Correction to: Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective
Corresponding Author: De‑Yi Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 226
Abstract
Early-stage fire-warning systems (EFWSs) have attracted significant attention owing to their superiority in detecting fire situations occurring in the pre-combustion process. Substantial progress on EFWSs has been achieved recently, and they have presented a considerable possibility for more evacuation time to control constant unintentional fire hazards in our daily life. This review mainly makes a comprehensive summary of the current EFWSs, including the working mechanisms and their performance. According to the different working mechanisms, fire alarms can be classified into graphene oxide-based fire alarms, semiconductor-based fire alarms, thermoelectric-based fire alarms, and fire alarms on other working mechanisms. Finally, the challenge and prospect for EFWSs are briefly provided by comparing the art of state of fire alarms. This work can propose a more comprehensive understanding of EFWSs and a guideline for the cutting-edge development direction of EFWSs for readers.
Highlights:
1 Thermosensitive fire alarms with various working mechanisms are overviewed.
2 Different calculation methods for response time are discussed.
3 Warning signal conversion types are provided.
4 Limitations, challenges, and development direction are put forward.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324(5926), 481–484 (2009). https://doi.org/10.1126/science.1163886
- J.T. Randerson, H. Liu, M.G. Flanner, S.D. Chambers, Y. Jin et al., The impact of boreal forest fire on climate warming. Science 314(5802), 1130–1132 (2006). https://doi.org/10.1126/science.1132075
- M.P. North, S.L. Stephens, B.M. Collins, J.K. Agee, G. Aplet et al., Reform forest fire management. Science 349(6254), 1280–1281 (2015). https://doi.org/10.1126/science.aab2356
- R. Rossi, Fire fighting and its influence on the body. Ergonomics 46(10), 1017–1033 (2003). https://doi.org/10.1080/0014013031000121968
- L. Ding, F. Khan, J. Ji, Risk-based safety measure allocation to prevent and mitigate storage fire hazards. Proc. Saf. Environ. Prot. 135, 282–293 (2020). https://doi.org/10.1016/j.psep.2020.01.008
- I.S. Wichman, Material flammability, combustion, toxicity and fire hazard in transportation. Prog. Energy Combust. Sci. 29(3), 247–299 (2003). https://doi.org/10.1016/s0360-1285(03)00027-3
- S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Flame-retardant surface treatments. Nat. Rev. Mater. 5(4), 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6
- F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 63(3), 100–125 (2009). https://doi.org/10.1016/j.mser.2008.09.002
- S. Zhang, A.R. Horrocks, A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 28(11), 1517–1538 (2003). https://doi.org/10.1016/j.progpolymsci.2003.09.001
- Y.T. Pan, Z. Zhang, R. Yang, The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review. Compos. B Eng. 199, 108265 (2020). https://doi.org/10.1016/j.compositesb.2020.108265
- M. Bar, R. Alagirusamy, A. Das, Flame retardant polymer composites. Fibers Polym. 16(4), 705–717 (2015). https://doi.org/10.1007/s12221-015-0705-6
- G.L. Nelson, Fire and polymers: an overview, in Fire and Polymers II: Materials and Tests for Hazard Prevention. ed. by G.L. Nelson (American Chemical Society, Washington, DC, 1995), pp.1–26. https://doi.org/10.1021/bk-1995-0599.ch001
- J. Zhang, Z. Li, X.L. Qi, D.Y. Wang, Recent progress on metal-organic framework and its derivatives as novel fire retardants to polymeric materials. Nano-Micro Lett. 12, 173 (2020). https://doi.org/10.1007/s40820-020-00497-z
- L. Chen, Y.Z. Wang, A review on flame retardant technology in china. Part I: development of flame retardants. Polym. Adv. Technol. 21(1), 1–26 (2010). https://doi.org/10.1002/pat.1550
- W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020). https://doi.org/10.1016/j.pmatsci.2020.100687
- S. Lu, I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 8(27), 1661–1712 (2002). https://doi.org/10.1016/S0079-6700(02)00018-7
- J. Fahrenkamp-Uppenbrink, Fire management, made tomeasure. Science 355(6331), 1277–1279 (2017). https://doi.org/10.1126/science.355.6331.1277-t
- H. Xu, Y. Li, N.J. Huang, Z.R. Yu, P.H. Wang et al., Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. J. Hazard. Mater. 363, 286–294 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.082
- A. Yusuf, Z. Li, X. Yuan, D.Y. Wang, Toward a new generation of fire-safe energy storage devices: recent progress on fire-retardant materials and strategies for energy storage devices. Small Methods 6(3), 2101428 (2022). https://doi.org/10.1002/smtd.202101428
- X. Wang, E.N. Kalali, J.T. Wan, D.Y. Wang, Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 69, 22–46 (2017). https://doi.org/10.1016/j.progpolymsci.2017.02.001
- D. Sirithian, S. Thepanondh, M.L. Sattler, W. Laowagul, Emissions of volatile organic compounds from maize residue open burning in the northern region of Thailand. Atmosph. Environ. 176, 179–187 (2018). https://doi.org/10.1016/j.atmosenv.2017.12.032
- J. He, B. Zielinska, R. Balasubramanian, Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmosph. Chem. Phys. 10(23), 11401–11413 (2010). https://doi.org/10.5194/acp-10-11401-2010
- B. Languille, V. Gros, J.E. Petit, C. Honore, A. Baudic et al., Wood burning: a major source of volatile organic compounds during wintertime in the Paris region. Sci. Total Environ. 711, 135055 (2020). https://doi.org/10.1016/j.scitotenv.2019.135055
- S. Hong, M. Wu, Y. Hong, Y. Jeong, G. Jung et al., Fet-type gas sensors: a review. Sens. Actuat. B Chem. 330, 129240 (2021). https://doi.org/10.1016/j.snb.2020.129240
- E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42(5), 416–432 (2016). https://doi.org/10.1080/10408436.2016.1226161
- S.J. Chen, D.C. Hovde, K.A. Peterson, A.W. Marshall, Fire detection using smoke and gas sensors. Fire Saf. J. 42(8), 507–515 (2007). https://doi.org/10.1016/j.firesaf.2007.01.006
- C. Lee, H. Yang, A system to detect potential fires using a thermographic camera. Nat. Hazards 92, 511–523 (2018). https://doi.org/10.1007/s11069-018-3224-0
- A.I. Mtz-Enriquez, K.P. Padmasree, A.I. Oliva, C. Gomez-Solis, E. Coutino-Gonzalez et al., Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microps. Sens. Actuat. B Chem. 305, 127466 (2020). https://doi.org/10.1016/j.snb.2019.127466
