 299, 117806 (2024). https://doi.org/10.1016/j.enconman.2023.117806
P. Cheng, D. Wang, P. Schaaf, A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Adv. Sustainable Syst. 6, 2200115 (2022). https://doi.org/10.1002/adsu.202200115
X. Dong, S. Gao, S. Li, T. Zhu, J. Huang et al., Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Mater. Chem. Front. 5, 1510–1524 (2021). https://doi.org/10.1039/D0QM00766H
Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens et al., Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 65, 1380–1388 (2020). https://doi.org/10.1016/j.scib.2020.04.036
H. Liu, Z. Huang, K. Liu, X. Hu, J. Zhou, Interfacial solar-to-heat conversion for desalination. Adv. Energy Mater. 9, 1900310 (2019). https://doi.org/10.1002/aenm.201900310
B.-J. Ku, D.H. Kim, A.S. Yasin, A. Mnoyan, M.-J. Kim et al., Solar-driven desalination using salt-rejecting plasmonic cellulose nanofiber membrane. J. Colloid Interface Sci. 634, 543–552 (2023). https://doi.org/10.1016/j.jcis.2022.12.059
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim et al., Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
B. Yu, Y. Zhang, Y. Wang, Z. Zhang, Recent advances and challenges of metal-based materials for solar steam generation. Adv. Funct. Mater. 33, 2307533 (2023). https://doi.org/10.1002/adfm.202307533
W. Cai, X. Luo, Z. Lian, G. Chen, H.-C. Kuo et al., Optical-concentrating solar distillation based on three-dimensional copper foam cubes coated with CuS nanops and agarose gel. ACS Appl. Mater. Interfaces 15, 20120–20129 (2023). https://doi.org/10.1021/acsami.3c00838
P. Liu, L. Xu, Z.-Y. Wang, Y. Huo, Y.-B. Hu et al., A salt-resistant and antibacterial Cu2 ZnSnS4-based hydrogel for high efficient photothermal distillation in seawater desalination and sewage purification. Chemsuschem 16, e202300611 (2023). https://doi.org/10.1002/cssc.202300611
Y. Yang, Y. He, S. Yang, D. Dong, J. Zhang et al., Tough, durable and saline-tolerant CNT@Gel-nacre nanocomposite for interfacial solar steam generation. J. Colloid Interface Sci. 650, 182–192 (2023). https://doi.org/10.1016/j.jcis.2023.06.148
P. Cheng, D. Wang, Easily repairable and high-performance carbon nanostructure absorber for solar photothermoelectric conversion and photothermal water evaporation. ACS Appl. Mater. Interfaces 15, 8761–8769 (2023). https://doi.org/10.1021/acsami.2c22077
X.-J. Guo, X. Wang, C.-H. Xue, B.-Y. Liu, Y.-G. Wu et al., Salt-blocking three-dimensional Janus evaporator with superwettability gradient for efficient and stable solar desalination. J. Colloid Interface Sci. 644, 157–166 (2023). https://doi.org/10.1016/j.jcis.2023.04.073
H. Chen, S.-L. Wu, H.-L. Wang, Q.-Y. Wu, H.-C. Yang, Photothermal devices for sustainable uses beyond desalination. Adv. Energy Sustain. Res. 2, 2000056 (2021). https://doi.org/10.1002/aesr.202000056
X. Cui, Q. Ruan, X. Zhuo, X. Xia, J. Hu et al., Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023). https://doi.org/10.1021/acs.chemrev.3c00159
D. Xu, Z. Li, L. Li, J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020). https://doi.org/10.1002/adfm.202000712
Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161
X. Hui, X. Ge, R. Zhao, Z. Li, L. Yin, Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv. Funct. Mater. 30, 2005190 (2020). https://doi.org/10.1002/adfm.202005190
M. Berkani, A. Smaali, F. Almomani, Y. Vasseghian, Recent advances in MXene-based nanomaterials for desalination at water interfaces. Environ. Res. 203, 111845 (2022). https://doi.org/10.1016/j.envres.2021.111845
P.O.Å. Persson, J. Rosen, Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr. Opin. Solid State Mater. Sci. 23, 100774 (2019). https://doi.org/10.1016/j.cossms.2019.100774
Z. Wang, K. Yu, S. Gong, H. Mao, R. Huang et al., Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 13, 16246–16258 (2021). https://doi.org/10.1021/acsami.0c22761
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745
Y. Lee, S.J. Kim, Y.-J. Kim, Y. Lim, Y. Chae et al., Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8, 573–581 (2020). https://doi.org/10.1039/c9ta07036b
