Nanoimprint Lithography: A Processing Technique for Nanofabrication Advancement
Corresponding Author: Weimin Zhou
Nano-Micro Letters,
Vol. 3 No. 2 (2011), Article Number: 135-140
Abstract
Nanoimprint lithography (NIL) is an emerging micro/nano-patterning technique, which is a high-resolution, high-throughput and yet simple fabrication process. According to International Technology Roadmap for Semiconductor (ITRS), NIL has emerged as the next generation lithography candidate for the 22 nm and 16 nm technological nodes. In this paper, we present an overview of nanoimprint lithography. The classfication, research focus, critical issues, and the future of nanoimprint lithography are intensively elaborated. A pattern as small as 2.4 nm has been demonstrated. Full-wafer nanoimprint lithography has been completed on a 12-inch wafer. Recently, 12.5 nm pattern resolution through soft molecular scale nanoimprint lithography has been achieved by EV Group, a leading nanoimprint lithography technology supplier.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995). http://dx.doi.org/10.1063/1.114851
- S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science 272, 85 (1996). http://dx.doi.org/10.1126/science.272.5258.85
- S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. technol. B 14, 4129 (1996). http://dx.doi.org/10.1116/1.588605
- W. Wu, Appl. Phys. A 80, 1173 (2005). http://dx.doi.org/10.1007/s00339-004-3176-y
- H. Lee, S. H. Hong, K. Y. Yang and G. Y. Jung, Microelectro. Eng. 84, 573 (2007). http://dx.doi.org/10.1016/j.mee.2006.11.009
- S. H. Kim, K. D. Lee, M. K. Kwon and S. J. Park, Nanotechnology 18, 055306 (2007). http://dx.doi.org/10.1088/0957-4484/18/5/0553
- H. Lee, S. H. Hong, K. Y. Yang and G. Y. Jung, Microelectron. Eng. 84, 573 (2007). http://dx.doi.org/10.1016/j.mee.2006.11.009
- M. Colburn, S. Johnson and M. Stewart, Proc. SPIE 379, 36 (1999).
- F. Hua, Y. G. Sun, A. Gaur and M. A. Meitl, Nano Lett. 4, 2467 (2004). http://dx.doi.org/10.1021/nl048355u
- W. M. Zhou, G. Q. Min, Z. T. Song, et al. Nanotechnology 21, 205304 (2010). http://dx.doi.org/10.1088/0957-4484/21/20/205304
- Y. B. Liu, T. Zhang, G. X. Zhang, et al, Nanotechnology 20, 315304 (2009). http://dx.doi.org/10.1088/0957-4484/20/31/315304
- L. Jay. Guo, Adv. Mater. 19, 495 (2007).
- S. H. Ahn and L. J. Guo, ACS Nano 3, 2304 (2009). http://dx.doi.org/10.1021/nn9003633
- V. D. Mihailetchi, H. Xie, B. Boer, L. J. Anton Koster and P. W. M. Blom, Adv. Funct.Mater. 16, 699 (2006). http://dx.doi.org/10
- T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, Adv. Funct. Mater. 15, 1193 (2005). http://dx.doi.org/10.1002/adfm.200400521
- S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim and M. G. Kwak, Synthetic Metals 139, 377 (2003). http://dx.doi.org/10.
- J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater. 16, 4772 (2006). http://dx.doi.org/10.1021/cm049617w
- X. L. Li, Q. K. Wang, J. Zhang, et al, Microelectron. Eng. 86, 2015 (2008). http://dx.doi.org/10.1016/j.mee.2008.12.090
- W. M. Zhou, X. M. Niu, G. Q. Min and Z. T. Song, Microelectron. Eng. 86, 2375 (2009). http://dx.doi.org/10.1016/j.mee.2009.04.0
- W. M. Zhou, J. Zhang, X. L. Li and Y. B. Liu, Appl. Surf. Sci. 255, 8019 (2008). http://dx.doi.org/10.1016/j.apsusc.2009.05.006
- W. M. Zhou, J. Zhang, Y. B. Liu, X. L. Li, X. M. Niu, et al. Appl. Surf. Sci. 255, 2885 (2008). http://dx.doi.org/10.1016/j.aps
- Y. Hirai and Y. Tanaka, J. Photopolym. Sci. Technol. 15, 475 (2002). http://dx.doi.org/10.2494/photopolymer.15.475
- E. K. Kim, N. A. Stacey, B. J. Smith, M. D. Dickey, S. C. Johnson and B. C. Trinque, J. Vac. Sci. Technol. B 22, 131 (2004). http://dx.doi.org/10.1116/1.1635849
- X. Cheng, L. J. Guo and P. F. Fu, Adv. Mater. 17, 1419 (2005). http://dx.doi.org/10.1002/adma.200401192
- B. K. Long, B. Keith Keitz and C. Grant Willson, J. Mater. Chem. 17, 3575 (2007). http://dx.doi.org/10.1039/b705388f
