Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials
Corresponding Author: De‑Yi Wang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 173
Abstract
High flammability of polymers has become a major issue which has restricted its applications. Recently, highly crystalline materials and metal–organic frameworks (MOFs), which consisted of metal ions and organic linkers, have been intensively employed as novel fire retardants (FRs) for a variety of polymers (MOF/polymer). The MOFs possessed abundant transition metal species, fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property, making MOF, its derivatives and MOF hybrids promising for fire retardancy research. The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized. The fire retardancy mechanisms of MOF/polymer composites are explained, which may guide the future design for efficient MOF-based FRs. Finally, the challenges and prospects related to different MOF-based FRs are also discussed and aim to provide a fast and holistic overview, which is beneficial for researchers to quickly get up to speed with the latest development in this field.
Highlights:
1 Recent advances of metal–organic frameworks (MOFs) in the fire-retardant polymeric materials are reviewed.
2 State of the art to the novel strategies for functionalizing MOFs as fire retardants is critically and comprehensively discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017). https://doi.org/10.1039/C6CS00426A
- R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal–organic frameworks for batteries. Joule 2, 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 362, 1–23 (2018). https://doi.org/10.1016/j.ccr.2018.02.008
- W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013). https://doi.org/10.1039/C2TA00278G
- B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146
- H.D. Mai, K. Rafiq, H. Yoo, Nano metal–organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications. Chem. Eur. J. 23, 5631–5651 (2017). https://doi.org/10.1002/chem.201604703
- R. Zhang, L. Hu, S. Bao, R. Li, L. Gao, R. Li, Q. Chen, Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation. J. Mater. Chem. A 4, 8412–8420 (2016). https://doi.org/10.1039/C6TA01199C
- X. Wang, W. Zhong, Y. Li, Nanoscale co-based catalysts for low-temperature CO oxidation. Catal. Sci. Technol. 5, 1014–1020 (2015). https://doi.org/10.1039/C4CY01147C
- N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review. J. Hazard. Mater. 244–245, 444–456 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.011
- J.R. Karra, K.S. Walton, Effect of open metal sites on adsorption of polar and nonpolar molecules in metal–organic framework Cu-BTC. Langmuir 24, 8620–8626 (2008). https://doi.org/10.1021/la800803w
- N.A. Khan, S.H. Jhung, Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene. Angew. Chem. Int. Ed. 124, 1224–1227 (2012). https://doi.org/10.1002/anie.201105113
- D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal–organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. U.S.A. 105, 11623 (2008). https://doi.org/10.1073/pnas.0804900105
- D.J. Irvine, J.A. McCluskey, I.M. Robinson, Fire hazards and some common polymers. Polym. Degrad. Stab. 67, 383–396 (2000). https://doi.org/10.1016/S0141-3910(99)00127-5
- A. Dasari, Z.-Z. Yu, G. Cai, Y.-W. Mai, Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.006
- A.B. Morgan, J.W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37, 259–279 (2013). https://doi.org/10.1002/fam.2128
- F. Carpentier, S. Bourbigot, M.L. Bras, R. Delobel, M. Foulon, Charring of fire retarded ethylene vinyl acetate copolymer–magnesium hydroxide/zinc borate formulations. Polym. Degrad. Stab. 69, 89–92 (2000). https://doi.org/10.1016/S0141-3910(00)00044-6
