Sandwich-Architected Hybrid Organic Crystals with Humidity–Temperature Sensing and Cryogenic Photothermal Actuation
Corresponding Author: Hongyu Zhang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 160
Abstract
The growing demand for personalized health care, smart wearables, and advanced environmental monitoring has spurred the development of multifunctional materials that combine flexibility, environmental adaptability, and diverse functionalities. However, conventional materials often failed to integrate these attributes simultaneously, hindering their applicability in next-generation technologies. Here, we present an organic–inorganic hybrid crystalline material with a unique sandwich-like architecture, in which a flexible organic crystal core is encased by reduced graphene oxide (rGO) and thermoplastic polyurethane (TPU). This strategic integration endows the material with fluorescence, cryogenic flexibility, and electrical conductivity, while also enabling dual sensing and actuation capabilities. The rGO layer facilitates real-time humidity (25–90% RH) and temperature (25–180 °C) sensing through environmental interactions, whereas the differential thermal expansion between TPU and the flexible crystal core drives efficient photothermal actuation at − 150 °C for advanced thermal regulation. The hybrid material exhibits stable performance under extreme conditions, making it a promising candidate for biomedical monitoring, flexible electronics, and energy applications. This work establishes hybrid crystalline materials as versatile and scalable platforms for addressing complex technological demands, paving the way for their application in next-generation multifunctional devices.
Highlights:
1 A layered hybrid crystal integrates fluorescence, mechanical flexibility, conductivity, and cryogenic durability via reduced graphene oxide and thermally responsive polyurethane encapsulation.
2 The hybrid crystal enables real-time dual-mode sensing of humidity (1.65% RH−1) and temperature (0.46% °C−1) with high sensitivity and cycling stability.
3 Infrared-induced photothermal actuation at − 150 °C allows reversible crawling and walking under cryogenic conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
- D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123(16), 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
- Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
- W. Li, Y. Li, Z. Song, Y.-X. Wang, W. Hu, PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 53(21), 10575–10603 (2024). https://doi.org/10.1039/d4cs00541d
- C.-F. Liu, H. Lin, S.-S. Li, H. Xie, J.-L. Zhang et al., Smart responsive photoelectric organic modulator integrated with versatile optoelectronic characteristics. Adv. Funct. Mater. 32(17), 2111276 (2022). https://doi.org/10.1002/adfm.202111276
- Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9(10), 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156
- K. Wang, J. Wu, M. Wang, F. Zhang, X. Li et al., A biodegradable, stretchable, healable, and self-powered optoelectronic synapse based on ionic gelatins for neuromorphic vision system. Small 20(44), 2404566 (2024). https://doi.org/10.1002/smll.202404566
- M. Hasan, J. Zhao, Z. Jiang, Micromanufacturing of composite materials: a review. Int. J. Extrem. Manuf. 1(1), 012004 (2019). https://doi.org/10.1088/2631-7990/ab0f74
- A.K. Mohanty, S. Vivekanandhan, J.-M. Pin, M. Misra, Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414), 536–542 (2018). https://doi.org/10.1126/science.aat9072
