Optimization Strategies of Na3V2(PO4)3 Cathode Materials for Sodium-Ion Batteries
Corresponding Author: Yanfeng Gao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 33
Abstract
Na3V2(PO4)3 (NVP) has garnered great attentions as a prospective cathode material for sodium-ion batteries (SIBs) by virtue of its decent theoretical capacity, superior ion conductivity and high structural stability. However, the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density, which strictly confine its further application in SIBs. Thus, it is of significance to boost the sodium storage performance of NVP cathode material. Up to now, many methods have been developed to optimize the electrochemical performance of NVP cathode material. In this review, the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed, including carbon coating or modification, foreign-ion doping or substitution and nanostructure and morphology design. The foreign-ion doping or substitution is highlighted, involving Na, V, and PO43− sites, which include single-site doping, multiple-site doping, single-ion doping, multiple-ion doping and so on. Furthermore, the challenges and prospects of high-performance NVP cathode material are also put forward. It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
Highlights:
1 Optimization strategies for high-performance Na3V2(PO4)3 (NVP) cathode material are well summarized and discussed, including carbon coating or modification, foreign-ion doping or substitution and nanostructure and morphology design.
2 The foreign-ion doping or substitution is highlighted, involving the Na, V, and PO43− sites, which include single-site doping, multiple-site doping, single-ion doping and multiple-ion doping.
3 Challenges and future perspectives for high-performance NVP cathode material are presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Bashir, S. Zhou, S. Yang, S.A. Ismail, T. Ali et al., Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 6, 5 (2023). https://doi.org/10.1007/s41918-022-00174-2
- K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1800079 (2018). https://doi.org/10.1002/aenm.201800079
- Z. Chen, A. Yildizbasi, Y. Wang, J. Sarkis, Safety in lithium-ion battery circularity activities: a framework and evaluation methodology. Resour. Conserv. Recycl. 193, 106962 (2023). https://doi.org/10.1016/j.resconrec.2023.106962
- M. Sarkar, R. Hossain, V. Sahajwalla, Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability. Resour. Conserv. Recycl. 200, 107292 (2024). https://doi.org/10.1016/j.resconrec.2023.107292
- L. Zhao, T. Zhang, W. Li, T. Li, L. Zhang et al., Engineering of sodium-ion batteries: opportunities and challenges. Engineering 24, 172–183 (2023). https://doi.org/10.1016/j.eng.2021.08.032
- S. Li, R. Dong, Y. Li, X. Lu, J. Qian et al., Advances in free-standing electrodes for sodium ion batteries. Mater. Today 72, 207–234 (2024). https://doi.org/10.1016/j.mattod.2023.11.013
- C. Matei Ghimbeu, A. Beda, B. Réty, H. El Marouazi, A. Vizintin et al., Review: insights on hard carbon materials for sodium-ion batteries (SIBs): synthesis–properties–performance relationships. Adv. Energy Mater. 14, 2303833 (2024). https://doi.org/10.1002/aenm.202303833
- C. Che, F. Wu, Y. Li, Y. Li, S. Li et al., Challenges and breakthroughs in enhancing temperature tolerance of sodium-ion batteries. Adv. Mater. 36, e2402291 (2024). https://doi.org/10.1002/adma.202402291
- H. Zhang, Y. Gao, X. Liu, L. Zhou, J. Li et al., Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy Mater. 13, 2300149 (2023). https://doi.org/10.1002/aenm.202300149
- Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
- X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang et al., A low-temperature sodium-ion full battery: superb kinetics and cycling stability. Adv. Funct. Mater. 31, 2009458 (2021). https://doi.org/10.1002/adfm.202009458
- P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018). https://doi.org/10.1002/anie.201703772
- P. Yadav, A. Patrike, K. Wasnik, V. Shelke, M. Shelke, Strategies and practical approaches for stable and high energy density sodium-ion battery: a step closer to commercialization. Mater. Today Sustain. 22, 100385 (2023). https://doi.org/10.1016/j.mtsust.2023.100385
- Y. Jiang, Z. Zhang, H. Liao, Y. Zheng, X. Fu et al., Progress and prospect of bimetallic oxides for sodium-ion batteries: synthesis, mechanism, and optimization strategy. ACS Nano 18, 7796–7824 (2024). https://doi.org/10.1021/acsnano.4c00613
- J. Lu, Z. Zhang, Y. Zheng, Y. Gao, In situ transmission electron microscopy for sodium-ion batteries. Adv. Mater. 35, 2300359 (2023). https://doi.org/10.1002/adma.202300359
- X. Zhang, Z. Zhang, S. Xu, C. Xu, X. Rui, Advanced vanadium oxides for sodium-ion batteries. Adv. Funct. Mater. 33, 2306055 (2023). https://doi.org/10.1002/adfm.202306055
- Z. Song, R. Liu, W.-D. Liu, Y. Chen, W. Hu, Low-cost polyanion-type cathode materials for sodium-ion battery. Adv. Energy Sustain. Res. 4, 2300102 (2023). https://doi.org/10.1002/aesr.202300102
- S. Qiao, Q. Zhou, M. Ma, H.K. Liu, S.X. Dou et al., Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 17, 11220–11252 (2023). https://doi.org/10.1021/acsnano.3c02892
- J. Wu, G. Wang, W. Zhang, L. Wang, J. Peng et al., Universal architecture and defect engineering dual strategy for hierarchical antimony phosphate composite toward fast and durable sodium storage. J. Energy Chem. 90, 110–119 (2024). https://doi.org/10.1016/j.jechem.2023.11.013
- Q. Li, W. Zhang, J. Peng, D. Yu, Z. Liang et al., Nanodot-in-nanofiber structured carbon-confined Sb2Se3 crystallites for fast and durable sodium storage. Adv. Funct. Mater. 32, 2112776 (2022). https://doi.org/10.1002/adfm.202112776
- Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15, 1805381 (2019). https://doi.org/10.1002/smll.201805381
- J. Park, Y. Jeong, H. Kang, T.-Y. Yu, X. Xu et al., A dual-functional electrolyte additive for high-performance potassium metal batteries. Adv. Funct. Mater. 33, 2304069 (2023). https://doi.org/10.1002/adfm.202304069
- Y. Gao, X. Wu, L. Wang, Y. Zhu, G. Sun et al., Structurally stable, low H2O Prussian blue analogs toward high performance sodium storage. Adv. Funct. Mater. 34, 2314860 (2024). https://doi.org/10.1002/adfm.202314860