- Z. Wang, B. Qu, W. Fan, P. Huang, Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. J. Appl. Polym. Sci. 81, 206–214 (2001). https://doi.org/10.1002/app.1430
- Y. Gao, J. Wu, Q. Wang, C.A. Wilkieb, D. O’Hare, Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2, 10996–11016 (2014). https://doi.org/10.1039/C4TA01030B
- J. Liu, Y. He, H. Chang, Y. Guo, H. Li, B. Pan, Simultaneously improving flame retardancy, water and acid resistance of ethylene vinyl acetate copolymer by introducing magnesium hydroxide/red phosphorus co-microcapsule and carbon nanotube. Polym. Degrad. Stab. 171, 109051 (2020). https://doi.org/10.1016/j.polymdegradstab.2019.109051
- X. Wang, E.N. Kalalia, J.-T. Wan, D.-Y. Wang, Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 69, 22–46 (2017). https://doi.org/10.1016/j.progpolymsci.2017.02.001
- H. Kim, D.W. Kim, V. Vasagar, H. Ha, S. Nazarenko, C.J. Ellison, Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 28, 1803172 (2018). https://doi.org/10.1002/adfm.201803172
- C. Bao, L. Song, C.A. Wilkie, B. Yuan, Y. Guo, Y. Hu, X. Gong, Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J. Mater. Chem. 22, 16399–16406 (2012). https://doi.org/10.1039/C2JM32500D
- W. Xuan, C. Zhu, Y. Liu, Y. Cui, Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41, 1677–1695 (2012). https://doi.org/10.1039/C1CS15196G
- Y. Hou, W. Hu, Z. Gui, Y. Hu, A novel Co(II)-based metal–organic framework with phosphorus-containing structure: build for enhancing fire safety of epoxy. Compos. Sci. Technol. 152, 231–242 (2017). https://doi.org/10.1016/j.compscitech.2017.08.032
- A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018). https://doi.org/10.1002/adma.201704303
- Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011). https://doi.org/10.1039/C0CC05002D
- H. Yin, H. Kim, J. Choi, A.C.K. Yip, Thermal stability of ZIF-8 under oxidative and inert environments: a practical perspective on using ZIF-8 as a catalyst support. Chem. Eng. J. (Amsterdam, Neth.) 278, 293–300 (2015). https://doi.org/10.1016/j.cej.2014.08.075
- J. Qin, S. Wang, X. Wang, Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476–482 (2017). https://doi.org/10.1016/j.apcatb.2017.03.018
- L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen et al., Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011). https://doi.org/10.1021/cm1022882
- S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 46, 7700–7702 (2010). https://doi.org/10.1039/C0CC02990D
- T. Sai, S. Ran, Z. Guo, Z. Fang, A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos. B 176, 107198 (2019). https://doi.org/10.1016/j.compositesb.2019.107198
- T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017). https://doi.org/10.1039/C7CS00041C
- K. Tajima, T. Aida, Controlled polymerizations with constrained geometries. Chem. Commun. (2000). https://doi.org/10.1039/B007618J
- I.-H. Park, R. Medishetty, H.-H. Lee, C.E. Mulijanto, H.S. Quah, S.S. Lee, J.J. Vittal, Formation of a syndiotactic organic polymer inside a MOF by a [2 + 2] photo-polymerization reaction. Angew. Chem. Int. Ed. 54, 7313–7317 (2015). https://doi.org/10.1002/anie.201502179
- N.-D.H. Gamage, K.A. McDonald, A.J. Matzger, MOF-5-polystyrene: direct production from monomer, improved hydrolytic stability, and unique guest adsorption. Angew. Chem. Int. Ed. 55, 12099–12103 (2016). https://doi.org/10.1002/ange.201606926
- T. Yang, G.M. Shi, T.-S. Chung, Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures. Adv. Energy Mater. 2, 1358–1367 (2012). https://doi.org/10.1002/aenm.201200200
- R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 39, 2692–2696 (2000). https://doi.org/10.1021/ie990799r
- D. Elangovan, I.E. Yuzay, S.E.M. Selke, R. Auras, Poly(l-lactic acid) metal organic framework composites: optical, thermal and mechanical properties. Polym. Int. 61, 30–37 (2012)