- X. Wang, Z. Li, S. Wang, K. Sano, Z. Sun et al., Mechanical nonreciprocity in a uniform composite material. Science 380(6641), 192–198 (2023). https://doi.org/10.1126/science.adf1206
- X. Cui, J. Xiao, Y. Wu, P. Du, R. Si et al., A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. 55(23), 6708–6712 (2016). https://doi.org/10.1002/anie.201602097
- H. Dong, C. Zhang, J. Yao, Y.S. Zhao, Organic composite materials: understanding and manipulating excited states toward higher light-emitting performance. Aggregate 2(4), e103 (2021). https://doi.org/10.1002/agt2.103
- Z.E. Nataj, Y. Xu, D. Wright, J.O. Brown, J. Garg et al., Cryogenic characteristics of graphene composites-evolution from thermal conductors to thermal insulators. Nat. Commun. 14(1), 3190 (2023). https://doi.org/10.1038/s41467-023-38508-3
- A. Saboori, M. Dadkhah, P. Fino, M. Pavese, An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties. Metals 8(6), 423 (2018). https://doi.org/10.3390/met8060423
- A.J. Thompson, A.I. Chamorro Orué, A.J. Nair, J.R. Price, J. McMurtrie et al., Elastically flexible molecular crystals. Chem. Soc. Rev. 50(21), 11725–11740 (2021). https://doi.org/10.1039/d1cs00469g
- S. Hayashi, S.-Y. Yamamoto, D. Takeuchi, Y. Ie, K. Takagi, Creating elastic organic crystals of π-conjugated molecules with bending mechanofluorochromism and flexible optical waveguide. Angew. Chem. 130(52), 17248–17254 (2018). https://doi.org/10.1002/ange.201810422
- S. Das, A. Mondal, C.M. Reddy, Harnessing molecular rotations in plastic crystals: a holistic view for crystal engineering of adaptive soft materials. Chem. Soc. Rev. 49(24), 8878–8896 (2020). https://doi.org/10.1039/d0cs00518a
- S. Hasebe, Y. Hagiwara, T. Asahi, H. Koshima, Actuation performance and versatility of photothermally driven organic crystals. Angew. Chem. Int. Ed. 64(1), e202418570 (2025). https://doi.org/10.1002/anie.202418570
- W.M. Awad, D.W. Davies, D. Kitagawa, J. Mahmoud Halabi, M.B. Al-Handawi et al., Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52(9), 3098–3169 (2023). https://doi.org/10.1039/d2cs00481j
- O. Oki, H. Yamagishi, Y. Morisaki, R. Inoue, K. Ogawa et al., Synchronous assembly of chiral skeletal single-crystalline microvessels. Science 377(6606), 673–678 (2022). https://doi.org/10.1126/science.abm9596
- S. Takamizawa, Y. Miyamoto, Superelastic organic crystals. Angew. Chem. Int. Ed. 53(27), 6970–6973 (2014). https://doi.org/10.1002/anie.201311014
- S. Ghosh, M.K. Mishra, S.B. Kadambi, U. Ramamurty, G.R. Desiraju, Designing elastic organic crystals: highly flexible polyhalogenated N-benzylideneanilines. Angew. Chem. Int. Ed. 54(9), 2674–2678 (2015). https://doi.org/10.1002/anie.201410730
- M.-P. Zhuo, Y.-C. Tao, X.-D. Wang, Y. Wu, S. Chen et al., 2D organic photonics: an asymmetric optical waveguide in self-assembled halogen-bonded cocrystals. Angew. Chem. Int. Ed. 57(35), 11300–11304 (2018). https://doi.org/10.1002/anie.201806149
- L. Lan, L. Li, P. Naumov, H. Zhang, Flexible organic crystals for dynamic optical transmission. Chem. Mater. 35(18), 7363–7385 (2023). https://doi.org/10.1021/acs.chemmater.3c01659
- J. Song, Y. Zhou, Z. Pan, Y. Hu, Z. He et al., An elastic organic crystal with multilevel stimuli-responsive room temperature phosphorescence. Matter 6(6), 2005–2018 (2023). https://doi.org/10.1016/j.matt.2023.04.006
- Y. Mu, Y. Liu, H. Tian, D. Ou, L. Gong et al., Sensitive and repeatable photoinduced luminescent radicals from a simple organic crystal. Angew. Chem. Int. Ed. 60(12), 6367–6371 (2021). https://doi.org/10.1002/anie.202014720