- W. Shu, J. Li, G. Zhang, J. Meng, X. Wang et al., Progress on transition metal ions dissolution suppression strategies in prussian blue analogs for aqueous sodium-/potassium-ion batteries. Nano-Micro Lett. 16, 128 (2024). https://doi.org/10.1007/s40820-024-01355-y
- M. Baumann, M. Häringer, M. Schmidt, L. Schneider, J.F. Peters et al., Prospective sustainability screening of sodium-ion battery cathode materials. Adv. Energy Mater. 12, 2202636 (2022). https://doi.org/10.1002/aenm.202202636
- X. Tu, Y. Liu, K. Wang, Z. Ding, X. Xu et al., Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization. J. Colloid Interface Sci. 642, 680–690 (2023). https://doi.org/10.1016/j.jcis.2023.04.007
- K. Lin, Q. Liu, Y. Zhou, H. Chen, J. Liu et al., Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-structured SIBs: Combined theoretical and experimental study. Chem. Eng. J. 463, 142464 (2023). https://doi.org/10.1016/j.cej.2023.142464
- J. Zhang, Y. Liu, X. Zhao, L. He, H. Liu et al., A novel NASICON-type Na4 MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 32, e1906348 (2020). https://doi.org/10.1002/adma.201906348
- X.X. Zhao, W. Fu, H.X. Zhang, J.Z. Guo, Z.Y. Gu et al., Pearl-structure-enhanced NASICON cathode toward ultrastable sodium-ion batteries. Adv. Sci. 10, e2301308 (2023). https://doi.org/10.1002/advs.202301308
- Q. Zhou, L. Wang, W. Li, K. Zhao, M. Liu et al., Sodium superionic conductors (NASICONs) as cathode materials for sodium-ion batteries. Electrochem. Energy Rev. 4, 793–823 (2021). https://doi.org/10.1007/s41918-021-00120-8
- W. Zhou, Y. Li, S. Xin, J.B. Goodenough, Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017). https://doi.org/10.1021/acscentsci.6b00321
- J. Chen, S. Feng, H. Lai, Y. Lu, W. Liu et al., Interface ionic/electronic redistribution driven by conversion-alloy reaction for high-performance solid-state sodium batteries. Small Methods 8, e2301201 (2024). https://doi.org/10.1002/smtd.202301201
- B. Patra, R. Hegde, A. Natarajan, D. Deb, D. Sachdeva et al., Stabilizing multi-electron NASICON-Na1.5V0.5Nb1.5(PO4)3 anode via structural modulation for long-life sodium-ion batteries. Adv. Energy Mater. 14, 2304091 (2024). https://doi.org/10.1002/aenm.202304091
- M. Li, C. Sun, X. Yuan, Y. Li, Y. Yuan et al., A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries. Adv. Funct. Mater. 34, 2314019 (2024). https://doi.org/10.1002/adfm.202314019
- Z.L. Jian, C.C. Yuan, W.Z. Han, X. Lu, L. Gu et al., Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014). https://doi.org/10.1002/adfm.201400173
- Z. Yang, G. Li, J. Sun, L. Xie, Y. Jiang et al., High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries. Energy Storage Mater. 25, 724–730 (2020). https://doi.org/10.1016/j.ensm.2019.09.014
- Y. Wu, X. Meng, L. Yan, Q. Kang, H. Du et al., Vanadium-free NASICON-type electrode materials for sodium-ion batteries. J. Mater. Chem. A 10, 21816–21837 (2022). https://doi.org/10.1039/d2ta05653d
- Y. Zhao, Y. Zhang, Y. Li, C. Ma, X. Qi et al., Dual-complexing agent dominated synthesis of carbon coated Na3V2(PO4)3 cathodes for high-performance sodium ion batteries. J. Alloys Compd. 986, 174127 (2024). https://doi.org/10.1016/j.jallcom.2024.174127
- Z. Wang, L. Chen, K. Yang, B. Liang, X. Guo et al., Exploration of a novel vanadium source for the synthesis of a Na3V2(PO4)3 cathode of sodium-ion batteries. ACS Sustain Chem. Eng. 12, 1973–1983 (2024). https://doi.org/10.1021/acssuschemeng.3c06339
- Z.L. Jian, W.Z. Han, X. Lu, H.X. Yang, Y.S. Hu et al., Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013). https://doi.org/10.1002/aenm.201200558
- Y. Zhou, X. Yang, M. Hou, L. Zhao, X. Zhang et al., Manipulating amorphous and crystalline hybridization of Na3V2(PO4)3/C for enhancing sodium-ion diffusion kinetics. J. Colloid Interface Sci. 667, 64–72 (2024). https://doi.org/10.1016/j.jcis.2024.04.046
- Y. Zhu, H. Xu, S. Li, Y. Chen, N-doped dual carbon-layer-modified Na3V2(PO4)3 as a high-performance cathode material for sodium-ion batteries. Electrochim. Acta 480, 143895 (2024). https://doi.org/10.1016/j.electacta.2024.143895
- G. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020). https://doi.org/10.1002/adfm.202001289
- R.S. Kate, H.S. Jadhav, U.P. Chothe, K. Bhattacharjee, M.V. Kulkarni et al., Critical review of the recent progress and challenges of polyanion Na3V2(PO4)3 cathode materials in rechargeable sodium-ion batteries. J. Mater. Chem. A 12, 7418–7451 (2024). https://doi.org/10.1039/D3TA07545A
- Q. Huang, Z. Hu, K. Chen, Z. Zeng, Y. Sun et al., Partial modification strategies of NASICON-type Na3V2(PO4)3 materials for cathodes of sodium-ion batteries: progress and perspectives. ACS Appl. Energy Mater. 6, 2657–2679 (2023). https://doi.org/10.1021/acsaem.2c04083
- R. Thirupathi, V. Kumari, S. Chakrabarty, S. Omar, Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 137, 101128 (2023). https://doi.org/10.1016/j.pmatsci.2023.101128
- Y. Chen, Y. Xu, X. Sun, C. Wang, Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries. J. Power. Sources 375, 82–92 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.043
- Y. Liu, X. Wu, A. Moeez, Z. Peng, Y. Xia et al., Na-rich Na3V2(PO4)3 cathodes for long cycling rechargeable sodium full cells. Adv. Energy Mater. 13, 2203283 (2023). https://doi.org/10.1002/aenm.202203283
- W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang et al., First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2, 5358–5362 (2014). https://doi.org/10.1039/C4TA00230J
- Q. Wang, M. Zhang, C. Zhou, Y. Chen, Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework. J. Phys. Chem. C 122, 16649–16654 (2018). https://doi.org/10.1021/acs.jpcc.8b06120
- Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li et al., Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012). https://doi.org/10.1016/j.elecom.2011.11.009
- Z. Ahsan, Z. Cai, S. Wang, M. Moin, H. Wang et al., Recent development of phosphate based polyanion cathode materials for sodium-ion batteries. Adv. Energy Mater. 14, 2400373 (2024). https://doi.org/10.1002/aenm.202400373
- Y. Liu, C. Sun, Q. Ni, Z. Sun, M. Li et al., Enhanced electrochemical performance of NASICON-type sodium ion cathode based on charge balance theory. Energy Storage Mater. 53, 881–889 (2022). https://doi.org/10.1016/j.ensm.2022.10.011
- X. Dong, X. Zhao, Y. Chen, C. Wang, Investigations about the influence of different carbon matrixes on the electrochemical performance of Na3V2(PO4)3 cathode material for sodium ion batteries. Adv. Compos. Hybrid Mater. 4, 1070–1081 (2021). https://doi.org/10.1007/s42114-021-00319-9