- Y. Hou, W. Hu, Z. Gui, Y. Hu, Preparation of metal–organic frameworks and their application as flame retardants for polystyrene. Ind. Eng. Chem. Res. 56, 2036–2045 (2017). https://doi.org/10.1021/acs.iecr.6b04920
- X. Ji, Y. Xu, W. Zhang, L. Cui, J. Liu, Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Part A Appl. Sci. Manuf. 87, 29–45 (2016). https://doi.org/10.1016/j.compositesa.2016.04.011
- X. Wang, S. Wang, W. Wang, H. Li, X. Liu et al., The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Compos. B Eng. 183, 107568 (2020). https://doi.org/10.1016/j.compositesb.2019.107568
- J. Zhang, Z. Li, L. Zhang, Y. Yang, D.-Y. Wang, Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain. Chem. Eng. 8, 994–1003 (2020). https://doi.org/10.1021/acssuschemeng.9b05658
- X.-L. Qi, D.-D. Zhou, J. Zhang, S. Hu, M. Haranczyk, D.-Y. Wang, Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl. Mater. Interfaces. 11, 20325–20332 (2019). https://doi.org/10.1021/acsami.9b02357
- W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
- Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
- Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5, 11770–11775 (2013). https://doi.org/10.1039/C3NR03829G
- Y.-T. Pan, J. Wan, X. Zhao, C. Li, D.-Y. Wang, Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites. Chem. Eng. J. 330, 1222–1231 (2017). https://doi.org/10.1016/j.cej.2017.08.059
- Y. Hou, S. Qiu, Y. Hu, C.K. Kundu, Z. Gui, W. Hu, Construction of bimetallic ZIF-derived Co–Ni LDHs on the surfaces of GO or CNTs with a recyclable method: toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin. ACS Appl. Mater. Interfaces. 10, 18359–18371 (2018). https://doi.org/10.1021/acsami.8b04340
- Z. Zhang, J. Qin, W. Zhang, Y.-T. Pan, D.-Y. Wang, R. Yang, Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 381, 122777 (2020). https://doi.org/10.1016/j.cej.2019.122777
- X. Zhou, X. Mu, W. Cai, J. Wang, F. Chu et al., Design of hierarchical NiCo-LDH@PZS hollow dodecahedron architecture and application in high-performance epoxy resin with excellent fire safety. ACS Appl. Mater. Interfaces. 11, 41736–41749 (2019). https://doi.org/10.1021/acsami.9b16482
- Z. Zhang, X. Li, Y. Yuan, Y.-T. Pan, D.-Y. Wang, R. Yang, Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl. Mater. Interfaces. 11(43), 40951–40960 (2019). https://doi.org/10.1021/acsami.9b15393
- R. Zhou, Z. Ming, J. He, Y. Ding, J. Jiang, Effect of magnesium hydroxide and aluminum hydroxide on the thermal stability, latent heat and flammability properties of paraffin/HDPE phase change blends. Polymers 12, 180 (2020). https://doi.org/10.3390/polym12010180
- Y.-T. Pan, L. Zhang, X. Zhao, D.-Y. Wang, Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity. Chem. Sci. 8, 3399–3409 (2017). https://doi.org/10.1039/C6SC05695D
- X. Shi, X. Dai, Y. Cao, J. Li, C. Huo, X. Wang, Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind. Eng. Chem. Res. 56, 3887–3894 (2017). https://doi.org/10.1021/acs.iecr.6b04204
- Y. Zheng, Y. Lu, K. Zhou, A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. J. Therm. Anal. Calorim. 139, 905–914 (2019). https://doi.org/10.1007/s10973-019-08267-9
- Y. Hou, Z. Xu, Y. Yuan, L. Liu, S. Ma et al., Nanosized bimetal–organic frameworks as robust coating for multi-functional flexible polyurethane foam: rapid oil-absorption and excellent fire safety. Compos. Sci. Technol. 177, 66–72 (2019). https://doi.org/10.1016/j.compscitech.2019.04.018
- W. Chen, Y. Jiang, R. Qiu, W. Xu, Y. Hou, Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene. Macromol. Res. 28, 42–50 (2019). https://doi.org/10.1007/s13233-019-7165-6
- Y. Li, X. Li, Y.-T. Pan, X. Yu, Y. Song, R. Yang, Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs. J. Hazard. Mater. 395, 122604 (2020). https://doi.org/10.1016/j.jhazmat.2020.122604