- M. Annadhasan, A.R. Agrawal, S. Bhunia, V.V. Pradeep, S.S. Zade et al., Mechanophotonics: flexible single-crystal organic waveguides and circuits. Angew. Chem. Int. Ed. 59(33), 13852–13858 (2020). https://doi.org/10.1002/anie.202003820
- H. Liu, Z. Lu, Z. Zhang, Y. Wang, H. Zhang, Highly elastic organic crystals for flexible optical waveguides. Angew. Chem. Int. Ed. 57(28), 8448–8452 (2018). https://doi.org/10.1002/anie.201802020
- K. Huang, L. Song, K. Liu, A. Lv, M. Singh et al., Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. Npj Flex. Electron. 5, 21 (2021). https://doi.org/10.1038/s41528-021-00117-9
- M. Saikawa, M. Ohnuma, K. Manabe, K. Saito, Y. Kikkawa et al., Photo-controllable microcleaner: photo-induced crawling motion and p transport of azobenzene crystals on a liquid-like surface. Mater. Horiz. 11(19), 4819–4827 (2024). https://doi.org/10.1039/d4mh00455h
- L. Lan, L. Li, Q. Di, X. Yang, X. Liu et al., Organic single-crystal actuators and waveguides that operate at low temperatures. Adv. Mater. 34(14), e2200471 (2022). https://doi.org/10.1002/adma.202200471
- L. Lan, X. Yang, B. Tang, X. Yu, X. Liu et al., Hybrid elastic organic crystals that respond to aerial humidity. Angew. Chem. Int. Ed. 61(14), e202200196 (2022). https://doi.org/10.1002/anie.202200196
- P. Xu, Q. Yu, Y. Chen, P. Cheng, Z. Zhang, Protective coating with crystalline shells to fabricate dual-stimuli responsive actuators. CCS Chem. 4(1), 205–213 (2022). https://doi.org/10.31635/ccschem.021.202000663
- L. Lan, L. Li, C. Wang, P. Naumov, H. Zhang, Efficient aerial water harvesting with self-sensing dynamic Janus crystals. J. Am. Chem. Soc. 146(44), 30529–30538 (2024). https://doi.org/10.1021/jacs.4c11689
- E. Pantuso, E. Ahmed, E. Fontananova, A. Brunetti, I. Tahir et al., Smart dynamic hybrid membranes with self-cleaning capability. Nat. Commun. 14(1), 5751 (2023). https://doi.org/10.1038/s41467-023-41446-9
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
- Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
- P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
- Y. Chen, C. Valenzuela, Y. Liu, X. Yang, Y. Yang et al., Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 8(2), 101904 (2025). https://doi.org/10.1016/j.matt.2024.10.022
- X. Yang, Y. Chen, F. Wang, S. Chen, Z. Cao et al., Bioinspired artificial phototaxis and phototropism enabled by photoresponsive smart materials. Mater. Today 87, 348–377 (2025). https://doi.org/10.1016/j.mattod.2025.05.004
- S. Ma, P. Xue, C. Valenzuela, Y. Liu, Y. Chen et al., 4D-printed adaptive and programmable shape-morphing batteries. Adv. Mater. 37(30), e2505018 (2025). https://doi.org/10.1002/adma.202505018
- L. Yang, Y. Liu, R. Bi, Y. Chen, C. Valenzuela et al., Direct-ink-written shape-programmable micro-supercapacitors with electrothermal liquid crystal elastomers. Adv. Funct. Mater. 35(39), 2504979 (2025). https://doi.org/10.1002/adfm.202504979
- L. Lan, H. Liu, X. Yu, X. Liu, H. Zhang, Polymer-coated organic crystals with solvent-resistant capacity and optical waveguiding function. Angew. Chem. Int. Ed. 60(20), 11283–11287 (2021). https://doi.org/10.1002/anie.202102285
- Q. Di, J. Li, Z. Zhang, X. Yu, B. Tang et al., Quantifiable stretching-induced fluorescence shifts of an elastically bendable and plastically twistable organic crystal. Chem. Sci. 12(46), 15423–15428 (2021). https://doi.org/10.1039/d1sc03818d