- T. Akçay, M. Häringer, K. Pfeifer, J. Anhalt, J.R. Binder et al., Na3V2(PO4)3─a highly promising anode and cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 4, 12688–12695 (2021). https://doi.org/10.1021/acsaem.1c02413
- W. Li, Z. Yao, C.-A. Zhou, X. Wang, X. Xia et al., Boosting high-rate sodium storage performance of N-doped carbon-encapsulated Na3V2(PO4)3 nanops anchoring on carbon cloth. Small 15, e1902432 (2019). https://doi.org/10.1002/smll.201902432
- X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji et al., Extending the cycle life of Na3V2(PO4)3 cathodes in sodium-ion batteries through interdigitated carbon scaffolding. J. Mater. Chem. A 4, 14669–14674 (2016). https://doi.org/10.1039/C6TA05030A
- R.S. Kate, S.V. Kadam, M.V. Kulkarni, R.J. Deokate, B.B. Kale et al., Highly stable and nanoporous Na3V2(PO4)3@C cathode material for sodium-ion batteries using thermal management. J. Energy Storage 74, 109245 (2023). https://doi.org/10.1016/j.est.2023.109245
- D. Fan, Q. Shen, H. Li, X. Qu, L. Jiao et al., Redox couple modulation in NASICON phosphates toward high-performance cathodes for Na-ion batteries. Energy Mater. Adv. 5, 73 (2024). https://doi.org/10.34133/energymatadv.0073
- S. Zhao, W. Qi, C. Yang, R. Ling, Triggering reversible V4+/V5+ redox couples in Na3V2(PO4)3 porous flower-like cathodes by Mg2+ substitution for high-performance Na-ion batteries. J. Power. Sources 595, 234076 (2024). https://doi.org/10.1016/j.jpowsour.2024.234076
- Y. Chen, X. Liao, P. Wang, J. Chen, X. Zhang et al., A high-energy-density NASICON-type Na3V1.25Ga0.75(PO4)3 cathode with reversible V4+/V5+ redox couple for sodium ion batteries. J. Colloid Interface Sci. 653, 1–10 (2024). https://doi.org/10.1016/j.jcis.2023.09.057
- S. Liu, Z. Xu, L. Ren, W. Xu, Y. Liu et al., Fe-modified NASICON-type Na3V2(PO4)3 as a cathode material for sodium ion batteries. RSC Adv. 14, 4835–4843 (2024). https://doi.org/10.1039/D3RA08714J
- P.B. Madambikkattil, S.V. Nair, D. Santhanagopalan, Synergetic effect of isovalent- and aliovalent-ion dual-doping in the vanadium site of Na3V2(PO4)3 for wide-temperature operating sodium-ion batteries. ACS Appl. Energy Mater. 5, 10473–10482 (2022). https://doi.org/10.1021/acsaem.2c01053
- J. Yan, C. Zhang, Z. Li, F. Liu, H. Wang et al., Trace topological doping strategy and deep learning to reveal high-rate sodium storage regulation of barium-doped Na3V2(PO4)3. Nanoscale 16, 4578–4590 (2024). https://doi.org/10.1039/D3NR04300B
- R. Zhang, Y. Hu, J. Li, X. Zhu, Y. Peng et al., In situ constructing ultrafast ion channel for promoting high-rate cycle stability of nano-Na3V2(PO4)3 cathode. ACS Appl. Mater. Interfaces 16, 2389–2396 (2024). https://doi.org/10.1021/acsami.3c16409
- J. Li, Y. Chen, T. Zhou, H. Shi, Z. Zheng et al., Dual-carbon coated Na3V2(PO4)3 derived from reduced graphene oxide and nanocellulose with porous structure for high performance sodium-ion batteries. Appl. Surf. Sci. 610, 155553 (2023). https://doi.org/10.1016/j.apsusc.2022.155553
- J. Cong, S.-H. Luo, P.-Y. Li, K. Li, P.-W. Li et al., Towards enhanced structural stability by investigation of the mechanism of K ion doping in Na3V2(PO4)3/C for sodium ion batteries. J. Energy Storage 72, 108808 (2023). https://doi.org/10.1016/j.est.2023.108808
- N. Li, Y. Tong, D. Yi, X. Cui, X. Zhang, 3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries. Ceram. Int. 46, 27493–27498 (2020). https://doi.org/10.1016/j.ceramint.2020.07.238
- Y. Zhu, H. Xu, J. Ma, P. Chen, Y. Chen, The N-doped carbon coated Na3V2(PO4)3 with different N sources as cathode material for sodium-ion batteries: experimental and theoretical study. Surf. Interfaces 45, 103888 (2024). https://doi.org/10.1016/j.surfin.2024.103888
- Q. Wei, X. Chang, J. Wang, T. Huang, X. Huang et al., An ultrahigh-power mesocarbon microbeads|Na+-diglyme|Na3V2(PO4)3 sodium-ion battery. Adv. Mater. 34, e2108304 (2022). https://doi.org/10.1002/adma.202108304
- J. Cong, S.-H. Luo, P. Li, K. Li, P. Li et al., Ultracapacity properties of the refined structure in Na-rich Na3.4V2(PO4)3/C as sodium-ion battery cathodes by tapping the Na-vacancy potential. ACS Sustain Chem. Eng. 11, 16341–16353 (2023). https://doi.org/10.1021/acssuschemeng.3c05572
- B. Pandit, M. Johansen, C. Susana Martínez-Cisneros, J.M. Naranjo-Balseca, B. Levenfeld et al., Na3V2(PO4)3 cathode for room-temperature solid-state sodium-ion batteries: advanced in situ synchrotron X-ray studies to understand intermediate phase evolution. Chem. Mater. 36, 2314–2324 (2024). https://doi.org/10.1021/acs.chemmater.3c02585
- H. Shi, L. Guo, Y. Chen, Unraveling the modified mechanism of ruthenium substitution on Na3V2(PO4)3 with superior rate capability and ultralong cyclic performance. J. Colloid Interface Sci. 664, 487–499 (2024). https://doi.org/10.1016/j.jcis.2024.03.061
- J. Li, Y. Chen, H. Shi, T. Zhou, Z. Tian et al., One step in situ synthesis of Na3V2(PO4)3/Na3V3(PO4)4 biphase coexisted cathode with high energy density by inducing of polyvinylpyrrolidone for sodium ion batteries. J. Power. Sources 562, 232802 (2023). https://doi.org/10.1016/j.jpowsour.2023.232802
- J. Xu, E. Gu, Z. Zhang, Z. Xu, Y. Xu et al., Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. J. Colloid Interface Sci. 567, 84–91 (2020). https://doi.org/10.1016/j.jcis.2020.01.121
- B. Zare, S.K. Sadrnezhaad, State-of-the-art design of cathodes of multivalent batteries by electrospinning: a mini review on opportunities and challenges. J. Energy Storage 82, 110514 (2024). https://doi.org/10.1016/j.est.2024.110514
- T. Zhu, W. Liu, X. Liao, M. Wang, H. Fan et al., A novel NASICON-type Na3.5MnCr0.5Ti0.5(PO4)3 nanofiber with multi-electron reaction for high-performance sodium-ion batteries. Adv. Fiber Mater. 6, 561–569 (2024). https://doi.org/10.1007/s42765-023-00367-4
- X. Hu, X. Fan, Z. Mou, W. Kang, D. Sun, Controlled synthesis of multi-doped highly-disordered porous biomass carbon microsphere for ultra-stable and fast sodium storage. J. Energy Storage 83, 110619 (2024). https://doi.org/10.1016/j.est.2024.110619
- L. Yu, N. Liu, B. Liu, F. Yu, J. Ma, In-situ-derived carbon coated sea urchin-like Na3V2(PO4)3 from V2C MXene for high-performance capacitive deionization. J. Alloys Compd. 965, 171501 (2023). https://doi.org/10.1016/j.jallcom.2023.171501