X. Mu, L. Chen, N. Qu, J. Yu, X. Jiang et al., MXene/polypyrrole coated melamine-foam for efficient interfacial evaporation and photodegradation. J. Colloid Interface Sci. 636, 291–304 (2023). https://doi.org/10.1016/j.jcis.2023.01.018
R. Xu, N. Wei, Z. Li, X. Song, Q. Li et al., Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. J. Colloid Interface Sci. 584, 125–133 (2021). https://doi.org/10.1016/j.jcis.2020.09.052
Z. Guo, P. Ren, F. Yang, T. Wu, L. Zhang et al., MOF-derived Co/C and MXene co-decorated cellulose-derived hybrid carbon aerogel with a multi-interface architecture toward absorption-dominated ultra-efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 7308–7318 (2023). https://doi.org/10.1021/acsami.2c22447
L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu et al., Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018). https://doi.org/10.1039/C8TA09600G
Z. Du, C. Wu, Y. Chen, Q. Zhu, Y. Cui et al., High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 12, 2103228 (2022). https://doi.org/10.1002/aenm.202103228
Y. Cui, Y. Zhang, Z. Cao, J. Gu, Z. Du et al., A perspective on high-entropy two-dimensional materials. SusMat 2, 65–75 (2022). https://doi.org/10.1002/sus2.47
B. Anasori, Y. Gogotsi, MXenes: trends, growth, and future directions. Graphene 2D Mater. 7(3–4), 75–79 (2022). https://doi.org/10.1007/s41127-022-00053-z
Z. Wang, Z. Huang, H. Wang, W. Li, B. Wang et al., 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 16, 9105–9116 (2022). https://doi.org/10.1021/acsnano.2c01186
S. Zada, H. Lu, F. Yang, Y. Zhang, Y. Cheng et al., V2C nanosheets as dual-functional antibacterial agents. ACS Appl. Bio Mater. 4, 4215–4223 (2021). https://doi.org/10.1021/acsabm.1c00008
S. Zada, W. Dai, Z. Kai, H. Lu, X. Meng et al., Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angew. Chem. Int. Ed. 59, 6601–6606 (2020). https://doi.org/10.1002/anie.201916748
R. Xu, H. Cui, N. Wei, J. Zhao, X. Song et al., Advanced design of bimetal sulfide/V2CTX MXene photothermal nanocomposites for integrated solar steam generation, electricity generation, and water purification. Desalination 570, 117094 (2024). https://doi.org/10.1016/j.desal.2023.117094
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang et al., Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3
Y. Yang, H. Feng, W. Que, Y. Qiu, Y. Li et al., A diode-like scalable asymmetric solar evaporator with ultra-high salt resistance. Adv. Funct. Mater. 33, 2210972 (2023). https://doi.org/10.1002/adfm.202210972
X. Fan, S. Zhang, H. Wang, L. Liu, L. Wang et al., A facile MXene/PPy modified asymmetry sponge solar absorber enabling efficient and high salt resistance evaporation. Chem. Eng. J. 483, 149304 (2024). https://doi.org/10.1016/j.cej.2024.149304
H. Guo, P. Yan, X. Sun, J. Song, F. Zhu et al., Ion-engineered solar desalination: enhancing salt resistance and activated water yield. Chem. Eng. J. 485, 149918 (2024). https://doi.org/10.1016/j.cej.2024.149918
L. Li, C. Xue, Q. Chang, X. Ren, N. Li et al., Polyelectrolyte hydrogel-functionalized photothermal sponge enables simultaneously continuous solar desalination and electricity generation without salt accumulation. Adv. Mater. 36, e2401171 (2024). https://doi.org/10.1002/adma.202401171
W. Wu, M. Zhao, S. Miao, X. Li, Y. Wu et al., A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating. Carbon 217, 118593 (2024). https://doi.org/10.1016/j.carbon.2023.118593
R. Xu, H. Cui, K. Sun, X. Song, K. Yang et al., Controllable 3D interconnected featured pore structure of transition metal borides-carbonitride/MoS2 for efficiently solar evaporation and wastewater purification. Chem. Eng. J. 446, 137275 (2022). https://doi.org/10.1016/j.cej.2022.137275
J. Dai, H. Wang, X. Yang, L. Lan, S. Li et al., Spontaneous thermal energy transfer and anti-gravitational water pumping using Al2O3 fiber-enhanced flexible nonwoven material as a high-performance and self-floating solar evaporator. Mater. Horiz. 11, 2095–2105 (2024). https://doi.org/10.1039/d3mh02204h