- Y. Shin, Y.W. Kim, H.J. Kang, J.H. Lee, J.E. Byun et al., Stretchable and skin-mountable temperature sensor array using reduction-controlled graphene oxide for dermatological thermography. Nano Lett. 23(11), 5391–5398 (2023). https://doi.org/10.1021/acs.nanolett.2c04752
- Y. Yang, Y. Hao, J. Yuan, L. Niu, F. Xia, In situ co-deposition of nickel hexacyanoferrate nanocubes on the reduced graphene oxides for supercapacitors. Carbon 84, 174–184 (2015). https://doi.org/10.1016/j.carbon.2014.12.005
- L. Lan, X. Pan, P. Commins, L. Li, L. Catalano et al., Flexible organic crystals for light delivery in biological tissues. CCS Chem. 7(3), 905–917 (2025). https://doi.org/10.31635/ccschem.024.202404188
- J. Park, N. Jeon, S. Lee, G. Choe, E. Lee et al., Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem. Eng. J. 446, 137344 (2022). https://doi.org/10.1016/j.cej.2022.137344
- S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
- S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6(12), 5016–5024 (2018). https://doi.org/10.1039/c7ta11375g
- C. Chen, X. Wang, M. Li, Y. Fan, R. Sun, Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film. Sens. Actuat. B Chem. 255, 1569–1576 (2018). https://doi.org/10.1016/j.snb.2017.08.168
- D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 197, 66–72 (2014). https://doi.org/10.1016/j.snb.2014.02.078
- P. Sehrawat, S.S. Islam, P. Mishra, Reduced graphene oxide based temperature sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport. Sens. Actuators B Chem. 258, 424–435 (2018)
- Q. Di, L. Li, X. Miao, L. Lan, X. Yu et al., Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13(1), 5280 (2022). https://doi.org/10.1038/s41467-022-32894-w
- Z. Tang, Z. Gao, S. Jia, F. Wang, Y. Wang, Graphene-based polymer bilayers with superior light-driven properties for remote construction of 3D structures. Adv. Sci. 4(5), 1600437 (2017). https://doi.org/10.1002/advs.201600437
- M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho et al., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010). https://doi.org/10.1038/nmat2858
- H. Zhang, B. He, Y. Cheng, Y. Tang, Q. Ren et al., Strengthening and embrittlement effect of cryogenic temperature on fiber reinforced geopolymer composite. Cem. Concr. Compos. 153, 105727 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105727
- D. Chen, J. Li, Y. Yuan, C. Gao, Y. Cui et al., A review of the polymer for cryogenic application: methods, mechanisms and perspectives. Polymers 13(3), 320 (2021). https://doi.org/10.3390/polym13030320
- D.W. Kim, Y. Hagiwara, S. Hasebe, N.O. Dogan, M. Zhang et al., Broad-wavelength light-driven high-speed hybrid crystal actuators actuated inside tissue-like phantoms. Adv. Funct. Mater. 33(47), 2305916 (2023). https://doi.org/10.1002/adfm.202305916
References
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019). https://doi.org/10.1002/adma.201801072
D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123(16), 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
W. Li, Y. Li, Z. Song, Y.-X. Wang, W. Hu, PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 53(21), 10575–10603 (2024). https://doi.org/10.1039/d4cs00541d
C.-F. Liu, H. Lin, S.-S. Li, H. Xie, J.-L. Zhang et al., Smart responsive photoelectric organic modulator integrated with versatile optoelectronic characteristics. Adv. Funct. Mater. 32(17), 2111276 (2022). https://doi.org/10.1002/adfm.202111276
Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9(10), 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156
K. Wang, J. Wu, M. Wang, F. Zhang, X. Li et al., A biodegradable, stretchable, healable, and self-powered optoelectronic synapse based on ionic gelatins for neuromorphic vision system. Small 20(44), 2404566 (2024). https://doi.org/10.1002/smll.202404566