- J. Li, Y. Chen, Z. Tian, Y. Wang, L. Guo, Mechanisms and principles of Na3V2(PO4)3 modification by carbon materials. Curr. Opin. Electrochem. 37, 101200 (2023). https://doi.org/10.1016/j.coelec.2022.101200
- L. Shen, Y. Li, S. Roy, X. Yin, W. Liu et al., A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chin. Chem. Lett. 32, 3570–3574 (2021). https://doi.org/10.1016/j.cclet.2021.03.005
- U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 38, 309–328 (2021). https://doi.org/10.1016/j.ensm.2021.03.015
- Z. Wang, C. Tang, Z. Wang, Q. Zhang, P. Lv et al., High-energy Na4MnCr(PO4)3@C cathode for solid-state sodium metal batteries. Energy Mater. Adv. 4, 0036 (2023). https://doi.org/10.34133/energymatadv.0036
- S.Y. Gültekin, A. Güler, D. Kuruahmet, H. Güngör, M.M. Singil et al., Graphene aerogel-supported Na3V2(PO4)3/C cathodes for sodium-ion batteries. Diam. Relat. Mater. 139, 110399 (2023). https://doi.org/10.1016/j.diamond.2023.110399
- H.H. Li, H. Zhang, M. Zarrabeitia, H.P. Liang, D. Geiger et al., Metal–organic framework derived copper chalcogenides-carbon composites as high-rate and stable storage materials for Na ions. Adv. Sustain. Syst. 6, 2200109 (2022). https://doi.org/10.1002/adsu.202200109
- C. Luo, Q. Li, D. Shen, R. Zheng, D. Huang et al., Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solid-state batteries. Energy Storage Mater. 43, 463–470 (2021). https://doi.org/10.1016/j.ensm.2021.09.031
- H. Chen, M. Zhou, X. Zhang, S. Xu, H. Zhou, V-MOFs derived Na3V2(PO4)3/C core-shell spheres toward ultrastable sodium-ion batteries. J. Energy Storage 77, 109932 (2024). https://doi.org/10.1016/j.est.2023.109932
- H. Shi, Y. Chen, J. Li, L. Guo, Outstanding long cycle stability provide by bismuth doped Na3V2(PO4)3 enwrapped with carbon nanotubes cathode for sodium-ion batteries. J. Colloid Interface Sci. 652, 195–207 (2023). https://doi.org/10.1016/j.jcis.2023.08.067
- Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu et al., Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 8, 1800068 (2018). https://doi.org/10.1002/aenm.201800068
- Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang et al., Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020). https://doi.org/10.1002/aenm.202000927
- Z. Chen, X. Wu, Z. Sun, J. Pan, J. Han et al., Enhanced fast-charging and longevity in sodium-ion batteries through nitrogen-doped carbon frameworks encasing flower-like bismuth microspheres. Adv. Energy Mater. 14, 2400132 (2024). https://doi.org/10.1002/aenm.202400132
- H. Zhang, L. Wang, L. Ma, Y. Liu, B. Hou et al., Surface crystal modification of Na3V2(PO4)3 to cast intermediate Na2V2(PO4)3 phase toward high-rate sodium storage. Adv. Sci. 11, e2306168 (2024). https://doi.org/10.1002/advs.202306168
- T. Zhou, Y. Chen, Thiourea induced the N/S Co-doped carbon skeleton suppressing the dissolution of V to boost superior cyclic stability of Na3V2(PO4)3. Carbon 218, 118778 (2024). https://doi.org/10.1016/j.carbon.2023.118778
- C. Shi, J. Xu, T. Tao, X. Lu, G. Liu et al., Zero-strain Na3V2(PO4)2F3@rGO/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance. Small Methods 8, e2301277 (2024). https://doi.org/10.1002/smtd.202301277
- J.C. Xi, Y.F. Yuan, M. Zhu, S.M. Yin, Y.B. Chen et al., Achieving long-life and efficient sodium storage through encapsulating Fe3Se4 nanops within hollow mesoporous carbon nanospheres. J. Energy Storage 81, 110499 (2024). https://doi.org/10.1016/j.est.2024.110499
- R. Huang, D. Yan, Q. Zhang, G. Zhang, B. Chen et al., Unlocking charge transfer limitation in NASICON structured Na3V2(PO4)3 cathode via trace carbon incorporation. Adv. Energy Mater. 14, 2400595 (2024). https://doi.org/10.1002/aenm.202400595
- S. Li, Y. Dong, L. Xu, X. Xu, L. He et al., Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014). https://doi.org/10.1002/adma.201305522
- L. Li, Y. Qin, S. Zhang, H. Zhao, J. Zhao et al., Ion transport through carbon nanotubes enable highly crystalline Na3V2(PO4)2F3 cathode for ultra-stable sodium-ion storage. J. Power. Sources 576, 233226 (2023). https://doi.org/10.1016/j.jpowsour.2023.233226
- C. Qian, M. Shi, C. Fan, C. Liu, Q. Huang et al., Facile Al2O3 coating suppress dissolution of Mn2+ in Mn-substituted Na3V2(PO4)3 with outstanding electrochemical performance for full sodium ion batteries. J. Colloid Interface Sci. 664, 573–587 (2024). https://doi.org/10.1016/j.jcis.2024.03.072
- J. Guan, Q. Huang, L. Shao, X. Shi, D. Zhao et al., Polyanion-type Na3V2(PO4)2F3@rGO with high-voltage and ultralong-life for aqueous zinc ion batteries. Small 19, e2207148 (2023). https://doi.org/10.1002/smll.202207148
- Z. Li, L. Yu, X. Tao, Y. Li, L. Zhang et al., Honeycomb-structured MoSe2/rGO composites as high-performance anode materials for sodium-ion batteries. Small 20, e2304124 (2024). https://doi.org/10.1002/smll.202304124
- B. Chen, Z. Peng, Z. Yuan, Constructing sandwich structure of Nb-substituted Na3V2(PO4)3/C nanops enwrapped on three-dimensional graphene with superior sodium storage property. Ceram. Int. 48, 33957–33966 (2022). https://doi.org/10.1016/j.ceramint.2022.07.345
- S. Li, H. Zhu, Y. Liu, Q. Wu, S. Cheng et al., Space-confined guest synthesis to fabricate Sn-monodispersed N-doped mesoporous host toward anode-free Na batteries. Adv. Mater. 35, e2301967 (2023). https://doi.org/10.1002/adma.202301967
- Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan et al., Nanoconfined carbon-coated Na3V2(PO4)3 ps in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5, 1402104 (2015). https://doi.org/10.1002/aenm.201402104
- N. Mubarak, F. Rehman, J. Wu, M. Ihsan-Ul-Haq, Y. Li et al., Morphology, chemistry, performance trident: Insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries. Nano Energy 86, 106132 (2021). https://doi.org/10.1016/j.nanoen.2021.106132
- J. Wang, X. Zhang, W. He, Y. Yue, Y. Wang et al., Layered hybrid phase Li2NaV2(PO4)3/carbon dot nanocomposite cathodes for Li+/Na+ mixed-ion batteries. RSC Adv. 7, 2658–2666 (2017). https://doi.org/10.1039/C6RA25808E
- Z. Tian, Y. Chen, S. Sun, H. Liu, C. Wang et al., Constructing hierarchical heterojunction structure for K/Co co-substituted Na3V2(PO4)3 by integrating carbon quantum dots. J. Colloid Interface Sci. 613, 536–546 (2022). https://doi.org/10.1016/j.jcis.2021.12.195
- S. Liu, X. Cao, Y. Zhang, K. Wang, Q. Su et al., Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J. Mater. Chem. A 8, 18872–18879 (2020). https://doi.org/10.1039/d0ta04307a