- J.R. Qualey, Fire test comparison of smoke detector response times. Fire Technol. 36, 89–102 (2000). https://doi.org/10.1023/A:1015498224060
- H. Fang, S.M. Lo, Y. Zhang, Y. Shen, Development of a machine-learning approach for identifying the stages of fire development in residential room fires. Fire Saf. J. 126, 103469 (2021). https://doi.org/10.1016/j.firesaf.2021.103469
- D.T. Butry, Economic performance of residential fire sprinkler systems. Fire Technol. 45(1), 117–143 (2008). https://doi.org/10.1007/s10694-008-0054-8
- H. Ingason, Model scale tunnel tests with water spray. Fire Saf. J. 43(7), 512–528 (2008). https://doi.org/10.1016/j.firesaf.2007.12.002
- J. Hua, K. Kumar, B.C. Khoo, H. Xue, A numerical study of the interaction of water spray with a fire plume. Fire Saf. J. 37, 631–657 (2002). https://doi.org/10.1016/S0379-7112(02)00026-7
- S.C. Kim, H.S. Ryou, An experimental and numerical study on fire suppression using a water mist in an enclosure. Build. Environ. 38(11), 1309–1316 (2003). https://doi.org/10.1016/s0360-1323(03)00134-3
- C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
- A.W. Zaibudeen, J. Philip, Temperature and pH sensor based on functionalized magnetic nanofluid. Sens. Actuat. B Chem. 268, 338–349 (2018). https://doi.org/10.1016/j.snb.2018.04.098
- J. Yi, W. Chen, J. Han, D. Chen, Sensitive and selective detection of plasticizer vapors with modified-SnO2 hollow nanofibers for electrical fire warning. Sens. Actuat. B Chem. 287, 364–370 (2019). https://doi.org/10.1016/j.snb.2019.02.025
- M. Zhang, M. Wang, M. Zhang, C. Yang, Y. Li et al., Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl. Mater. Interfaces 11(50), 47456–47467 (2019). https://doi.org/10.1021/acsami.9b18858
- B. Wang, X. Lai, H. Li, C. Jiang, C. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13(19), 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
- T. Zhao, D. Teng, Y. Xu, X. Zhang, Y. Li et al., Multi-functional air filters with excellent flame retardancy and fire-warning capability. J. Colloid Interface Sci. 617, 236–245 (2022). https://doi.org/10.1016/j.jcis.2022.03.003
- R. Arrigo, N.T. Dintcheva, V. Pampalone, E. Morici, M. Guenzi et al., Advanced nano-hybrids for thermo-oxidative-resistant nanocomposites. J. Mater. Sci. 51(14), 6955–6966 (2016). https://doi.org/10.1007/s10853-016-9983-7
- J. Chen, H. Xie, X. Lai, H. Li, J. Gao et al., An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem. Eng. J. 399, 125729 (2020). https://doi.org/10.1016/j.cej.2020.125729
- L. Xia, Y. Lv, Z. Miao, L. Luo, W. Luo et al., A flame retardant fabric nanocoating based on nanocarbon black ps@polymer composite and its fire-alarm application. Chem. Eng. J. 433, 133501 (2021). https://doi.org/10.1016/j.cej.2021.133501
- X. He, Y. Hao, M. He, X. Qin, L. Wang et al., Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl. Mater. Interfaces 13(50), 60498–60507 (2021). https://doi.org/10.1021/acsami.1c20456
- G. Yu, X. Zhou, H. Zhao, W. Zhang, W. Yan et al., Photoinduced generation of metastable sulfur vacancies enhancing the intrinsic hydrogen evolution behavior of semiconductors. Sol. RRL 5(11), 2100580 (2021). https://doi.org/10.1002/solr.202100580
- Y. Teng, Q. Zhou, P. Gao, Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 49(24), 2314–2358 (2019). https://doi.org/10.1080/10643389.2019.1609856
- J.J. Shao, W. Lv, Q.H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014). https://doi.org/10.1002/adma.201400267
- S.K. Kim, J.Y. Kim, S.Y. Choi, J.Y. Lee, H.Y. Jeong, Direct observation of conducting nanofilaments in graphene-oxide-resistive switching memory. Adv. Funct. Mater. 25(43), 6710–6715 (2015). https://doi.org/10.1002/adfm.201502734
- S.K. Kim, J.Y. Kim, B.C. Jang, M.S. Cho, S.Y. Choi et al., Conductive graphitic channel in graphene oxide-based memristive devices. Adv. Funct. Mater. 26(41), 7406–7414 (2016). https://doi.org/10.1002/adfm.201602748
- P. Yao, P. Chen, L. Jiang, H. Zhao, H. Zhu et al., Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv. Mater. 22(44), 5008–5012 (2010). https://doi.org/10.1002/adma.201002312
- V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen et al., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564 (2014). https://doi.org/10.1039/c3ee43385d
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/b917103g
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602(602), 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A sandwich-like flame retardant nanocoating for supersensitive fire-warning. Chem. Eng. J. 382, 122929 (2020). https://doi.org/10.1016/j.cej.2019.122929
- T. Fu, X. Zhao, L. Chen, W.S. Wu, Q. Zhao et al., Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 29(8), 1806586 (2019). https://doi.org/10.1002/adfm.201806586
- L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
- Z. Chen, W. Chen, P. Liu, Y. Liu, Z. Liu, A multifunctional polyurethane sponge based on functionalized graphene oxide and carbon nanotubes for highly sensitive and super durable fire alarming. Compos. Part A Appl. Sci. Manuf. 150, 106598 (2021). https://doi.org/10.1016/j.compositesa.2021.106598
- C.F. Cao, B. Yu, B.F. Guo, W.J. Hu, F.N. Sun et al., Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 439, 134516 (2022). https://doi.org/10.1016/j.cej.2022.134516
- Z. Qu, C. Xu, X. Li, Y. Wu, K. Wang et al., Facile preparation of BP-MoS2/GO composite films with excellent flame retardancy and ultrasensitive response for smart fire alarm. Chem. Eng. J. 426, 130717 (2021). https://doi.org/10.1016/j.cej.2021.130717
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 369, 8–17 (2019). https://doi.org/10.1016/j.cej.2019.03.045
- Z.R. Yu, M. Mao, S.N. Li, Q.Q. Xia, C.F. Cao et al., Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem. Eng. J. 405, 126620 (2021). https://doi.org/10.1016/j.cej.2020.126620
- Q. Wu, L.X. Gong, Y. Li, C.F. Cao, L.C. Tang et al., Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12(1), 416–424 (2018). https://doi.org/10.1021/acsnano.7b06590
- H. Zheng, X. Han, Q. Wei, C. Zheng, C. Huang et al., Biomass-based flexible fire warning sensor with excellent flame retardancy and sensitivity. Chem. Eng. J. 437, 135412 (2022). https://doi.org/10.1016/j.cej.2022.135412
- X. Li, J.S. Saez, X. Ao, A. Yusuf, D.Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022). https://doi.org/10.1016/j.cej.2021.134108