- B. Xu, W. Xu, G. Wang, L. Liu, J. Xu, Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym. Adv. Technol. 29, 1733–1743 (2018). https://doi.org/10.1002/pat.4278
- W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.086
- M. Zhou, L. Cai, M. Bajdich, M. García-Melchor, H. Li et al., Enhancing catalytic CO oxidation over Co3O4 nanowires by substituting Co2+ with Cu2+. ACS Catal. 5, 4485–4491 (2015). https://doi.org/10.1021/acscatal.5b00488
- N. Yan, Q. Chen, F. Wang, Y. Wang, H. Zhong, L. Hu, High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J. Mater. Chem. A 1, 637–643 (2013). https://doi.org/10.1039/C2TA00132B
- J. Zhang, Q. Kong, L. Yang, D.-Y. Wang, Few layered Co(OH)2 ultrathin nanosheets based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem. 18, 3066–3074 (2016). https://doi.org/10.1039/C5GC03048J
- B. Schartel, Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Matererials 3, 4710–4745 (2010). https://doi.org/10.3390/ma3104710
- B. Xu, W. Xu, Y. Liu, R. Chen, W. Li, Y. Wu, Z. Yang, Surface modification of α-zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer. Polym. Adv. Technol. 29, 2816–2826 (2018). https://doi.org/10.1002/pat.4404
- Y. Hou, L. Liu, S. Qiu, X. Zhou, Z. Gui, Y. Hu, DOPO-modified two-dimensional Co-based metal–organic framework: preparation and application for enhancing fire safety of poly(lactic acid). ACS Appl. Mater. Interfaces. 10, 8274–8286 (2018). https://doi.org/10.1021/acsami.7b19395
- B. Schartel, B. Perret, B. Dittrich, M. Ciesielski, J. Krämer et al., Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol. Mater. Eng. 301, 9–35 (2016). https://doi.org/10.1002/mame.201500250
- Y. Hou, W. Hu, X. Zhou, Z. Gui, Y. Hu, Vertically aligned nickel 2-methylimidazole metal–organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene. Ind. Eng. Chem. Res. 56, 8778–8786 (2017). https://doi.org/10.1021/acs.iecr.7b01906
- K.-Y.A. Lin, W.-D. Lee, Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 284, 1017–1027 (2016). https://doi.org/10.1016/j.cej.2015.09.075
- D. Kim, D.W. Kim, W.G. Hong, A. Coskun, Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. J. Mater. Chem. A 4, 7710–7717 (2016). https://doi.org/10.1039/C6TA01899H
- M. Zhang, X. Shi, X. Dai, C. Huo, J. Xie, X. Li, X. Wang, Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO. J. Mater. Sci. 53, 7083–7093 (2018). https://doi.org/10.1007/s10853-018-2049-2
- J. Zhang, L. Zhi, X.-L. Qi, D.-Y. Wang, Size tailored bimetallic metal–organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos. B Eng. 188, 107881 (2020). https://doi.org/10.1016/j.compositesb.2020.107881
- Z. Li, A.J. González, V.B. Heeralala, D.-Y. Wang, Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Compos. B Eng. 138, 101–112 (2018). https://doi.org/10.1016/j.compositesb.2017.11.001
- N. Hong, L. Song, B. Wang, A.A. Stec, T.R. Hull, J. Zhan, Y. Hu, Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater. Res. Bull. 49, 657–664 (2014). https://doi.org/10.1016/j.materresbull.2013.09.051
- A. Li, W. Xu, R. Chen, Y. Liu, W. Li, Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 112, 558–571 (2018). https://doi.org/10.1016/j.compositesa.2018.07.001
- W. Guo, S. Nie, E.N. Kalali, X. Wang, W. Wang et al., Construction of SiO2@UiO-66 core–shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins. Compos. B Eng. 176, 107261 (2019). https://doi.org/10.1016/j.compositesb.2019.107261
- S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2017). https://doi.org/10.1039/B702511D
- M. Bartholmai, B. Schartel, Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv. Technol. 15, 355–364 (2004). https://doi.org/10.1002/pat.483