- Y. Li, Y. Mei, R. Momen, B. Song, Y. Huang et al., Boosting the interfacial dynamics and thermodynamics in polyanion cathode by carbon dots for ultrafast-charging sodium ion batteries. Chem. Sci. 15, 349–363 (2023). https://doi.org/10.1039/d3sc05593k
- Y. Kim, G. Oh, J. Lee, J. Baek, G. Alfaza et al., High-voltage and high-rate cathode materials for sodium-ion batteries NASICON-type Na3V1.5Cr0.4Fe0.1(PO4)3 ACS Appl. Mater. Interfaces 16(5896), 5904 (2024). https://doi.org/10.1021/acsami.3c17166
- R. Chen, X. Zhang, D. Li, Y. Li, S. Li et al., Novel NASICON-type Na-V-Mn-Ni-containing cathodes for high-rate and long-life SIBs. Small 20, e2306589 (2024). https://doi.org/10.1002/smll.202306589
- Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 34, e2110108 (2022). https://doi.org/10.1002/adma.202110108
- S. Sun, S. Liu, Y. Chen, L. Li, Q. Bai et al., Quantum physics and deep learning to reveal multiple dimensional modified regulation by ternary substitution of iron, manganese, and cobalt on Na3V2(PO4)3 for superior sodium storage. Adv. Funct. Mater. 33, 2213711 (2023). https://doi.org/10.1002/adfm.202213711
- K. Wang, C. Gao, J. Tu, K. Guo, Y.-L. Ding, Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density. J. Mater. Chem. A 12, 6681–6692 (2024). https://doi.org/10.1039/D3TA07300A
- A. Das, S.B. Majumder, A. Roy, Chaudhuri K+ and Mg2+ Co-doped bipolar Na3V2(PO4)3: an ultrafast electrode for symmetric sodium ion full cell. J. Power. Sources 461, 228149 (2020). https://doi.org/10.1016/j.jpowsour.2020.228149
- H. Yu, Y. Gao, J. Wang, Q. Liang, J. Kang et al., Potassium doping towards enhanced Na-ion diffusivity in a fluorophosphate cathode for sodium-ion full cells. J. Mater. Chem. A 10, 22105–22113 (2022). https://doi.org/10.1039/D2TA05593G
- L. Shen, Y. Li, C. Hu, Z. Huang, B. Wang et al., A high-rate cathode material based on potassium-doped Na3V2(PO4)3 for high/low-temperature sodium-ion batteries. Mater. Today Chem. 30, 101506 (2023). https://doi.org/10.1016/j.mtchem.2023.101506
- J. Cong, S.-H. Luo, P.-Y. Li, X. Yan, L.-X. Qian et al., Stable cycling performance of lituium-doping Na3−xLixV2(PO4)3/C (0≤x≤0.4) cathode materials by Na-site manipulation strategy. Appl. Surf. Sci. 643, 158646 (2024). https://doi.org/10.1016/j.apsusc.2023.158646
- Q. Tao, H. Ding, H. Zhao, J. Huang, B. Dai et al., Ca-doped Na-site NaNi1/3Fe1/3Mn1/3O2 as a high-performance cathode material for sodium ion batteries. J. Alloys Compd. 976, 172977 (2024). https://doi.org/10.1016/j.jallcom.2023.172977
- M. Matsui, F. Mizukoshi, H. Hasegawa, N. Imanishi, Ca-substituted P3-type NaxNi1/3Mn1/3Co1/3O2 as a potential high voltage cathode active material for sodium-ion batteries. J. Power. Sources 485, 229346 (2021). https://doi.org/10.1016/j.jpowsour.2020.229346
- P. Chen, C. Wu, Z. Wang, S. Li, X. Xu et al., Synergistically boosting sodium-storage performance of Na3V2(PO4)3 by regulating Na sites and constructing 3D interconnected carbon nanosheet frameworks. ACS Appl. Energy Mater. 5, 2542–2552 (2022). https://doi.org/10.1021/acsaem.1c04061
- A. Rudola, R. Sayers, C.J. Wright, J. Barker, Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 8, 215–218 (2023). https://doi.org/10.1038/s41560-023-01215-w
- X. Shen, M. Han, Y. Su, M. Wang, F. Wu, Alkali metal ion induced lattice regulation for all climate NASICON-type cathode with superior Na-storage performance. Nano Energy 114, 108640 (2023). https://doi.org/10.1016/j.nanoen.2023.108640
- M. Chen, W. Hua, J. Xiao, J. Zhang, V.W. Lau et al., Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J. Am. Chem. Soc. 143, 18091–18102 (2021). https://doi.org/10.1021/jacs.1c06727
- P. Hu, T. Zhu, C. Cai, X. Wang, L. Zhang et al., A high-energy NASICON-type Na3.2MnTi0.8V0.2(PO4)3 cathode material with reversible 3.2-electron redox reaction for sodium-ion batteries. Angew. Chem. Int. Ed. 62, e202219304 (2023). https://doi.org/10.1002/anie.202219304
- Z.-Y. Gu, X.-X. Zhao, K. Li, J.-M. Cao, X.-T. Wang et al., Homeostatic solid solution reaction in phosphate cathode: breaking high-voltage barrier to achieve high energy density and long life of sodium-ion batteries. Adv. Mater. 36, e2400690 (2024). https://doi.org/10.1002/adma.202400690
- H. Dong, C. Liu, Q. Huang, Y. Chen, Se-induced defective carbon nanotubes promoting superior kinetics and electrochemical performance in Na3V2(PO4)3 for half and full Na ion cells. J. Colloid Interface Sci. 660, 277–289 (2024). https://doi.org/10.1016/j.jcis.2024.01.087
- H. Dong, C. Liu, Q. Huang, Z. Sun, T. Liang et al., Sc3+ substituted Na3V2(PO4)3 on N-doped porous carbon skeleton boosting high structural stability and superior electrochemical performance for full sodium ion batteries. J. Colloid Interface Sci. 667, 371–384 (2024). https://doi.org/10.1016/j.jcis.2024.04.105
- Y. Chen, Q. Li, P. Wang, X. Liao, J. Chen et al., High-energy-density cathode achieved via the activation of a three-electron reaction in sodium manganese vanadium phosphate for sodium-ion batteries. Small 19, e2304002 (2023). https://doi.org/10.1002/smll.202304002
- Q. Hu, J.-Y. Liao, X.-D. He, S. Wang, L.-N. Xiao et al., In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2−xGax(PO4)3 (0≤x≤0.6) for ultrafast and high energy sodium storage. J. Mater. Chem. A 7, 4660–4667 (2019). https://doi.org/10.1039/C8TA11890F
- X. Liu, G. Feng, E. Wang, H. Chen, Z. Wu et al., Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of p morphology design, crystal structure modulation, and carbon graphitization regulation. ACS Appl. Mater. Interfaces 11, 12421–12430 (2019). https://doi.org/10.1021/acsami.8b21257
- Y. Zhao, X. Gao, H. Gao, H. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv. Funct. Mater. 30, 1908680 (2020). https://doi.org/10.1002/adfm.201908680
- R. Liu, G. Xu, Q. Li, S. Zheng, G. Zheng et al., Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 43632–43639 (2017). https://doi.org/10.1021/acsami.7b13018
- W. Zhang, Y.L. Wu, Z.M. Xu, H.X. Li, M. Xu et al., Rationally designed sodium chromium vanadium phosphate cathodes with multi-electron reaction for fast-charging sodium-ion batteries. Adv. Energy Mater. 12, 2201065 (2022). https://doi.org/10.1002/aenm.202201065
- J. Lee, S. Park, Y. Park, J. Song, B. Sambandam et al., Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chem. Eng. J. 422, 130052 (2021). https://doi.org/10.1016/j.cej.2021.130052