- Q. Zeng, Y. Zhao, X. Lai, C. Jiang, B. Wang et al., Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection. Chem. Eng. J. 446, 136899 (2022). https://doi.org/10.1016/j.cej.2022.136899
- Z. Ma, J. Zhang, L. Liu, H. Zheng, J. Dai et al., A highly fire-retardant rigid polyurethane foam capable of fire-warning. Compos. Commun. 29, 101046 (2022). https://doi.org/10.1016/j.coco.2021.101046
- M. Mao, H. Xu, K.Y. Guo, J.W. Zhang, Q.Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. Part A Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
- Z. Luo, H. Ning, X. Zhou, B. Yuan, Efficient flame-retardant biomass aerogel endowed with graphene oxide interconnected networks for ultrasensitive fire warning. Mater. Lett. 318, 132237 (2022). https://doi.org/10.1016/j.matlet.2022.132237
- W.W. Qiu, Z.R. Yu, L.Y. Zhou, L.Y. Lv, H. Chen et al., Facile fabrication of graphene oxide nanoribbon-based nanocomposite papers with different oxidation degrees and morphologies for tunable fire-warning response. Nanomaterials 12(12), 1963 (2022). https://doi.org/10.3390/nano12121963
- K. Wang, K. Wu, Z. Qu, Y. Wu, E. Jiao et al., Flame-retardant and alarm-sensitive composite films by covalent modification of MWCNT with dopamine. Eur. Polym. J. 164, 110986 (2022). https://doi.org/10.1016/j.eurpolymj.2021.110986
- W. Wei, Y. Yi, J. Song, X. Chen, J. Li et al., Tunable graphene/nitrocellulose temperature alarm sensors. ACS Appl. Mater. Interfaces 14(11), 13790–13800 (2022). https://doi.org/10.1021/acsami.2c02340
- F. Yang, H. Zhao, Y. Wang, G. Zhang, B. Yuan, Flame-retardant AlOOH/graphene oxide composite coating with temperature-responsive resistance for efficient early-warning fire sensors. Colloids Surf. A Physicochem. Eng. Asp. 648, 129326 (2022). https://doi.org/10.1016/j.colsurfa.2022.129326
- N.J. Huang, Q.Q. Xia, Z.H. Zhang, L. Zhao, G.D. Zhang et al., Simultaneous improvements in fire resistance and alarm response of go paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Compos. Part A Appl. S 131, 105797 (2020). https://doi.org/10.1016/j.compositesa.2020.105797
- B. Yuan, Y. Wang, G. Chen, F. Yang, H. Zhang et al., Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 403, 123645 (2021). https://doi.org/10.1016/j.jhazmat.2020.123645
- B. Zuo, B. Yuan, Flame-retardant cellulose nanofiber aerogel modified with graphene oxide and sodium montmorillonite and its fire-alarm application. Polym. Adv. Technol. 32(4), 1877–1887 (2021). https://doi.org/10.1002/pat.5231
- C. Cao, B. Yuan, Thermally induced fire early warning aerogel with efficient thermal isolation and flame-retardant properties. Polym. Adv. Technol. 32(5), 2159–2168 (2021). https://doi.org/10.1002/pat.5246
- C.F. Cao, B. Yu, Z.Y. Chen, Y.X. Qu, Y.T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
- F.F. Chen, Y.J. Zhu, F. Chen, L.Y. Dong, R.L. Yang et al., Fire alarm wallpaper based on fire-resistant hydroxyapatite nanowire inorganic paper and graphene oxide thermosensitive sensor. ACS Nano 12(4), 3159–3171 (2018). https://doi.org/10.1021/acsnano.8b00047
- W. Chen, P. Liu, Y. Liu, Q. Wang, W. Duan, A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor. Chem. Eng. J. 353, 115–125 (2018). https://doi.org/10.1016/j.cej.2018.07.110
- Z. Zhang, D. Yang, H. Yang, Y. Li, S. Lu et al., A hydrophobic sisal cellulose microcrystal film for fire alarm sensors. Nano Lett. 21(5), 2104–2110 (2021). https://doi.org/10.1021/acs.nanolett.0c04789
- Z.H. Zhang, J.W. Zhang, C.F. Cao, K.Y. Guo, L. Zhao et al., Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem. Eng. J. 386, 123894 (2020). https://doi.org/10.1016/j.cej.2019.123894
- K.Y. Guo, Q. Wu, M. Mao, H. Chen, G.D. Zhang et al., Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017 (2020). https://doi.org/10.1016/j.compositesb.2020.108017
- Q. Liu, S. Yang, J. Ren, S. Ling, Flame-retardant and sustainable silk ionotronic skin for fire alarm systems. ACS Mater. Lett. 2(7), 712–720 (2020). https://doi.org/10.1021/acsmaterialslett.0c00062
- G. Xiao, H. Weng, L. Ge, Q. Huang, Application status of carbon nanotubes in fire detection sensors. Front. Mater. 7, 588521 (2020). https://doi.org/10.3389/fmats.2020.588521
- B. Yang, N.V. Myung, T.T. Tran, 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Adv. Funct. Mater. 7(9), 2100271 (2021). https://doi.org/10.1002/aelm.202100271
- Y. Li, G. Liu, L. Wang, J. Zhang, M. Xu et al., Multifunctional conductive graphite/cellulosic microfiber-natural rubber composite sponge with ultrasensitive collision-warning and fire-waring. Chem. Eng. J. 431, 134046 (2022). https://doi.org/10.1016/j.cej.2021.134046
- H. Chen, J. Zhou, S. Liu, S. Wang, X. Gong, A novel anti-impact and flame retardant gel towards human protection and high-temperature alarm. Compos. Part A Appl. Sci. Manuf. 158, 106994 (2022). https://doi.org/10.1016/j.compositesa.2022.106994
- T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
- M. Mao, K.X. Yu, C.F. Cao, L.X. Gong, G.D. Zhang et al., Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem. Eng. J. 427, 131615 (2022). https://doi.org/10.1016/j.cej.2021.131615
- C. Zhao, Y. Wang, L. Gao, Y. Xu, Z. Fan et al., High-performance liquid metal/polyborosiloxane elastomer toward thermally conductive applications. ACS Appl. Mater. Interfaces 14(18), 21564–21576 (2022). https://doi.org/10.1021/acsami.2c04994
- Y. Xu, L. Huang, J. Long, R. Zhang, Z. Zhong et al., Reversible thermochromic poss-metal films for early warning. Compos. Sci. Technol. 217, 109083 (2022). https://doi.org/10.1016/j.compscitech.2021.109083
- L. Chen, H.B. Zhao, Y.P. Ni, T. Fu, W.S. Wu et al., 3D printable robust shape memory pet copolyesters with fire safety via π stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019). https://doi.org/10.1039/C9TA04187G
- J. Jia, N. Gao, R. Li, S. Liao, S. Lyu et al., An “off-to-on” shape memory polymer conductor for early fire disaster alarming. Chem. Eng. J. 437(4), 133285 (2022). https://doi.org/10.1016/j.cej.2021.133285
- X. Wu, N. Gao, X. Zheng, X. Tao, Y. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interfaces 12(24), 27691–27699 (2020). https://doi.org/10.1021/acsami.0c04798
- H. Zhou, M.H. Chua, Q. Zhu, J. Xu, High-performance PEDOT:PSS-based thermoelectric composites. Compos. Commun. 27, 100877 (2021). https://doi.org/10.1016/j.coco.2021.100877