- J. Zhang, Z. Li, L. Zhang, J. Molleja, D.-Y. Wang, Bimetallic metal–organic framework and graphene oxide nano-hybrids induced carbonaceous reinforcement towards fire retardant epoxy: a novel alternative carbonization mechanism. Carbon 153, 407–416 (2019). https://doi.org/10.1016/j.carbon.2019.07.003
- L. Zhang, S. Chen, Y.-T. Pan, S. Zhang, S. Nie et al., Nickel metal–organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain. Chem. Eng. 7, 9272–9280 (2019). https://doi.org/10.1021/acssuschemeng.9b00174
- R. Huang, X. Guo, S. Ma, J. Xie, J. Xu, J. Ma, Novel phosphorus-nitrogen-containing ionic liquid modified metal–organic framework as an effective flame retardant for epoxy resin. Polymers 12, 108 (2020). https://doi.org/10.3390/polym12010108
References
X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017). https://doi.org/10.1039/C6CS00426A
R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal–organic frameworks for batteries. Joule 2, 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t
Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 362, 1–23 (2018). https://doi.org/10.1016/j.ccr.2018.02.008
W. Chaikittisilp, K. Ariga, Y. Yamauchi, A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013). https://doi.org/10.1039/C2TA00278G
B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008). https://doi.org/10.1021/ja7106146
H.D. Mai, K. Rafiq, H. Yoo, Nano metal–organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications. Chem. Eur. J. 23, 5631–5651 (2017). https://doi.org/10.1002/chem.201604703
R. Zhang, L. Hu, S. Bao, R. Li, L. Gao, R. Li, Q. Chen, Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation. J. Mater. Chem. A 4, 8412–8420 (2016). https://doi.org/10.1039/C6TA01199C
X. Wang, W. Zhong, Y. Li, Nanoscale co-based catalysts for low-temperature CO oxidation. Catal. Sci. Technol. 5, 1014–1020 (2015). https://doi.org/10.1039/C4CY01147C
N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review. J. Hazard. Mater. 244–245, 444–456 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.011
J.R. Karra, K.S. Walton, Effect of open metal sites on adsorption of polar and nonpolar molecules in metal–organic framework Cu-BTC. Langmuir 24, 8620–8626 (2008). https://doi.org/10.1021/la800803w
N.A. Khan, S.H. Jhung, Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene. Angew. Chem. Int. Ed. 124, 1224–1227 (2012). https://doi.org/10.1002/anie.201105113
D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal–organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. U.S.A. 105, 11623 (2008). https://doi.org/10.1073/pnas.0804900105
D.J. Irvine, J.A. McCluskey, I.M. Robinson, Fire hazards and some common polymers. Polym. Degrad. Stab. 67, 383–396 (2000). https://doi.org/10.1016/S0141-3910(99)00127-5
A. Dasari, Z.-Z. Yu, G. Cai, Y.-W. Mai, Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.006
A.B. Morgan, J.W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37, 259–279 (2013). https://doi.org/10.1002/fam.2128
F. Carpentier, S. Bourbigot, M.L. Bras, R. Delobel, M. Foulon, Charring of fire retarded ethylene vinyl acetate copolymer–magnesium hydroxide/zinc borate formulations. Polym. Degrad. Stab. 69, 89–92 (2000). https://doi.org/10.1016/S0141-3910(00)00044-6
Z. Wang, B. Qu, W. Fan, P. Huang, Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. J. Appl. Polym. Sci. 81, 206–214 (2001). https://doi.org/10.1002/app.1430
Y. Gao, J. Wu, Q. Wang, C.A. Wilkieb, D. O’Hare, Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2, 10996–11016 (2014). https://doi.org/10.1039/C4TA01030B
J. Liu, Y. He, H. Chang, Y. Guo, H. Li, B. Pan, Simultaneously improving flame retardancy, water and acid resistance of ethylene vinyl acetate copolymer by introducing magnesium hydroxide/red phosphorus co-microcapsule and carbon nanotube. Polym. Degrad. Stab. 171, 109051 (2020). https://doi.org/10.1016/j.polymdegradstab.2019.109051