M. Hasan, J. Zhao, Z. Jiang, Micromanufacturing of composite materials: a review. Int. J. Extrem. Manuf. 1(1), 012004 (2019). https://doi.org/10.1088/2631-7990/ab0f74
A.K. Mohanty, S. Vivekanandhan, J.-M. Pin, M. Misra, Composites from renewable and sustainable resources: challenges and innovations. Science 362(6414), 536–542 (2018). https://doi.org/10.1126/science.aat9072
X. Wang, Z. Li, S. Wang, K. Sano, Z. Sun et al., Mechanical nonreciprocity in a uniform composite material. Science 380(6641), 192–198 (2023). https://doi.org/10.1126/science.adf1206
X. Cui, J. Xiao, Y. Wu, P. Du, R. Si et al., A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. 55(23), 6708–6712 (2016). https://doi.org/10.1002/anie.201602097
H. Dong, C. Zhang, J. Yao, Y.S. Zhao, Organic composite materials: understanding and manipulating excited states toward higher light-emitting performance. Aggregate 2(4), e103 (2021). https://doi.org/10.1002/agt2.103
Z.E. Nataj, Y. Xu, D. Wright, J.O. Brown, J. Garg et al., Cryogenic characteristics of graphene composites-evolution from thermal conductors to thermal insulators. Nat. Commun. 14(1), 3190 (2023). https://doi.org/10.1038/s41467-023-38508-3
A. Saboori, M. Dadkhah, P. Fino, M. Pavese, An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties. Metals 8(6), 423 (2018). https://doi.org/10.3390/met8060423
A.J. Thompson, A.I. Chamorro Orué, A.J. Nair, J.R. Price, J. McMurtrie et al., Elastically flexible molecular crystals. Chem. Soc. Rev. 50(21), 11725–11740 (2021). https://doi.org/10.1039/d1cs00469g
S. Hayashi, S.-Y. Yamamoto, D. Takeuchi, Y. Ie, K. Takagi, Creating elastic organic crystals of π-conjugated molecules with bending mechanofluorochromism and flexible optical waveguide. Angew. Chem. 130(52), 17248–17254 (2018). https://doi.org/10.1002/ange.201810422
S. Das, A. Mondal, C.M. Reddy, Harnessing molecular rotations in plastic crystals: a holistic view for crystal engineering of adaptive soft materials. Chem. Soc. Rev. 49(24), 8878–8896 (2020). https://doi.org/10.1039/d0cs00518a
S. Hasebe, Y. Hagiwara, T. Asahi, H. Koshima, Actuation performance and versatility of photothermally driven organic crystals. Angew. Chem. Int. Ed. 64(1), e202418570 (2025). https://doi.org/10.1002/anie.202418570
W.M. Awad, D.W. Davies, D. Kitagawa, J. Mahmoud Halabi, M.B. Al-Handawi et al., Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52(9), 3098–3169 (2023). https://doi.org/10.1039/d2cs00481j
O. Oki, H. Yamagishi, Y. Morisaki, R. Inoue, K. Ogawa et al., Synchronous assembly of chiral skeletal single-crystalline microvessels. Science 377(6606), 673–678 (2022). https://doi.org/10.1126/science.abm9596
S. Takamizawa, Y. Miyamoto, Superelastic organic crystals. Angew. Chem. Int. Ed. 53(27), 6970–6973 (2014). https://doi.org/10.1002/anie.201311014
S. Ghosh, M.K. Mishra, S.B. Kadambi, U. Ramamurty, G.R. Desiraju, Designing elastic organic crystals: highly flexible polyhalogenated N-benzylideneanilines. Angew. Chem. Int. Ed. 54(9), 2674–2678 (2015). https://doi.org/10.1002/anie.201410730
M.-P. Zhuo, Y.-C. Tao, X.-D. Wang, Y. Wu, S. Chen et al., 2D organic photonics: an asymmetric optical waveguide in self-assembled halogen-bonded cocrystals. Angew. Chem. Int. Ed. 57(35), 11300–11304 (2018). https://doi.org/10.1002/anie.201806149
L. Lan, L. Li, P. Naumov, H. Zhang, Flexible organic crystals for dynamic optical transmission. Chem. Mater. 35(18), 7363–7385 (2023). https://doi.org/10.1021/acs.chemmater.3c01659