- Y. Lu, Y. Ding, Y. Qiu, K. Cai, Q. Yao et al., Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl. Mater. Interfaces 11(13), 12819–12829 (2019). https://doi.org/10.1021/acsami.9b01718
- H. Cheng, Q. Le, Z. Liu, Q. Qian, Y. Zhao et al., Ionic thermoelectrics: principles, materials and applications. J. Mater. Chem. C 10(2), 433–450 (2022). https://doi.org/10.1039/d1tc05242j
- J. Li, A.B. Huckleby, M. Zhang, Polymer-based thermoelectric materials: a review of power factor improving strategies. J. Materiomics 8(1), 204–220 (2022). https://doi.org/10.1016/j.jmat.2021.03.013
- A. Lund, Y. Tian, S. Darabi, C. Müller, A polymer-based textile thermoelectric generator for wearable energy harvesting. J. Power Sources 480, 228836 (2020). https://doi.org/10.1016/j.jpowsour.2020.228836
- A. Vázquez-López, J. Bartolomé, D. Maestre, A. Cremades, Gas sensing and thermoelectric properties of hybrid composite films based on PEDOT:PSS and SnO or SnO2 nanostructures. Phys. Status Solidi A 219(13), 2100794 (2022). https://doi.org/10.1002/pssa.202100794
- Y. Wang, L. Yang, X.L. Shi, X. Shi, L. Chen et al., Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31(29), 1807916 (2019). https://doi.org/10.1002/adma.201807916
- Y. Shi, Y. Wang, Y. Deng, H. Gao, Z. Lin et al., A novel self-powered wireless temperature sensor based on thermoelectric generators. Energy Convers. Manag. 80, 110–116 (2014). https://doi.org/10.1016/j.enconman.2014.01.010
- Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu et al., Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 33(42), 2102990 (2021). https://doi.org/10.1002/adma.202102990
- W. Lee, S. Lee, H. Kim, Y. Kim, Organic thermoelectric devices with PEDOT:PSS/ZnO hybrid composites. Chem. Eng. J. 415, 128935 (2021). https://doi.org/10.1016/j.cej.2021.128935
- M. Li, J. Chen, W. Zhong, M. Luo, W. Wang et al., Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric. ACS Sens. 5(8), 2545–2554 (2020). https://doi.org/10.1021/acssensors.0c00870
- J. Deng, F. Zhou, B. Shi, J.L. Torero, H. Qi et al., Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy 207, 118303 (2020). https://doi.org/10.1016/j.energy.2020.118303
- K. Sornek, M. Filipowicz, M. Żołądek, R. Kot, M. Mikrut, Comparative analysis of selected thermoelectric generators operating with wood-fired stove. Energy 166, 1303–1313 (2019). https://doi.org/10.1016/j.energy.2018.10.140
- Y. Pang, Y. Cao, M. Derakhshani, Y. Fang, Z.L. Wang et al., Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 4(1), 116–143 (2021). https://doi.org/10.1016/j.matt.2020.10.018
- X. Chen, A. Yusuf, J.S. Rio, D.Y. Wang, A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety. Nano Energy 81, 105656 (2021). https://doi.org/10.1016/j.nanoen.2020.105656
- W. Liu, X. Wang, Y. Song, R. Cao, L. Wang et al., Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73, 104843 (2020). https://doi.org/10.1016/j.nanoen.2020.104843
- R. Cheng, K. Dong, L. Liu, C. Ning, P. Chen et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11), 15853–15863 (2020). https://doi.org/10.1021/acsnano.0c07148
- Y. Kim, D. Lee, J. Seong, B. Bak, U.H. Choi et al., Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 84, 105925 (2021). https://doi.org/10.1016/j.nanoen.2021.105925
- B. Yu, W. Yang, J. Li, W. Xie, H. Jin et al., Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. J. Mater. Chem. A 9(46), 26119–26126 (2021). https://doi.org/10.1039/d1ta06793a
- X. Li, J.S.R. Saez, X. Ao, A. Vázquez-López, X. Xu et al., Smart low-temperature responsive fire alarm based on MXene/graphene oxide film with wireless transmission: remote real-time luminosity detection. Colloids Surf. A Physicochem. Eng. Asp. 651, 129641 (2022). https://doi.org/10.1016/j.colsurfa.2022.129641
- Y. Xie, J. Liu, S. Zhu, D. Chong, H. Shi et al., An IoT-based risk warning system for smart libraries. Libr. Hi Tech 37(4), 918–932 (2019). https://doi.org/10.1108/lht-11-2017-0254
- B. Sarwar, I.S. Bajwa, N. Jamil, S. Ramzan, N. Sarwar, An intelligent fire warning application using IoT and an adaptive neuro-fuzzy inference system. Sensors 19(14), 3150 (2019). https://doi.org/10.3390/s19143150
- M.A. Ramteke, P.R. Pochhi, P.R. Dhuture, IoT based forest fire detection system using raspberry pi and GSM. Int. Adv. Res. Sci. Commun. Technol. 5(2), 433–436 (2021). https://doi.org/10.48175/ijarsct-1219
- H.K. Merchant, D.D. Ahire, Industrial automation using IoT with Raspberry Pi. Int. J. Comput. Appl. 168(1), 44–46 (2017). https://doi.org/10.5120/ijca2017914277
- R. Yadav, P. Rani, Sensor based smart fire detection and fire alarm system. Proc. Inter. Conf. Adv. Chem. Eng. 2020, 3724291 (2020). https://doi.org/10.2139/ssrn.3724291
- U. Dampage, L. Bandaranayake, R. Wanasinghe, K. Kottahachchi, B. Jayasanka, Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 12, 46 (2022). https://doi.org/10.1038/s41598-021-03882-9
- M.A.I.M.R. Permana, A.G. Putrada, Comparative analysis of mesh and star topologies in improving smart fire alarms. 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, (2019). https://doi.org/10.1109/ICIC47613.2019.8985889
- V.G. Spasova, B.G. Georgiev, P.D. Stefanov, B.P. Stoyanov, Prototype of smart monument with IoT-based system of early warning. J. Phys. Conf. Ser. 1031(1), 012126 (2021). https://doi.org/10.1088/1757-899x/1031/1/012126
- X. Zhang, J. Hu, Q. Yang, H. Yang, H. Yang et al., Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 31(50), 2106527 (2021). https://doi.org/10.1002/adfm.202106527
- L.A. Haryanto, D. Rahmawati, A.K. Sahputra, D.T. Laksono, Smart controlling system for kitchen fire protection based internet of things. J. Phys. Conf. Ser. 1125(1), 012073 (2021). https://doi.org/10.1088/1757-899X/1125/1/012073
- H. Alqourabah, A. Muneer, S.M. Fati, A smart fire detection system using IoT technology with automatic water sprinkler. Int. J. Electr. Comput. Eng. 11(4), 2994 (2021). https://doi.org/10.11591/ijece.v11i4.pp2994-3002
- V. Vujović, M. Maksimović, Raspberry Pi as a sensor web node for home automation. Comput. Electr. Eng. 44, 153–171 (2015). https://doi.org/10.1016/j.compeleceng.2015.01.019
- A. Molina-Pico, D. Cuesta-Frau, A. Araujo, J. Alejandre, A. Rozas, Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network. J. Sensors 2016, 8325845 (2016). https://doi.org/10.1155/2016/8325845