X. Wang, E.N. Kalalia, J.-T. Wan, D.-Y. Wang, Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 69, 22–46 (2017). https://doi.org/10.1016/j.progpolymsci.2017.02.001
H. Kim, D.W. Kim, V. Vasagar, H. Ha, S. Nazarenko, C.J. Ellison, Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 28, 1803172 (2018). https://doi.org/10.1002/adfm.201803172
C. Bao, L. Song, C.A. Wilkie, B. Yuan, Y. Guo, Y. Hu, X. Gong, Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J. Mater. Chem. 22, 16399–16406 (2012). https://doi.org/10.1039/C2JM32500D
W. Xuan, C. Zhu, Y. Liu, Y. Cui, Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41, 1677–1695 (2012). https://doi.org/10.1039/C1CS15196G
Y. Hou, W. Hu, Z. Gui, Y. Hu, A novel Co(II)-based metal–organic framework with phosphorus-containing structure: build for enhancing fire safety of epoxy. Compos. Sci. Technol. 152, 231–242 (2017). https://doi.org/10.1016/j.compscitech.2017.08.032
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018). https://doi.org/10.1002/adma.201704303
Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011). https://doi.org/10.1039/C0CC05002D
H. Yin, H. Kim, J. Choi, A.C.K. Yip, Thermal stability of ZIF-8 under oxidative and inert environments: a practical perspective on using ZIF-8 as a catalyst support. Chem. Eng. J. (Amsterdam, Neth.) 278, 293–300 (2015). https://doi.org/10.1016/j.cej.2014.08.075
J. Qin, S. Wang, X. Wang, Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476–482 (2017). https://doi.org/10.1016/j.apcatb.2017.03.018
L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen et al., Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011). https://doi.org/10.1021/cm1022882
S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. 46, 7700–7702 (2010). https://doi.org/10.1039/C0CC02990D
T. Sai, S. Ran, Z. Guo, Z. Fang, A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos. B 176, 107198 (2019). https://doi.org/10.1016/j.compositesb.2019.107198
T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017). https://doi.org/10.1039/C7CS00041C
K. Tajima, T. Aida, Controlled polymerizations with constrained geometries. Chem. Commun. (2000). https://doi.org/10.1039/B007618J
I.-H. Park, R. Medishetty, H.-H. Lee, C.E. Mulijanto, H.S. Quah, S.S. Lee, J.J. Vittal, Formation of a syndiotactic organic polymer inside a MOF by a [2 + 2] photo-polymerization reaction. Angew. Chem. Int. Ed. 54, 7313–7317 (2015). https://doi.org/10.1002/anie.201502179
N.-D.H. Gamage, K.A. McDonald, A.J. Matzger, MOF-5-polystyrene: direct production from monomer, improved hydrolytic stability, and unique guest adsorption. Angew. Chem. Int. Ed. 55, 12099–12103 (2016). https://doi.org/10.1002/ange.201606926
T. Yang, G.M. Shi, T.-S. Chung, Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures. Adv. Energy Mater. 2, 1358–1367 (2012). https://doi.org/10.1002/aenm.201200200
R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 39, 2692–2696 (2000). https://doi.org/10.1021/ie990799r
D. Elangovan, I.E. Yuzay, S.E.M. Selke, R. Auras, Poly(l-lactic acid) metal organic framework composites: optical, thermal and mechanical properties. Polym. Int. 61, 30–37 (2012)
Y. Hou, W. Hu, Z. Gui, Y. Hu, Preparation of metal–organic frameworks and their application as flame retardants for polystyrene. Ind. Eng. Chem. Res. 56, 2036–2045 (2017). https://doi.org/10.1021/acs.iecr.6b04920
X. Ji, Y. Xu, W. Zhang, L. Cui, J. Liu, Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Part A Appl. Sci. Manuf. 87, 29–45 (2016). https://doi.org/10.1016/j.compositesa.2016.04.011
X. Wang, S. Wang, W. Wang, H. Li, X. Liu et al., The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Compos. B Eng. 183, 107568 (2020). https://doi.org/10.1016/j.compositesb.2019.107568