- B. Mai, B. Xing, Y. Yue, N. Cai, C. Cai et al., Cr-doped Na3V2(PO4)3@C enables high-capacity with V2+/V5+ reaction and stable sodium storage. J. Mater. Sci. Technol. 165, 1–7 (2023). https://doi.org/10.1016/j.jmst.2023.05.005
- Y. Lu, L. Wang, J. Song, D. Zhang, M. Xu et al., Aluminum-stabilized NASICON-structured Li3V2(PO4)3. J. Mater. Chem. A 1, 68–72 (2013). https://doi.org/10.1039/c2ta00029f
- G. Taveri, A. Güneren, M. Barlog, M. Hnatko, I. Zhukova et al., Understanding the benefits of Al3+-doping on NaSICONs explained through an out-of-the-scheme isovalent substitution of Fe3+ in Na3Fe2(PO4)3 series. J. Power. Sources 592, 233917 (2024). https://doi.org/10.1016/j.jpowsour.2023.233917
- Q. Wang, H. Gao, J. Li, G.-B. Liu, H. Jin, Importance of crystallographic sites on sodium-ion extraction from NASICON-structured cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 14312–14320 (2021). https://doi.org/10.1021/acsami.1c01663
- Q.-Y. Zhao, J.-Y. Li, M.-J. Chen, H. Wang, Y.-T. Xu et al., Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries. Nano Lett. 22, 9685–9692 (2022). https://doi.org/10.1021/acs.nanolett.2c03916
- F. Lalère, V. Seznec, M. Courty, R. David, J.N. Chotard et al., Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J. Mater. Chem. A 3, 16198–16205 (2015). https://doi.org/10.1039/C5TA03528G
- C. Sun, Y. Zhao, Q. Ni, Z. Sun, X. Yuan et al., Reversible multielectron redox in NASICON cathode with high energy density for low-temperature sodium-ion batteries. Energy Storage Mater. 49, 291–298 (2022). https://doi.org/10.1016/j.ensm.2022.04.025
- X. Liu, Y. Chen, P. Wang, Q. Zheng, Y. Huo et al., Activating three electron reaction in sodium vanadium ferric phosphate toward high energy density for Na-ion batteries. J. Alloys Compd. 972, 172890 (2024). https://doi.org/10.1016/j.jallcom.2023.172890
- M.J. Aragón, P. Lavela, G.F. Ortiz, J.L. Tirado, Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J. Electrochem. Soc. 162, A3077–A3083 (2015). https://doi.org/10.1149/2.0151502jes
- T. Zhou, Y. Chen, Heterojunction of Y3+−substituted Na3V2(PO4)3-NaYO2 accelerating kinetics with superior performance for full sodium-ion batteries. J. Colloid Interface Sci. 654, 1163–1176 (2024). https://doi.org/10.1016/j.jcis.2023.10.124
- X. Shen, Y. Su, S. He, Y. Li, L. Xu et al., A zero-strain Na-deficient NASICON-type Na2.8Mn0.4V1.0Ti0.6(PO4)3 cathode for wide-temperature rechargeable Na-ion batteries. J. Mater. Chem. A 11, 16860–16870 (2023). https://doi.org/10.1039/D3TA03555G
- B. Li, D. Xiao, C. Shang, X. Wang, M. Yan et al., Superior reversibility of NASICON-Na3.5Mn0.5V1.5(PO4)3 cathode enabled by dual-carbon conductive network. J. Alloys Compd. 977, 173259 (2024). https://doi.org/10.1016/j.jallcom.2023.173259
- Z. Wang, G. Cui, Q. Zheng, X. Ren, Q. Yang et al., Ultrafast charge-discharge capable and long-life Na3.9Mn0.95Zr0.05V(PO4)3/C cathode material for advanced sodium-ion batteries. Small 19, e2206987 (2023). https://doi.org/10.1002/smll.202206987
- J. Fang, S. Wang, X. Yao, X. Hu, Y. Wang et al., Ration design of porous Mn-doped Na3V2(PO4)3 cathode for high rate and super stable sodium-ion batteries. Electrochim. Acta 295, 262–269 (2019). https://doi.org/10.1016/j.electacta.2018.10.150
- M.V. Zakharkin, O.A. Drozhzhin, S.V. Ryazantsev, D. Chernyshov, M.A. Kirsanova et al., Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries. J. Power. Sources 470, 228231 (2020). https://doi.org/10.1016/j.jpowsour.2020.228231
- S. Ghosh, N. Barman, M. Mazumder, S.K. Pati, G. Rousse et al., High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures. Adv. Energy Mater. 10, 1902918 (2020). https://doi.org/10.1002/aenm.201902918
- J. Zhang, X. Zhao, Y. Song, Q. Li, Y. Liu et al., Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode. Energy Storage Mater. 23, 25–34 (2019). https://doi.org/10.1016/j.ensm.2019.05.041
- F. Lu, J. Wang, S. Chang, L. He, M. Tang et al., New-type NASICON-Na4FeV(PO4)3 cathode with high retention and durability for sodium ion batteries. Carbon 196, 562–572 (2022). https://doi.org/10.1016/j.carbon.2022.05.033
- S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Duttine et al., An asymmetric sodium extraction/insertion mechanism for the Fe/V-mixed NASICON Na4FeV(PO4)3. Chem. Mater. 34, 4142–4152 (2022). https://doi.org/10.1021/acs.chemmater.2c00501
- B.M. de Boisse, J. Ming, S.-I. Nishimura, A. Yamada, Alkaline excess strategy to NASICON-type compounds towards higher-capacity battery electrodes. J. Electrochem. Soc. 163, A1469–A1473 (2016). https://doi.org/10.1149/2.0041608jes
- S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Courty et al., Crystal structures and local environments of NASICON-type Na3FeV(PO4)3 and Na4FeV(PO4)3 positive electrode materials for Na-ion batteries. Chem. Mater. 33, 5355–5367 (2021). https://doi.org/10.1021/acs.chemmater.1c01457
- C. Wang, J. Xiu, K. Lü, Y. Li, M. Wei, Compositing pine pollen derived carbon matrix with Na4FeV(PO4)3 nanop for cost-effective sodium-ion batteries cathode. J. Colloid Interface Sci. 667, 510–519 (2024). https://doi.org/10.1016/j.jcis.2024.04.143
- C. Xu, J. Zhao, Y.-A. Wang, W. Hua, Q. Fu et al., Reversible activation of V4+/V5+ redox couples in NASICON phosphate cathodes. Adv. Energy Mater. 12, 2200966 (2022). https://doi.org/10.1002/aenm.202200966
- M. Hadouchi, N. Yaqoob, P. Kaghazchi, M. Tang, J. Liu et al., Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: a novel sodium-deficient NASICON cathode for sodium-ion batteries. Energy Storage Mater. 35, 192–202 (2021). https://doi.org/10.1016/j.ensm.2020.11.010
- Y. Zhou, G. Xu, J. Lin, Y. Zhang, G. Fang et al., Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries. Adv. Mater. 35, e2304428 (2023). https://doi.org/10.1002/adma.202304428
- R. Chen, D.S. Butenko, S. Li, D. Li, X. Zhang et al., Effects of low doping on the improvement of cathode materials Na3+xV2−xMx(PO4)3 (M = Co2+, Cu2+; x = 0.01–0.05) for SIBs. J. Mater. Chem. A 9, 17380–17389 (2021). https://doi.org/10.1039/D1TA05000A
- C. Liu, C. Qian, H. Dong, Z. Lu, Q. Huang et al., Defect regulation of Co2+ substituting V3+ in Na3V2(PO4)3 for superior sodium storage performance: experimental and theoretical study. Compos. Commun. 40, 101610 (2023). https://doi.org/10.1016/j.coco.2023.101610