- X. Li, J.S.R. Saez, X. Ao, B. Xu, D.Y. Wang, Tailored P/Si-decorated graphene oxide-based fire sensor for sensitive detection at low-temperature via local and remote wireless transmission. Constr. Build. Mater. 349, 128600 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128600
- N.J. Huang, C.F. Cao, Y. Li, L. Zhao, G.D. Zhang et al., Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Compos. B Eng. 168, 413–420 (2019). https://doi.org/10.1016/j.compositesb.2019.03.053
- G. Chen, B. Yuan, Y. Zhan, H. Dai, S. He et al., Functionalized graphene paper with the function of fuse and its flame-triggered self-cutting performance for fire-alarm sensor application. Mater. Chem. Phys. 252, 123292 (2020). https://doi.org/10.1016/j.matchemphys.2020.123292
References
D.M. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324(5926), 481–484 (2009). https://doi.org/10.1126/science.1163886
J.T. Randerson, H. Liu, M.G. Flanner, S.D. Chambers, Y. Jin et al., The impact of boreal forest fire on climate warming. Science 314(5802), 1130–1132 (2006). https://doi.org/10.1126/science.1132075
M.P. North, S.L. Stephens, B.M. Collins, J.K. Agee, G. Aplet et al., Reform forest fire management. Science 349(6254), 1280–1281 (2015). https://doi.org/10.1126/science.aab2356
R. Rossi, Fire fighting and its influence on the body. Ergonomics 46(10), 1017–1033 (2003). https://doi.org/10.1080/0014013031000121968
L. Ding, F. Khan, J. Ji, Risk-based safety measure allocation to prevent and mitigate storage fire hazards. Proc. Saf. Environ. Prot. 135, 282–293 (2020). https://doi.org/10.1016/j.psep.2020.01.008
I.S. Wichman, Material flammability, combustion, toxicity and fire hazard in transportation. Prog. Energy Combust. Sci. 29(3), 247–299 (2003). https://doi.org/10.1016/s0360-1285(03)00027-3
S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Flame-retardant surface treatments. Nat. Rev. Mater. 5(4), 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6
F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 63(3), 100–125 (2009). https://doi.org/10.1016/j.mser.2008.09.002
S. Zhang, A.R. Horrocks, A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 28(11), 1517–1538 (2003). https://doi.org/10.1016/j.progpolymsci.2003.09.001
Y.T. Pan, Z. Zhang, R. Yang, The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review. Compos. B Eng. 199, 108265 (2020). https://doi.org/10.1016/j.compositesb.2020.108265
M. Bar, R. Alagirusamy, A. Das, Flame retardant polymer composites. Fibers Polym. 16(4), 705–717 (2015). https://doi.org/10.1007/s12221-015-0705-6
G.L. Nelson, Fire and polymers: an overview, in Fire and Polymers II: Materials and Tests for Hazard Prevention. ed. by G.L. Nelson (American Chemical Society, Washington, DC, 1995), pp.1–26. https://doi.org/10.1021/bk-1995-0599.ch001
J. Zhang, Z. Li, X.L. Qi, D.Y. Wang, Recent progress on metal-organic framework and its derivatives as novel fire retardants to polymeric materials. Nano-Micro Lett. 12, 173 (2020). https://doi.org/10.1007/s40820-020-00497-z
L. Chen, Y.Z. Wang, A review on flame retardant technology in china. Part I: development of flame retardants. Polym. Adv. Technol. 21(1), 1–26 (2010). https://doi.org/10.1002/pat.1550
W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 114, 100687 (2020). https://doi.org/10.1016/j.pmatsci.2020.100687
S. Lu, I. Hamerton, Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 8(27), 1661–1712 (2002). https://doi.org/10.1016/S0079-6700(02)00018-7
J. Fahrenkamp-Uppenbrink, Fire management, made tomeasure. Science 355(6331), 1277–1279 (2017). https://doi.org/10.1126/science.355.6331.1277-t
H. Xu, Y. Li, N.J. Huang, Z.R. Yu, P.H. Wang et al., Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. J. Hazard. Mater. 363, 286–294 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.082
A. Yusuf, Z. Li, X. Yuan, D.Y. Wang, Toward a new generation of fire-safe energy storage devices: recent progress on fire-retardant materials and strategies for energy storage devices. Small Methods 6(3), 2101428 (2022). https://doi.org/10.1002/smtd.202101428
X. Wang, E.N. Kalali, J.T. Wan, D.Y. Wang, Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 69, 22–46 (2017). https://doi.org/10.1016/j.progpolymsci.2017.02.001
D. Sirithian, S. Thepanondh, M.L. Sattler, W. Laowagul, Emissions of volatile organic compounds from maize residue open burning in the northern region of Thailand. Atmosph. Environ. 176, 179–187 (2018). https://doi.org/10.1016/j.atmosenv.2017.12.032
J. He, B. Zielinska, R. Balasubramanian, Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmosph. Chem. Phys. 10(23), 11401–11413 (2010). https://doi.org/10.5194/acp-10-11401-2010
B. Languille, V. Gros, J.E. Petit, C. Honore, A. Baudic et al., Wood burning: a major source of volatile organic compounds during wintertime in the Paris region. Sci. Total Environ. 711, 135055 (2020). https://doi.org/10.1016/j.scitotenv.2019.135055
S. Hong, M. Wu, Y. Hong, Y. Jeong, G. Jung et al., Fet-type gas sensors: a review. Sens. Actuat. B Chem. 330, 129240 (2021). https://doi.org/10.1016/j.snb.2020.129240
E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42(5), 416–432 (2016). https://doi.org/10.1080/10408436.2016.1226161
S.J. Chen, D.C. Hovde, K.A. Peterson, A.W. Marshall, Fire detection using smoke and gas sensors. Fire Saf. J. 42(8), 507–515 (2007). https://doi.org/10.1016/j.firesaf.2007.01.006
C. Lee, H. Yang, A system to detect potential fires using a thermographic camera. Nat. Hazards 92, 511–523 (2018). https://doi.org/10.1007/s11069-018-3224-0
A.I. Mtz-Enriquez, K.P. Padmasree, A.I. Oliva, C. Gomez-Solis, E. Coutino-Gonzalez et al., Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microps. Sens. Actuat. B Chem. 305, 127466 (2020). https://doi.org/10.1016/j.snb.2019.127466
J.R. Qualey, Fire test comparison of smoke detector response times. Fire Technol. 36, 89–102 (2000). https://doi.org/10.1023/A:1015498224060
H. Fang, S.M. Lo, Y. Zhang, Y. Shen, Development of a machine-learning approach for identifying the stages of fire development in residential room fires. Fire Saf. J. 126, 103469 (2021). https://doi.org/10.1016/j.firesaf.2021.103469
D.T. Butry, Economic performance of residential fire sprinkler systems. Fire Technol. 45(1), 117–143 (2008). https://doi.org/10.1007/s10694-008-0054-8
H. Ingason, Model scale tunnel tests with water spray. Fire Saf. J. 43(7), 512–528 (2008). https://doi.org/10.1016/j.firesaf.2007.12.002