J. Song, Y. Zhou, Z. Pan, Y. Hu, Z. He et al., An elastic organic crystal with multilevel stimuli-responsive room temperature phosphorescence. Matter 6(6), 2005–2018 (2023). https://doi.org/10.1016/j.matt.2023.04.006
Y. Mu, Y. Liu, H. Tian, D. Ou, L. Gong et al., Sensitive and repeatable photoinduced luminescent radicals from a simple organic crystal. Angew. Chem. Int. Ed. 60(12), 6367–6371 (2021). https://doi.org/10.1002/anie.202014720
M. Annadhasan, A.R. Agrawal, S. Bhunia, V.V. Pradeep, S.S. Zade et al., Mechanophotonics: flexible single-crystal organic waveguides and circuits. Angew. Chem. Int. Ed. 59(33), 13852–13858 (2020). https://doi.org/10.1002/anie.202003820
H. Liu, Z. Lu, Z. Zhang, Y. Wang, H. Zhang, Highly elastic organic crystals for flexible optical waveguides. Angew. Chem. Int. Ed. 57(28), 8448–8452 (2018). https://doi.org/10.1002/anie.201802020
K. Huang, L. Song, K. Liu, A. Lv, M. Singh et al., Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. Npj Flex. Electron. 5, 21 (2021). https://doi.org/10.1038/s41528-021-00117-9
M. Saikawa, M. Ohnuma, K. Manabe, K. Saito, Y. Kikkawa et al., Photo-controllable microcleaner: photo-induced crawling motion and p transport of azobenzene crystals on a liquid-like surface. Mater. Horiz. 11(19), 4819–4827 (2024). https://doi.org/10.1039/d4mh00455h
L. Lan, L. Li, Q. Di, X. Yang, X. Liu et al., Organic single-crystal actuators and waveguides that operate at low temperatures. Adv. Mater. 34(14), e2200471 (2022). https://doi.org/10.1002/adma.202200471
L. Lan, X. Yang, B. Tang, X. Yu, X. Liu et al., Hybrid elastic organic crystals that respond to aerial humidity. Angew. Chem. Int. Ed. 61(14), e202200196 (2022). https://doi.org/10.1002/anie.202200196
P. Xu, Q. Yu, Y. Chen, P. Cheng, Z. Zhang, Protective coating with crystalline shells to fabricate dual-stimuli responsive actuators. CCS Chem. 4(1), 205–213 (2022). https://doi.org/10.31635/ccschem.021.202000663
L. Lan, L. Li, C. Wang, P. Naumov, H. Zhang, Efficient aerial water harvesting with self-sensing dynamic Janus crystals. J. Am. Chem. Soc. 146(44), 30529–30538 (2024). https://doi.org/10.1021/jacs.4c11689
E. Pantuso, E. Ahmed, E. Fontananova, A. Brunetti, I. Tahir et al., Smart dynamic hybrid membranes with self-cleaning capability. Nat. Commun. 14(1), 5751 (2023). https://doi.org/10.1038/s41467-023-41446-9
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15(1), 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
H. Yin, Y. Li, Z. Tian, Q. Li, C. Jiang et al., Ultra-high sensitivity anisotropic piezoelectric sensors for structural health monitoring and robotic perception. Nano-Micro Lett. 17(1), 42 (2024). https://doi.org/10.1007/s40820-024-01539-6
Y. Dong, W. An, Z. Wang, D. Zhang, An artificial intelligence-assisted flexible and wearable mechanoluminescent strain sensor system. Nano-Micro Lett. 17(1), 62 (2024). https://doi.org/10.1007/s40820-024-01572-5
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60(7), 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
Y. Chen, C. Valenzuela, Y. Liu, X. Yang, Y. Yang et al., Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback. Matter 8(2), 101904 (2025). https://doi.org/10.1016/j.matt.2024.10.022
X. Yang, Y. Chen, F. Wang, S. Chen, Z. Cao et al., Bioinspired artificial phototaxis and phototropism enabled by photoresponsive smart materials. Mater. Today 87, 348–377 (2025). https://doi.org/10.1016/j.mattod.2025.05.004