- M. Jiang, D. Xu, B. Yang, C. Zhang, M. Cao, Oxygen vacancy engineering in Na3V2(PO4)3 for boosting sodium storage kinetics. Adv. Mater. Interfaces 8, 2100188 (2021). https://doi.org/10.1002/admi.202100188
- M. Akhtar, S.B. Majumder, Effect of nickel doping on the electrochemical performances of carbon-coated Na3V2(PO4)3 cathodes for hybrid lithium-ion batteries. ACS Appl. Energy Mater. 4, 13538–13549 (2021). https://doi.org/10.1021/acsaem.1c02080
- B. Zhang, H. Chen, H. Tong, X. Wang, J. Zheng et al., Synthesis and electrochemical performance of Ni doped Na3V2(PO4)3/C cathode materials for sodium ion batteries. J. Alloys Compd. 728, 976–983 (2017). https://doi.org/10.1016/j.jallcom.2017.09.020
- H. Li, X. Yu, Y. Bai, F. Wu, C. Wu et al., Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J. Mater. Chem. A 3, 9578–9586 (2015). https://doi.org/10.1039/C5TA00277J
- A. Inoishi, Y. Yoshioka, L. Zhao, A. Kitajou, S. Okada, Improvement in the energy density of Na3V2(PO4)3 by Mg substitution. ChemElectroChem 4, 2755–2759 (2017). https://doi.org/10.1002/celc.201700540
- S. Ghosh, N. Barman, E. Gonzalez-Correa, M. Mazumder, A. Zaveri et al., Elucidating the impact of Mg substitution on the properties of NASICON-Na3+yV2–yMgy(PO4)3 cathodes. Adv. Funct. Mater. 31, 2105463 (2021). https://doi.org/10.1002/adfm.202105463
- D.A. Puspitasari, J. Patra, R.F.H. Hernandha, Y.S. Chiang, A. Inoishi et al., Enhanced electrochemical performance of Ca-doped Na3V2(PO4)2F3/C cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 16, 496–506 (2024). https://doi.org/10.1021/acsami.3c12772
- L. Zhao, H. Zhao, Z. Du, J. Wang, X. Long et al., Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium. J. Mater. Chem. A 7, 9807–9814 (2019). https://doi.org/10.1039/C9TA00869A
- X. Jiang, C. Liu, Z. Tian, S. Sun, J. Li et al., Constructing p-type substitution induced by Ca2+ in defective Na3V2- xCax(PO4)3/C wrapped with conductive CNTs for high-performance sodium-ion batteries. Dalton Trans. 51, 16145–16157 (2022). https://doi.org/10.1039/d2dt02602c
- S. Tong, H. Pan, H. Liu, X. Zhang, X. Liu et al., Titanium doping induced the suppression of irreversible phase transformation at high voltage for V-based phosphate cathodes of Na-ion batteries. ChemSusChem 16, e202300244 (2023). https://doi.org/10.1002/cssc.202300244
- D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik et al., Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 8, 15888 (2017). https://doi.org/10.1038/ncomms15888
- H. Ding, X. He, Q. Tao, J. Teng, J. Li, Ti-doped Na3v2(PO4)3 activates additional Ti3+/Ti4+ and V4+/V5+ redox pairs for superior sodium ion storage. Energy Fuels 37, 4132–4142 (2023). https://doi.org/10.1021/acs.energyfuels.3c00242
- Y. Huang, X. Li, J. Wang, L. Miao, C. Li et al., Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater. 15, 108–115 (2018). https://doi.org/10.1016/j.ensm.2018.03.021
- X. Li, Y. Huang, J. Wang, L. Miao, Y. Li et al., High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. J. Mater. Chem. A 6, 1390–1396 (2018). https://doi.org/10.1039/C7TA08970H
- X.-X. Zhao, X.-T. Wang, Z.-Y. Gu, J.-Z. Guo, J.-M. Cao et al., Unlocking quasi-monophase behavior in NASICON cathode to drive fast-charging toward durable sodium-ion batteries. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402447
- Y. Liu, C. Sun, Y. Li, H. Jin, Y. Zhao, Recent progress of Mn-based NASICON-type sodium ion cathodes. Energy Storage Mater. 57, 69–80 (2023). https://doi.org/10.1016/j.ensm.2023.02.005
- W. Fu, B. Li, P. Wang, Z. Lin, K. Zhu, A high-entropy carbon-coated Na3V1.9(Mg, Cr, Al, Mo, Nb)0.1(PO4)2F3 cathode for superior performance sodium-ion batteries. Ceram. Int. 50, 16166–16171 (2024). https://doi.org/10.1016/j.ceramint.2024.02.096
- M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13, 2203971 (2023). https://doi.org/10.1002/aenm.202203971
- Z. Hao, X. Shi, W. Zhu, Z. Yang, X. Zhou et al., Boosting multielectron reaction stability of sodium vanadium phosphate by high-entropy substitution. ACS Nano 18, 9354–9364 (2024). https://doi.org/10.1021/acsnano.3c09519
- H. Li, M. Xu, H. Long, J. Zheng, L. Zhang et al., Stabilization of multicationic redox chemistry in polyanionic cathode by increasing entropy. Adv. Sci. 9, e2202082 (2022). https://doi.org/10.1002/advs.202202082
- M.-Y. Wang, J.-Z. Guo, Z.-W. Wang, Z.-Y. Gu, X.-J. Nie et al., Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries. Small 16, e1907645 (2020). https://doi.org/10.1002/smll.201907645
- V. Kapoor, B. Singh, G. Sai Gautam, A.K. Cheetham, P. Canepa, Rational design of mixed polyanion electrodes NaxV2P3–i(Si/S)iO12 for sodium batteries. Chem. Mater. 34, 3373–3382 (2022). https://doi.org/10.1021/acs.chemmater.2c00230
- P. Hu, X. Wang, T. Wang, L. Chen, J. Ma et al., Boron substituted Na3V2(P1-xBxO4)3 cathode materials with enhanced performance for sodium-ion batteries. Adv. Sci. 3, 1600112 (2016). https://doi.org/10.1002/advs.201600112
- Q. Qiu, C. Li, H. Liu, Y. Liao, C. Zhao et al., NMR evidence for the multielectron reaction mechanism of Na3V2(PO4)3 cathode and the impact of polyanion site substitution. J. Phys. Chem. C 125, 15200–15209 (2021). https://doi.org/10.1021/acs.jpcc.1c04099
- X. Liu, J. Gong, X. Wei, L. Ni, H. Chen et al., MoO42–mediated engineering of Na3V2(PO4)3 as advanced cathode materials for sodium-ion batteries. J. Colloid Interface Sci. 606, 1897–1905 (2022). https://doi.org/10.1016/j.jcis.2021.10.007
- T. Zhou, Y. Chen, Constructing heterostructure by co-doping of Ta5+ and F− with carbon nanotubes to improve kinetic properties of Na3V2(PO4)3. J. Energy Storage 85, 111139 (2024). https://doi.org/10.1016/j.est.2024.111139
- Z.J. Song, Y.H. Liu, Z.X. Guo, Z.D. Liu, Z.K. Li et al., Ultrafast synthesis of large-sized and conductive Na3V2(PO4)2F simultaneously approaches high tap density, rate and cycling capability. Adv. Funct. Mater. 34, 2313998 (2024). https://doi.org/10.1002/adfm.202313998
- J. Wang, Q. Liu, S. Cao, H. Zhu, Y. Wang, Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes. J. Colloid Interface Sci. 665, 1043–1053 (2024). https://doi.org/10.1016/j.jcis.2024.04.003
- Y. Chen, Y. Xu, X. Sun, B. Zhang, S. He et al., Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J. Power. Sources 378, 423–432 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.073
- Y. Chen, Y. Xu, X. Sun, B. Zhang, S. He et al., F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J. Power. Sources 397, 307–317 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.006