J. Hua, K. Kumar, B.C. Khoo, H. Xue, A numerical study of the interaction of water spray with a fire plume. Fire Saf. J. 37, 631–657 (2002). https://doi.org/10.1016/S0379-7112(02)00026-7
S.C. Kim, H.S. Ryou, An experimental and numerical study on fire suppression using a water mist in an enclosure. Build. Environ. 38(11), 1309–1316 (2003). https://doi.org/10.1016/s0360-1323(03)00134-3
C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
A.W. Zaibudeen, J. Philip, Temperature and pH sensor based on functionalized magnetic nanofluid. Sens. Actuat. B Chem. 268, 338–349 (2018). https://doi.org/10.1016/j.snb.2018.04.098
J. Yi, W. Chen, J. Han, D. Chen, Sensitive and selective detection of plasticizer vapors with modified-SnO2 hollow nanofibers for electrical fire warning. Sens. Actuat. B Chem. 287, 364–370 (2019). https://doi.org/10.1016/j.snb.2019.02.025
M. Zhang, M. Wang, M. Zhang, C. Yang, Y. Li et al., Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl. Mater. Interfaces 11(50), 47456–47467 (2019). https://doi.org/10.1021/acsami.9b18858
B. Wang, X. Lai, H. Li, C. Jiang, C. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13(19), 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
T. Zhao, D. Teng, Y. Xu, X. Zhang, Y. Li et al., Multi-functional air filters with excellent flame retardancy and fire-warning capability. J. Colloid Interface Sci. 617, 236–245 (2022). https://doi.org/10.1016/j.jcis.2022.03.003
R. Arrigo, N.T. Dintcheva, V. Pampalone, E. Morici, M. Guenzi et al., Advanced nano-hybrids for thermo-oxidative-resistant nanocomposites. J. Mater. Sci. 51(14), 6955–6966 (2016). https://doi.org/10.1007/s10853-016-9983-7
J. Chen, H. Xie, X. Lai, H. Li, J. Gao et al., An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem. Eng. J. 399, 125729 (2020). https://doi.org/10.1016/j.cej.2020.125729
L. Xia, Y. Lv, Z. Miao, L. Luo, W. Luo et al., A flame retardant fabric nanocoating based on nanocarbon black ps@polymer composite and its fire-alarm application. Chem. Eng. J. 433, 133501 (2021). https://doi.org/10.1016/j.cej.2021.133501
X. He, Y. Hao, M. He, X. Qin, L. Wang et al., Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl. Mater. Interfaces 13(50), 60498–60507 (2021). https://doi.org/10.1021/acsami.1c20456
G. Yu, X. Zhou, H. Zhao, W. Zhang, W. Yan et al., Photoinduced generation of metastable sulfur vacancies enhancing the intrinsic hydrogen evolution behavior of semiconductors. Sol. RRL 5(11), 2100580 (2021). https://doi.org/10.1002/solr.202100580
Y. Teng, Q. Zhou, P. Gao, Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 49(24), 2314–2358 (2019). https://doi.org/10.1080/10643389.2019.1609856
J.J. Shao, W. Lv, Q.H. Yang, Self-assembly of graphene oxide at interfaces. Adv. Mater. 26(32), 5586–5612 (2014). https://doi.org/10.1002/adma.201400267
S.K. Kim, J.Y. Kim, S.Y. Choi, J.Y. Lee, H.Y. Jeong, Direct observation of conducting nanofilaments in graphene-oxide-resistive switching memory. Adv. Funct. Mater. 25(43), 6710–6715 (2015). https://doi.org/10.1002/adfm.201502734
S.K. Kim, J.Y. Kim, B.C. Jang, M.S. Cho, S.Y. Choi et al., Conductive graphitic channel in graphene oxide-based memristive devices. Adv. Funct. Mater. 26(41), 7406–7414 (2016). https://doi.org/10.1002/adfm.201602748
P. Yao, P. Chen, L. Jiang, H. Zhao, H. Zhu et al., Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv. Mater. 22(44), 5008–5012 (2010). https://doi.org/10.1002/adma.201002312
V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen et al., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564 (2014). https://doi.org/10.1039/c3ee43385d
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/b917103g
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602(602), 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A sandwich-like flame retardant nanocoating for supersensitive fire-warning. Chem. Eng. J. 382, 122929 (2020). https://doi.org/10.1016/j.cej.2019.122929
T. Fu, X. Zhao, L. Chen, W.S. Wu, Q. Zhao et al., Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 29(8), 1806586 (2019). https://doi.org/10.1002/adfm.201806586
L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
Z. Chen, W. Chen, P. Liu, Y. Liu, Z. Liu, A multifunctional polyurethane sponge based on functionalized graphene oxide and carbon nanotubes for highly sensitive and super durable fire alarming. Compos. Part A Appl. Sci. Manuf. 150, 106598 (2021). https://doi.org/10.1016/j.compositesa.2021.106598
C.F. Cao, B. Yu, B.F. Guo, W.J. Hu, F.N. Sun et al., Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 439, 134516 (2022). https://doi.org/10.1016/j.cej.2022.134516
Z. Qu, C. Xu, X. Li, Y. Wu, K. Wang et al., Facile preparation of BP-MoS2/GO composite films with excellent flame retardancy and ultrasensitive response for smart fire alarm. Chem. Eng. J. 426, 130717 (2021). https://doi.org/10.1016/j.cej.2021.130717
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities. Chem. Eng. J. 369, 8–17 (2019). https://doi.org/10.1016/j.cej.2019.03.045
Z.R. Yu, M. Mao, S.N. Li, Q.Q. Xia, C.F. Cao et al., Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem. Eng. J. 405, 126620 (2021). https://doi.org/10.1016/j.cej.2020.126620
Q. Wu, L.X. Gong, Y. Li, C.F. Cao, L.C. Tang et al., Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12(1), 416–424 (2018). https://doi.org/10.1021/acsnano.7b06590
H. Zheng, X. Han, Q. Wei, C. Zheng, C. Huang et al., Biomass-based flexible fire warning sensor with excellent flame retardancy and sensitivity. Chem. Eng. J. 437, 135412 (2022). https://doi.org/10.1016/j.cej.2022.135412
X. Li, J.S. Saez, X. Ao, A. Yusuf, D.Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022). https://doi.org/10.1016/j.cej.2021.134108
Q. Zeng, Y. Zhao, X. Lai, C. Jiang, B. Wang et al., Skin-inspired multifunctional MXene/cellulose nanocoating for smart and efficient fire protection. Chem. Eng. J. 446, 136899 (2022). https://doi.org/10.1016/j.cej.2022.136899
Z. Ma, J. Zhang, L. Liu, H. Zheng, J. Dai et al., A highly fire-retardant rigid polyurethane foam capable of fire-warning. Compos. Commun. 29, 101046 (2022). https://doi.org/10.1016/j.coco.2021.101046
M. Mao, H. Xu, K.Y. Guo, J.W. Zhang, Q.Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. Part A Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