Z. Wu, D. Sun, C. Shi, S. Chen, S. Tang et al., Moisture-thermal stable, superhydrophilic alumina-based ceramics fabricated by a selective laser sintering 3D printing strategy for solar steam generation. Adv. Funct. Mater. 33, 2304897 (2023). https://doi.org/10.1002/adfm.202304897
Y. Liu, X. Tan, Z. Liu, E. Zeng, J. Mei et al., Heat-localized and salt-resistant 3D hierarchical porous ceramic platform for efficient solar-driven interfacial evaporation. Small 20, 2400796 (2024). https://doi.org/10.1002/smll.202400796
S. Miao, X. Liu, Y. Chen, Freezing as a path to build micro-nanostructured icephobic coatings. Adv. Funct. Mater. 33, 2212245 (2023). https://doi.org/10.1002/adfm.202212245
H. Xie, W.-H. Xu, Y. Du, J. Gong, R. Niu et al., Cost-effective fabrication of micro-nanostructured superhydrophobic polyethylene/graphene foam with self-floating, optical trapping, acid-/ alkali resistance for efficient photothermal deicing and interfacial evaporation. Small 18, e2200175 (2022). https://doi.org/10.1002/smll.202200175
A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
X. Wu, J. Wang, Z. Wang, F. Sun, Y. Liu et al., Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem. Int. Ed. 60, 9416–9420 (2021). https://doi.org/10.1002/anie.202016181
N.M. Caffrey, Effect of mixed surface terminations on the structural and electrochemical properties of two-dimensional Ti3C2T2 and V2CT2 MXenes multilayers. Nanoscale 10, 13520–13530 (2018). https://doi.org/10.1039/c8nr03221a
Q. Zhu, K. Ye, W. Zhu, W. Xu, C. Zou et al., A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J. Phys. Chem. Lett. 11, 2502–2509 (2020). https://doi.org/10.1021/acs.jpclett.0c00592
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
M. Aeschlimann, M. Bauer, S. Pawlik, Competing nonradiative channels for hot electron induced surface photochemistry. Chem. Phys. 205, 127–141 (1996). https://doi.org/10.1016/0301-0104(95)00372-X
J. Sun, Y. Xin, B. Sun, Q. Yang, X. Fan, Plasma-assisted synthesis of Janus multifunctional solar evaporator for ultra-long-duration freshwater and thermoelectric co-generation. Chem. Eng. J. 497, 154621 (2024). https://doi.org/10.1016/j.cej.2024.154621
X. Xiao, L. Pan, B. Chen, T. Chen, Y. Wang et al., A Janus and superhydrophilic design for stable and efficient high-salinity brine solar interfacial desalination. Chem. Eng. J. 455, 140777 (2023). https://doi.org/10.1016/j.cej.2022.140777
Y.-G. Wu, C.-H. Xue, X.-J. Guo, M.-C. Huang, H.-D. Wang et al., Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient. Chem. Eng. J. 471, 144313 (2023). https://doi.org/10.1016/j.cej.2023.144313
Y. Peng, W. Zhao, F. Ni, W. Yu, X. Liu, Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 15, 19490–19502 (2021). https://doi.org/10.1021/acsnano.1c06277
H. Xie, Y. Du, W. Zhou, W. Xu, C. Zhang et al., Efficient fabrication of micro/nanostructured polyethylene/carbon nanotubes foam with robust superhydrophobicity, excellent photothermality, and sufficient adaptability for all-weather freshwater harvesting. Small 19, e2300915 (2023). https://doi.org/10.1002/smll.202300915
C. Shi, Z. Wu, Y. Li, X. Zhang, Y. Xu et al., Superhydrophobic/superhydrophilic Janus evaporator for extreme high salt-resistance solar desalination by an integrated 3D printing method. ACS Appl. Mater. Interfaces 15, 23971–23979 (2023). https://doi.org/10.1021/acsami.3c03320
Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021). https://doi.org/10.1007/s40820-021-00748-7
R. Gu, Z. Yu, Y. Sun, P. Xie, Y. Li et al., Enhancing stability of interfacial solar evaporator in high-salinity solutions by managing salt precipitation with Janus-based directional salt transfer structure. Desalination 524, 115470 (2022). https://doi.org/10.1016/j.desal.2021.115470
K. Sheng, M. Tian, J. Zhu, Y. Zhang, B. Van der Bruggen, When coordination polymers meet wood: from molecular design toward sustainable solar desalination. ACS Nano 17, 15482–15491 (2023). https://doi.org/10.1021/acsnano.3c01421
X. Wang, Q. Liu, S. Wu, B. Xu, H. Xu, Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion. Adv. Mater. 31, e1807716 (2019). https://doi.org/10.1002/adma.201807716
S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14, 178 (2022). https://doi.org/10.1007/s40820-022-00901-w