S. Ma, P. Xue, C. Valenzuela, Y. Liu, Y. Chen et al., 4D-printed adaptive and programmable shape-morphing batteries. Adv. Mater. 37(30), e2505018 (2025). https://doi.org/10.1002/adma.202505018
L. Yang, Y. Liu, R. Bi, Y. Chen, C. Valenzuela et al., Direct-ink-written shape-programmable micro-supercapacitors with electrothermal liquid crystal elastomers. Adv. Funct. Mater. 35(39), 2504979 (2025). https://doi.org/10.1002/adfm.202504979
L. Lan, H. Liu, X. Yu, X. Liu, H. Zhang, Polymer-coated organic crystals with solvent-resistant capacity and optical waveguiding function. Angew. Chem. Int. Ed. 60(20), 11283–11287 (2021). https://doi.org/10.1002/anie.202102285
Q. Di, J. Li, Z. Zhang, X. Yu, B. Tang et al., Quantifiable stretching-induced fluorescence shifts of an elastically bendable and plastically twistable organic crystal. Chem. Sci. 12(46), 15423–15428 (2021). https://doi.org/10.1039/d1sc03818d
Y. Shin, Y.W. Kim, H.J. Kang, J.H. Lee, J.E. Byun et al., Stretchable and skin-mountable temperature sensor array using reduction-controlled graphene oxide for dermatological thermography. Nano Lett. 23(11), 5391–5398 (2023). https://doi.org/10.1021/acs.nanolett.2c04752
Y. Yang, Y. Hao, J. Yuan, L. Niu, F. Xia, In situ co-deposition of nickel hexacyanoferrate nanocubes on the reduced graphene oxides for supercapacitors. Carbon 84, 174–184 (2015). https://doi.org/10.1016/j.carbon.2014.12.005
L. Lan, X. Pan, P. Commins, L. Li, L. Catalano et al., Flexible organic crystals for light delivery in biological tissues. CCS Chem. 7(3), 905–917 (2025). https://doi.org/10.31635/ccschem.024.202404188
J. Park, N. Jeon, S. Lee, G. Choe, E. Lee et al., Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chem. Eng. J. 446, 137344 (2022). https://doi.org/10.1016/j.cej.2022.137344
S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6(12), 5016–5024 (2018). https://doi.org/10.1039/c7ta11375g
C. Chen, X. Wang, M. Li, Y. Fan, R. Sun, Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film. Sens. Actuat. B Chem. 255, 1569–1576 (2018). https://doi.org/10.1016/j.snb.2017.08.168
D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators B Chem. 197, 66–72 (2014). https://doi.org/10.1016/j.snb.2014.02.078
P. Sehrawat, S.S. Islam, P. Mishra, Reduced graphene oxide based temperature sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport. Sens. Actuators B Chem. 258, 424–435 (2018)
Q. Di, L. Li, X. Miao, L. Lan, X. Yu et al., Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13(1), 5280 (2022). https://doi.org/10.1038/s41467-022-32894-w
Z. Tang, Z. Gao, S. Jia, F. Wang, Y. Wang, Graphene-based polymer bilayers with superior light-driven properties for remote construction of 3D structures. Adv. Sci. 4(5), 1600437 (2017). https://doi.org/10.1002/advs.201600437
M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho et al., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010). https://doi.org/10.1038/nmat2858
H. Zhang, B. He, Y. Cheng, Y. Tang, Q. Ren et al., Strengthening and embrittlement effect of cryogenic temperature on fiber reinforced geopolymer composite. Cem. Concr. Compos. 153, 105727 (2024). https://doi.org/10.1016/j.cemconcomp.2024.105727
D. Chen, J. Li, Y. Yuan, C. Gao, Y. Cui et al., A review of the polymer for cryogenic application: methods, mechanisms and perspectives. Polymers 13(3), 320 (2021). https://doi.org/10.3390/polym13030320
D.W. Kim, Y. Hagiwara, S. Hasebe, N.O. Dogan, M. Zhang et al., Broad-wavelength light-driven high-speed hybrid crystal actuators actuated inside tissue-like phantoms. Adv. Funct. Mater. 33(47), 2305916 (2023). https://doi.org/10.1002/adfm.202305916