Z. Luo, H. Ning, X. Zhou, B. Yuan, Efficient flame-retardant biomass aerogel endowed with graphene oxide interconnected networks for ultrasensitive fire warning. Mater. Lett. 318, 132237 (2022). https://doi.org/10.1016/j.matlet.2022.132237
W.W. Qiu, Z.R. Yu, L.Y. Zhou, L.Y. Lv, H. Chen et al., Facile fabrication of graphene oxide nanoribbon-based nanocomposite papers with different oxidation degrees and morphologies for tunable fire-warning response. Nanomaterials 12(12), 1963 (2022). https://doi.org/10.3390/nano12121963
K. Wang, K. Wu, Z. Qu, Y. Wu, E. Jiao et al., Flame-retardant and alarm-sensitive composite films by covalent modification of MWCNT with dopamine. Eur. Polym. J. 164, 110986 (2022). https://doi.org/10.1016/j.eurpolymj.2021.110986
W. Wei, Y. Yi, J. Song, X. Chen, J. Li et al., Tunable graphene/nitrocellulose temperature alarm sensors. ACS Appl. Mater. Interfaces 14(11), 13790–13800 (2022). https://doi.org/10.1021/acsami.2c02340
F. Yang, H. Zhao, Y. Wang, G. Zhang, B. Yuan, Flame-retardant AlOOH/graphene oxide composite coating with temperature-responsive resistance for efficient early-warning fire sensors. Colloids Surf. A Physicochem. Eng. Asp. 648, 129326 (2022). https://doi.org/10.1016/j.colsurfa.2022.129326
N.J. Huang, Q.Q. Xia, Z.H. Zhang, L. Zhao, G.D. Zhang et al., Simultaneous improvements in fire resistance and alarm response of go paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Compos. Part A Appl. S 131, 105797 (2020). https://doi.org/10.1016/j.compositesa.2020.105797
B. Yuan, Y. Wang, G. Chen, F. Yang, H. Zhang et al., Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 403, 123645 (2021). https://doi.org/10.1016/j.jhazmat.2020.123645
B. Zuo, B. Yuan, Flame-retardant cellulose nanofiber aerogel modified with graphene oxide and sodium montmorillonite and its fire-alarm application. Polym. Adv. Technol. 32(4), 1877–1887 (2021). https://doi.org/10.1002/pat.5231
C. Cao, B. Yuan, Thermally induced fire early warning aerogel with efficient thermal isolation and flame-retardant properties. Polym. Adv. Technol. 32(5), 2159–2168 (2021). https://doi.org/10.1002/pat.5246
C.F. Cao, B. Yu, Z.Y. Chen, Y.X. Qu, Y.T. Li et al., Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
F.F. Chen, Y.J. Zhu, F. Chen, L.Y. Dong, R.L. Yang et al., Fire alarm wallpaper based on fire-resistant hydroxyapatite nanowire inorganic paper and graphene oxide thermosensitive sensor. ACS Nano 12(4), 3159–3171 (2018). https://doi.org/10.1021/acsnano.8b00047
W. Chen, P. Liu, Y. Liu, Q. Wang, W. Duan, A temperature-induced conductive coating via layer-by-layer assembly of functionalized graphene oxide and carbon nanotubes for a flexible, adjustable response time flame sensor. Chem. Eng. J. 353, 115–125 (2018). https://doi.org/10.1016/j.cej.2018.07.110
Z. Zhang, D. Yang, H. Yang, Y. Li, S. Lu et al., A hydrophobic sisal cellulose microcrystal film for fire alarm sensors. Nano Lett. 21(5), 2104–2110 (2021). https://doi.org/10.1021/acs.nanolett.0c04789
Z.H. Zhang, J.W. Zhang, C.F. Cao, K.Y. Guo, L. Zhao et al., Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem. Eng. J. 386, 123894 (2020). https://doi.org/10.1016/j.cej.2019.123894
K.Y. Guo, Q. Wu, M. Mao, H. Chen, G.D. Zhang et al., Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017 (2020). https://doi.org/10.1016/j.compositesb.2020.108017
Q. Liu, S. Yang, J. Ren, S. Ling, Flame-retardant and sustainable silk ionotronic skin for fire alarm systems. ACS Mater. Lett. 2(7), 712–720 (2020). https://doi.org/10.1021/acsmaterialslett.0c00062
G. Xiao, H. Weng, L. Ge, Q. Huang, Application status of carbon nanotubes in fire detection sensors. Front. Mater. 7, 588521 (2020). https://doi.org/10.3389/fmats.2020.588521
B. Yang, N.V. Myung, T.T. Tran, 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Adv. Funct. Mater. 7(9), 2100271 (2021). https://doi.org/10.1002/aelm.202100271
Y. Li, G. Liu, L. Wang, J. Zhang, M. Xu et al., Multifunctional conductive graphite/cellulosic microfiber-natural rubber composite sponge with ultrasensitive collision-warning and fire-waring. Chem. Eng. J. 431, 134046 (2022). https://doi.org/10.1016/j.cej.2021.134046
H. Chen, J. Zhou, S. Liu, S. Wang, X. Gong, A novel anti-impact and flame retardant gel towards human protection and high-temperature alarm. Compos. Part A Appl. Sci. Manuf. 158, 106994 (2022). https://doi.org/10.1016/j.compositesa.2022.106994
T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
M. Mao, K.X. Yu, C.F. Cao, L.X. Gong, G.D. Zhang et al., Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem. Eng. J. 427, 131615 (2022). https://doi.org/10.1016/j.cej.2021.131615
C. Zhao, Y. Wang, L. Gao, Y. Xu, Z. Fan et al., High-performance liquid metal/polyborosiloxane elastomer toward thermally conductive applications. ACS Appl. Mater. Interfaces 14(18), 21564–21576 (2022). https://doi.org/10.1021/acsami.2c04994
Y. Xu, L. Huang, J. Long, R. Zhang, Z. Zhong et al., Reversible thermochromic poss-metal films for early warning. Compos. Sci. Technol. 217, 109083 (2022). https://doi.org/10.1016/j.compscitech.2021.109083
L. Chen, H.B. Zhao, Y.P. Ni, T. Fu, W.S. Wu et al., 3D printable robust shape memory pet copolyesters with fire safety via π stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019). https://doi.org/10.1039/C9TA04187G
J. Jia, N. Gao, R. Li, S. Liao, S. Lyu et al., An “off-to-on” shape memory polymer conductor for early fire disaster alarming. Chem. Eng. J. 437(4), 133285 (2022). https://doi.org/10.1016/j.cej.2021.133285
X. Wu, N. Gao, X. Zheng, X. Tao, Y. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interfaces 12(24), 27691–27699 (2020). https://doi.org/10.1021/acsami.0c04798
H. Zhou, M.H. Chua, Q. Zhu, J. Xu, High-performance PEDOT:PSS-based thermoelectric composites. Compos. Commun. 27, 100877 (2021). https://doi.org/10.1016/j.coco.2021.100877
Y. Lu, Y. Ding, Y. Qiu, K. Cai, Q. Yao et al., Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl. Mater. Interfaces 11(13), 12819–12829 (2019). https://doi.org/10.1021/acsami.9b01718
H. Cheng, Q. Le, Z. Liu, Q. Qian, Y. Zhao et al., Ionic thermoelectrics: principles, materials and applications. J. Mater. Chem. C 10(2), 433–450 (2022). https://doi.org/10.1039/d1tc05242j
J. Li, A.B. Huckleby, M. Zhang, Polymer-based thermoelectric materials: a review of power factor improving strategies. J. Materiomics 8(1), 204–220 (2022). https://doi.org/10.1016/j.jmat.2021.03.013