J. Zhang, Z. Li, L. Zhang, Y. Yang, D.-Y. Wang, Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain. Chem. Eng. 8, 994–1003 (2020). https://doi.org/10.1021/acssuschemeng.9b05658
X.-L. Qi, D.-D. Zhou, J. Zhang, S. Hu, M. Haranczyk, D.-Y. Wang, Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl. Mater. Interfaces. 11, 20325–20332 (2019). https://doi.org/10.1021/acsami.9b02357
W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5, 11770–11775 (2013). https://doi.org/10.1039/C3NR03829G
Y.-T. Pan, J. Wan, X. Zhao, C. Li, D.-Y. Wang, Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites. Chem. Eng. J. 330, 1222–1231 (2017). https://doi.org/10.1016/j.cej.2017.08.059
Y. Hou, S. Qiu, Y. Hu, C.K. Kundu, Z. Gui, W. Hu, Construction of bimetallic ZIF-derived Co–Ni LDHs on the surfaces of GO or CNTs with a recyclable method: toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin. ACS Appl. Mater. Interfaces. 10, 18359–18371 (2018). https://doi.org/10.1021/acsami.8b04340
Z. Zhang, J. Qin, W. Zhang, Y.-T. Pan, D.-Y. Wang, R. Yang, Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 381, 122777 (2020). https://doi.org/10.1016/j.cej.2019.122777
X. Zhou, X. Mu, W. Cai, J. Wang, F. Chu et al., Design of hierarchical NiCo-LDH@PZS hollow dodecahedron architecture and application in high-performance epoxy resin with excellent fire safety. ACS Appl. Mater. Interfaces. 11, 41736–41749 (2019). https://doi.org/10.1021/acsami.9b16482
Z. Zhang, X. Li, Y. Yuan, Y.-T. Pan, D.-Y. Wang, R. Yang, Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl. Mater. Interfaces. 11(43), 40951–40960 (2019). https://doi.org/10.1021/acsami.9b15393
R. Zhou, Z. Ming, J. He, Y. Ding, J. Jiang, Effect of magnesium hydroxide and aluminum hydroxide on the thermal stability, latent heat and flammability properties of paraffin/HDPE phase change blends. Polymers 12, 180 (2020). https://doi.org/10.3390/polym12010180
Y.-T. Pan, L. Zhang, X. Zhao, D.-Y. Wang, Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity. Chem. Sci. 8, 3399–3409 (2017). https://doi.org/10.1039/C6SC05695D
X. Shi, X. Dai, Y. Cao, J. Li, C. Huo, X. Wang, Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind. Eng. Chem. Res. 56, 3887–3894 (2017). https://doi.org/10.1021/acs.iecr.6b04204
Y. Zheng, Y. Lu, K. Zhou, A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. J. Therm. Anal. Calorim. 139, 905–914 (2019). https://doi.org/10.1007/s10973-019-08267-9
Y. Hou, Z. Xu, Y. Yuan, L. Liu, S. Ma et al., Nanosized bimetal–organic frameworks as robust coating for multi-functional flexible polyurethane foam: rapid oil-absorption and excellent fire safety. Compos. Sci. Technol. 177, 66–72 (2019). https://doi.org/10.1016/j.compscitech.2019.04.018
W. Chen, Y. Jiang, R. Qiu, W. Xu, Y. Hou, Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene. Macromol. Res. 28, 42–50 (2019). https://doi.org/10.1007/s13233-019-7165-6
Y. Li, X. Li, Y.-T. Pan, X. Yu, Y. Song, R. Yang, Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs. J. Hazard. Mater. 395, 122604 (2020). https://doi.org/10.1016/j.jhazmat.2020.122604
B. Xu, W. Xu, G. Wang, L. Liu, J. Xu, Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym. Adv. Technol. 29, 1733–1743 (2018). https://doi.org/10.1002/pat.4278
W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.086
M. Zhou, L. Cai, M. Bajdich, M. García-Melchor, H. Li et al., Enhancing catalytic CO oxidation over Co3O4 nanowires by substituting Co2+ with Cu2+. ACS Catal. 5, 4485–4491 (2015). https://doi.org/10.1021/acscatal.5b00488
N. Yan, Q. Chen, F. Wang, Y. Wang, H. Zhong, L. Hu, High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J. Mater. Chem. A 1, 637–643 (2013). https://doi.org/10.1039/C2TA00132B