- L. Chen, X. G. Deng, J. Wang, et al, J. Vac. Sci. Technol. B 23, 2933 (2005). http://dx.doi.org/10.1116/1.2130352
- H. S. Park, H. H. Shin and M. Y. Man, IEEE Trans. Semicond. Manu. 20, 13 (2007). http://dx.doi.org/10.1109/TSM.2006.890315
- N. H. Li, W. Wu and S. Y. Stephon, Nano Lett. 6, 2626 (2006). http://dx.doi.org/10.1021/nl0603395
- P. Maury, M. Péter, X. Y. Ling and N. David, Nanotechnology 18, 044007 (2007). http://dx.doi.org/10.1088/0957-4484/18/4/044007
References
S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995). http://dx.doi.org/10.1063/1.114851
S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science 272, 85 (1996). http://dx.doi.org/10.1126/science.272.5258.85
S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. technol. B 14, 4129 (1996). http://dx.doi.org/10.1116/1.588605
W. Wu, Appl. Phys. A 80, 1173 (2005). http://dx.doi.org/10.1007/s00339-004-3176-y
H. Lee, S. H. Hong, K. Y. Yang and G. Y. Jung, Microelectro. Eng. 84, 573 (2007). http://dx.doi.org/10.1016/j.mee.2006.11.009
S. H. Kim, K. D. Lee, M. K. Kwon and S. J. Park, Nanotechnology 18, 055306 (2007). http://dx.doi.org/10.1088/0957-4484/18/5/0553
H. Lee, S. H. Hong, K. Y. Yang and G. Y. Jung, Microelectron. Eng. 84, 573 (2007). http://dx.doi.org/10.1016/j.mee.2006.11.009
M. Colburn, S. Johnson and M. Stewart, Proc. SPIE 379, 36 (1999).
F. Hua, Y. G. Sun, A. Gaur and M. A. Meitl, Nano Lett. 4, 2467 (2004). http://dx.doi.org/10.1021/nl048355u
W. M. Zhou, G. Q. Min, Z. T. Song, et al. Nanotechnology 21, 205304 (2010). http://dx.doi.org/10.1088/0957-4484/21/20/205304
Y. B. Liu, T. Zhang, G. X. Zhang, et al, Nanotechnology 20, 315304 (2009). http://dx.doi.org/10.1088/0957-4484/20/31/315304
L. Jay. Guo, Adv. Mater. 19, 495 (2007).
S. H. Ahn and L. J. Guo, ACS Nano 3, 2304 (2009). http://dx.doi.org/10.1021/nn9003633
V. D. Mihailetchi, H. Xie, B. Boer, L. J. Anton Koster and P. W. M. Blom, Adv. Funct.Mater. 16, 699 (2006). http://dx.doi.org/10
T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, Adv. Funct. Mater. 15, 1193 (2005). http://dx.doi.org/10.1002/adfm.200400521
S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim and M. G. Kwak, Synthetic Metals 139, 377 (2003). http://dx.doi.org/10.
J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater. 16, 4772 (2006). http://dx.doi.org/10.1021/cm049617w
X. L. Li, Q. K. Wang, J. Zhang, et al, Microelectron. Eng. 86, 2015 (2008). http://dx.doi.org/10.1016/j.mee.2008.12.090
W. M. Zhou, X. M. Niu, G. Q. Min and Z. T. Song, Microelectron. Eng. 86, 2375 (2009). http://dx.doi.org/10.1016/j.mee.2009.04.0
W. M. Zhou, J. Zhang, X. L. Li and Y. B. Liu, Appl. Surf. Sci. 255, 8019 (2008). http://dx.doi.org/10.1016/j.apsusc.2009.05.006
W. M. Zhou, J. Zhang, Y. B. Liu, X. L. Li, X. M. Niu, et al. Appl. Surf. Sci. 255, 2885 (2008). http://dx.doi.org/10.1016/j.aps
Y. Hirai and Y. Tanaka, J. Photopolym. Sci. Technol. 15, 475 (2002). http://dx.doi.org/10.2494/photopolymer.15.475
E. K. Kim, N. A. Stacey, B. J. Smith, M. D. Dickey, S. C. Johnson and B. C. Trinque, J. Vac. Sci. Technol. B 22, 131 (2004). http://dx.doi.org/10.1116/1.1635849
X. Cheng, L. J. Guo and P. F. Fu, Adv. Mater. 17, 1419 (2005). http://dx.doi.org/10.1002/adma.200401192
B. K. Long, B. Keith Keitz and C. Grant Willson, J. Mater. Chem. 17, 3575 (2007). http://dx.doi.org/10.1039/b705388f
L. Chen, X. G. Deng, J. Wang, et al, J. Vac. Sci. Technol. B 23, 2933 (2005). http://dx.doi.org/10.1116/1.2130352
H. S. Park, H. H. Shin and M. Y. Man, IEEE Trans. Semicond. Manu. 20, 13 (2007). http://dx.doi.org/10.1109/TSM.2006.890315
N. H. Li, W. Wu and S. Y. Stephon, Nano Lett. 6, 2626 (2006). http://dx.doi.org/10.1021/nl0603395
P. Maury, M. Péter, X. Y. Ling and N. David, Nanotechnology 18, 044007 (2007). http://dx.doi.org/10.1088/0957-4484/18/4/044007