A. Lund, Y. Tian, S. Darabi, C. Müller, A polymer-based textile thermoelectric generator for wearable energy harvesting. J. Power Sources 480, 228836 (2020). https://doi.org/10.1016/j.jpowsour.2020.228836
A. Vázquez-López, J. Bartolomé, D. Maestre, A. Cremades, Gas sensing and thermoelectric properties of hybrid composite films based on PEDOT:PSS and SnO or SnO2 nanostructures. Phys. Status Solidi A 219(13), 2100794 (2022). https://doi.org/10.1002/pssa.202100794
Y. Wang, L. Yang, X.L. Shi, X. Shi, L. Chen et al., Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31(29), 1807916 (2019). https://doi.org/10.1002/adma.201807916
Y. Shi, Y. Wang, Y. Deng, H. Gao, Z. Lin et al., A novel self-powered wireless temperature sensor based on thermoelectric generators. Energy Convers. Manag. 80, 110–116 (2014). https://doi.org/10.1016/j.enconman.2014.01.010
Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu et al., Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 33(42), 2102990 (2021). https://doi.org/10.1002/adma.202102990
W. Lee, S. Lee, H. Kim, Y. Kim, Organic thermoelectric devices with PEDOT:PSS/ZnO hybrid composites. Chem. Eng. J. 415, 128935 (2021). https://doi.org/10.1016/j.cej.2021.128935
M. Li, J. Chen, W. Zhong, M. Luo, W. Wang et al., Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric. ACS Sens. 5(8), 2545–2554 (2020). https://doi.org/10.1021/acssensors.0c00870
J. Deng, F. Zhou, B. Shi, J.L. Torero, H. Qi et al., Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy 207, 118303 (2020). https://doi.org/10.1016/j.energy.2020.118303
K. Sornek, M. Filipowicz, M. Żołądek, R. Kot, M. Mikrut, Comparative analysis of selected thermoelectric generators operating with wood-fired stove. Energy 166, 1303–1313 (2019). https://doi.org/10.1016/j.energy.2018.10.140
Y. Pang, Y. Cao, M. Derakhshani, Y. Fang, Z.L. Wang et al., Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 4(1), 116–143 (2021). https://doi.org/10.1016/j.matt.2020.10.018
X. Chen, A. Yusuf, J.S. Rio, D.Y. Wang, A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety. Nano Energy 81, 105656 (2021). https://doi.org/10.1016/j.nanoen.2020.105656
W. Liu, X. Wang, Y. Song, R. Cao, L. Wang et al., Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73, 104843 (2020). https://doi.org/10.1016/j.nanoen.2020.104843
R. Cheng, K. Dong, L. Liu, C. Ning, P. Chen et al., Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 14(11), 15853–15863 (2020). https://doi.org/10.1021/acsnano.0c07148
Y. Kim, D. Lee, J. Seong, B. Bak, U.H. Choi et al., Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 84, 105925 (2021). https://doi.org/10.1016/j.nanoen.2021.105925
B. Yu, W. Yang, J. Li, W. Xie, H. Jin et al., Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. J. Mater. Chem. A 9(46), 26119–26126 (2021). https://doi.org/10.1039/d1ta06793a
X. Li, J.S.R. Saez, X. Ao, A. Vázquez-López, X. Xu et al., Smart low-temperature responsive fire alarm based on MXene/graphene oxide film with wireless transmission: remote real-time luminosity detection. Colloids Surf. A Physicochem. Eng. Asp. 651, 129641 (2022). https://doi.org/10.1016/j.colsurfa.2022.129641
Y. Xie, J. Liu, S. Zhu, D. Chong, H. Shi et al., An IoT-based risk warning system for smart libraries. Libr. Hi Tech 37(4), 918–932 (2019). https://doi.org/10.1108/lht-11-2017-0254
B. Sarwar, I.S. Bajwa, N. Jamil, S. Ramzan, N. Sarwar, An intelligent fire warning application using IoT and an adaptive neuro-fuzzy inference system. Sensors 19(14), 3150 (2019). https://doi.org/10.3390/s19143150
M.A. Ramteke, P.R. Pochhi, P.R. Dhuture, IoT based forest fire detection system using raspberry pi and GSM. Int. Adv. Res. Sci. Commun. Technol. 5(2), 433–436 (2021). https://doi.org/10.48175/ijarsct-1219
H.K. Merchant, D.D. Ahire, Industrial automation using IoT with Raspberry Pi. Int. J. Comput. Appl. 168(1), 44–46 (2017). https://doi.org/10.5120/ijca2017914277
R. Yadav, P. Rani, Sensor based smart fire detection and fire alarm system. Proc. Inter. Conf. Adv. Chem. Eng. 2020, 3724291 (2020). https://doi.org/10.2139/ssrn.3724291
U. Dampage, L. Bandaranayake, R. Wanasinghe, K. Kottahachchi, B. Jayasanka, Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 12, 46 (2022). https://doi.org/10.1038/s41598-021-03882-9
M.A.I.M.R. Permana, A.G. Putrada, Comparative analysis of mesh and star topologies in improving smart fire alarms. 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, (2019). https://doi.org/10.1109/ICIC47613.2019.8985889
V.G. Spasova, B.G. Georgiev, P.D. Stefanov, B.P. Stoyanov, Prototype of smart monument with IoT-based system of early warning. J. Phys. Conf. Ser. 1031(1), 012126 (2021). https://doi.org/10.1088/1757-899x/1031/1/012126
X. Zhang, J. Hu, Q. Yang, H. Yang, H. Yang et al., Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 31(50), 2106527 (2021). https://doi.org/10.1002/adfm.202106527
L.A. Haryanto, D. Rahmawati, A.K. Sahputra, D.T. Laksono, Smart controlling system for kitchen fire protection based internet of things. J. Phys. Conf. Ser. 1125(1), 012073 (2021). https://doi.org/10.1088/1757-899X/1125/1/012073
H. Alqourabah, A. Muneer, S.M. Fati, A smart fire detection system using IoT technology with automatic water sprinkler. Int. J. Electr. Comput. Eng. 11(4), 2994 (2021). https://doi.org/10.11591/ijece.v11i4.pp2994-3002
V. Vujović, M. Maksimović, Raspberry Pi as a sensor web node for home automation. Comput. Electr. Eng. 44, 153–171 (2015). https://doi.org/10.1016/j.compeleceng.2015.01.019
A. Molina-Pico, D. Cuesta-Frau, A. Araujo, J. Alejandre, A. Rozas, Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network. J. Sensors 2016, 8325845 (2016). https://doi.org/10.1155/2016/8325845
X. Li, J.S.R. Saez, X. Ao, B. Xu, D.Y. Wang, Tailored P/Si-decorated graphene oxide-based fire sensor for sensitive detection at low-temperature via local and remote wireless transmission. Constr. Build. Mater. 349, 128600 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128600
N.J. Huang, C.F. Cao, Y. Li, L. Zhao, G.D. Zhang et al., Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Compos. B Eng. 168, 413–420 (2019). https://doi.org/10.1016/j.compositesb.2019.03.053
G. Chen, B. Yuan, Y. Zhan, H. Dai, S. He et al., Functionalized graphene paper with the function of fuse and its flame-triggered self-cutting performance for fire-alarm sensor application. Mater. Chem. Phys. 252, 123292 (2020). https://doi.org/10.1016/j.matchemphys.2020.123292