J. Zhang, Q. Kong, L. Yang, D.-Y. Wang, Few layered Co(OH)2 ultrathin nanosheets based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem. 18, 3066–3074 (2016). https://doi.org/10.1039/C5GC03048J
B. Schartel, Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Matererials 3, 4710–4745 (2010). https://doi.org/10.3390/ma3104710
B. Xu, W. Xu, Y. Liu, R. Chen, W. Li, Y. Wu, Z. Yang, Surface modification of α-zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer. Polym. Adv. Technol. 29, 2816–2826 (2018). https://doi.org/10.1002/pat.4404
Y. Hou, L. Liu, S. Qiu, X. Zhou, Z. Gui, Y. Hu, DOPO-modified two-dimensional Co-based metal–organic framework: preparation and application for enhancing fire safety of poly(lactic acid). ACS Appl. Mater. Interfaces. 10, 8274–8286 (2018). https://doi.org/10.1021/acsami.7b19395
B. Schartel, B. Perret, B. Dittrich, M. Ciesielski, J. Krämer et al., Flame retardancy of polymers: the role of specific reactions in the condensed phase. Macromol. Mater. Eng. 301, 9–35 (2016). https://doi.org/10.1002/mame.201500250
Y. Hou, W. Hu, X. Zhou, Z. Gui, Y. Hu, Vertically aligned nickel 2-methylimidazole metal–organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene. Ind. Eng. Chem. Res. 56, 8778–8786 (2017). https://doi.org/10.1021/acs.iecr.7b01906
K.-Y.A. Lin, W.-D. Lee, Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 284, 1017–1027 (2016). https://doi.org/10.1016/j.cej.2015.09.075
D. Kim, D.W. Kim, W.G. Hong, A. Coskun, Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. J. Mater. Chem. A 4, 7710–7717 (2016). https://doi.org/10.1039/C6TA01899H
M. Zhang, X. Shi, X. Dai, C. Huo, J. Xie, X. Li, X. Wang, Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO. J. Mater. Sci. 53, 7083–7093 (2018). https://doi.org/10.1007/s10853-018-2049-2
J. Zhang, L. Zhi, X.-L. Qi, D.-Y. Wang, Size tailored bimetallic metal–organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos. B Eng. 188, 107881 (2020). https://doi.org/10.1016/j.compositesb.2020.107881
Z. Li, A.J. González, V.B. Heeralala, D.-Y. Wang, Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Compos. B Eng. 138, 101–112 (2018). https://doi.org/10.1016/j.compositesb.2017.11.001
N. Hong, L. Song, B. Wang, A.A. Stec, T.R. Hull, J. Zhan, Y. Hu, Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater. Res. Bull. 49, 657–664 (2014). https://doi.org/10.1016/j.materresbull.2013.09.051
A. Li, W. Xu, R. Chen, Y. Liu, W. Li, Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 112, 558–571 (2018). https://doi.org/10.1016/j.compositesa.2018.07.001
W. Guo, S. Nie, E.N. Kalali, X. Wang, W. Wang et al., Construction of SiO2@UiO-66 core–shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins. Compos. B Eng. 176, 107261 (2019). https://doi.org/10.1016/j.compositesb.2019.107261
S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2017). https://doi.org/10.1039/B702511D
M. Bartholmai, B. Schartel, Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv. Technol. 15, 355–364 (2004). https://doi.org/10.1002/pat.483
J. Zhang, Z. Li, L. Zhang, J. Molleja, D.-Y. Wang, Bimetallic metal–organic framework and graphene oxide nano-hybrids induced carbonaceous reinforcement towards fire retardant epoxy: a novel alternative carbonization mechanism. Carbon 153, 407–416 (2019). https://doi.org/10.1016/j.carbon.2019.07.003
L. Zhang, S. Chen, Y.-T. Pan, S. Zhang, S. Nie et al., Nickel metal–organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain. Chem. Eng. 7, 9272–9280 (2019). https://doi.org/10.1021/acssuschemeng.9b00174
R. Huang, X. Guo, S. Ma, J. Xie, J. Xu, J. Ma, Novel phosphorus-nitrogen-containing ionic liquid modified metal–organic framework as an effective flame retardant for epoxy resin. Polymers 12, 108 (2020). https://doi.org/10.3390/polym12010108