- P. Li, M. Gao, D. Wang, Z. Li, Y. Liu et al., Optimizing vanadium redox reaction in Na3V2(PO4)3 cathodes for sodium-ion batteries by the synergistic effect of additional electrons from heteroatoms. ACS Appl. Mater. Interfaces 15, 9475–9485 (2023). https://doi.org/10.1021/acsami.2c22038
- S.K. Pal, R. Thirupathi, S. Chakrabarty, S. Omar, Improving the electrochemical performance of Na3V2(PO4)3 cathode in Na-ion batteries by Si-doping. ACS Appl. Energy Mater. 3, 12054–12065 (2020). https://doi.org/10.1021/acsaem.0c02188
- Y. Chen, J. Cheng, Z. He, Y. Wang, C. Wang et al., Silicon substituted Na3V2(PO4)3/C nanocomposites enwrapped on conducting graphene for high-rate and long-lifespan sodium ion batteries. Ceram. Int. 46, 27660–27669 (2020). https://doi.org/10.1016/j.ceramint.2020.07.262
- J. Cheng, Y. Chen, Y. Wang, C. Wang, Z. He et al., Insights into the enhanced sodium storage property and kinetics based on the Zr/Si codoped Na3V2(PO4)3/C cathode with superior rate capability and long lifespan. J. Power. Sources 474, 228632 (2020). https://doi.org/10.1016/j.jpowsour.2020.228632
- M. Dou, Y. Zhang, J. Wang, X. Zheng, J. Chen et al., Simultaneous cation-anion regulation of sodium vanadium phosphate cathode materials for high-energy and cycle-stable sodium-ion batteries. J. Power. Sources 560, 232709 (2023). https://doi.org/10.1016/j.jpowsour.2023.232709
- Y. Chen, J. Cheng, S. Sun, Z. Tian, X. Jiang et al., Constructing hierarchical porous Fe/F-codoped Na3V2(PO4)3/C composite enwrapped with carbon nanotubes as high-performance cathode for symmetric sodium ion batteries. J. Power. Sources 513, 230545 (2021). https://doi.org/10.1016/j.jpowsour.2021.230545
- Y. Chen, Z. Tian, J. Li, T. Zhou, In-situ constructing pearl necklace-shaped heterostructure: Zn2+ substituted Na3V2(PO4)3 attached on carbon nano fibers with high performance for half and full Na ion cells. Chem. Eng. J. 472, 145041 (2023). https://doi.org/10.1016/j.cej.2023.145041
- L. Wu, S. Shi, X. Zhang, Y. Yang, J. Liu et al., Room-temperature pre-reduction of spinning solution for the synthesis of Na3V2(PO4)3/C nanofibers as high-performance cathode materials for Na-ion batteries. Electrochim. Acta 274, 233–241 (2018). https://doi.org/10.1016/j.electacta.2018.04.122
- C. Liu, Z.-X. Zhang, R. Tan, J.-W. Deng, Q.-H. Li et al., Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries. Rare Met. 41, 806–813 (2022). https://doi.org/10.1007/s12598-021-01825-x
- S. Sun, Y. Chen, Q. Bai, Z. Tian, Q. Huang et al., Unravelling the regulation mechanism of nanoflower shaped Na3V2(PO4)3 in methanol–water system for high performance sodium ion batteries. Chem. Eng. J. 451, 138780 (2023). https://doi.org/10.1016/j.cej.2022.138780
- W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei et al., Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25, 145–153 (2016). https://doi.org/10.1016/j.nanoen.2016.03.018
- X. Li, S. Wang, X. Tang, R. Zang, P. Li et al., Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. J. Colloid Interface Sci. 539, 168–174 (2019). https://doi.org/10.1016/j.jcis.2018.12.071
- M. Guo, J. Wang, H. Dou, G. Gao, S. Wang et al., Agglomeration-resistant 2D nanoflakes configured with super electronic networks for extraordinary fast and stable sodium-ion storage. Nano Energy 56, 502–511 (2019). https://doi.org/10.1016/j.nanoen.2018.11.091
- Y. Zhou, X. Zhang, Y. Liu, X. Xie, X. Rui et al., A high-temperature Na-ion battery: boosting the rate capability and cycle life by structure engineering. Small 16, e1906669 (2020). https://doi.org/10.1002/smll.201906669
- Q. Su, Y. Zhou, J. Zhu, H. Chang, M. Hou et al., Nanoflake-assembled hierarchical Na3V2(PO4)3@C microspheres for ultrafast and highly durable sodium storage. ACS Appl. Energy Mater. 6, 10128–10136 (2023). https://doi.org/10.1021/acsaem.3c01871
- X. Cao, A. Pan, B. Yin, G. Fang, Y. Wang et al., Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 60, 312–323 (2019). https://doi.org/10.1016/j.nanoen.2019.03.066
- Y. Wang, G. Su, X. Li, L. Hou, L. Liang et al., Boosting sodium-storage properties of hierarchical Na3V2(PO4)3@C micro-flower cathodes by tiny Cr doping: The effect of “four ounces moving a thousand pounds”. Nano Res. 17, 235–244 (2024). https://doi.org/10.1007/s12274-023-5555-8
- H. Chen, Y. Yang, R. Nie, C. Li, S. Xu et al., Micro-nano Na3V2(PO4)3/C derived from metal-organic frameworks for high performance sodium ion batteries. J. Alloys Compd. 932, 167695 (2023). https://doi.org/10.1016/j.jallcom.2022.167695
- J. Yang, D. Li, X. Wang, X. Zhang, J. Xu et al., Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode. Energy Storage Mater. 24, 694–699 (2020). https://doi.org/10.1016/j.ensm.2019.07.002
References
T. Bashir, S. Zhou, S. Yang, S.A. Ismail, T. Ali et al., Progress in 3D-MXene electrodes for lithium/sodium/potassium/magnesium/zinc/aluminum-ion batteries. Electrochem. Energy Rev. 6, 5 (2023). https://doi.org/10.1007/s41918-022-00174-2
K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 8, 1800079 (2018). https://doi.org/10.1002/aenm.201800079
Z. Chen, A. Yildizbasi, Y. Wang, J. Sarkis, Safety in lithium-ion battery circularity activities: a framework and evaluation methodology. Resour. Conserv. Recycl. 193, 106962 (2023). https://doi.org/10.1016/j.resconrec.2023.106962
M. Sarkar, R. Hossain, V. Sahajwalla, Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability. Resour. Conserv. Recycl. 200, 107292 (2024). https://doi.org/10.1016/j.resconrec.2023.107292
L. Zhao, T. Zhang, W. Li, T. Li, L. Zhang et al., Engineering of sodium-ion batteries: opportunities and challenges. Engineering 24, 172–183 (2023). https://doi.org/10.1016/j.eng.2021.08.032
S. Li, R. Dong, Y. Li, X. Lu, J. Qian et al., Advances in free-standing electrodes for sodium ion batteries. Mater. Today 72, 207–234 (2024). https://doi.org/10.1016/j.mattod.2023.11.013
C. Matei Ghimbeu, A. Beda, B. Réty, H. El Marouazi, A. Vizintin et al., Review: insights on hard carbon materials for sodium-ion batteries (SIBs): synthesis–properties–performance relationships. Adv. Energy Mater. 14, 2303833 (2024). https://doi.org/10.1002/aenm.202303833
C. Che, F. Wu, Y. Li, Y. Li, S. Li et al., Challenges and breakthroughs in enhancing temperature tolerance of sodium-ion batteries. Adv. Mater. 36, e2402291 (2024). https://doi.org/10.1002/adma.202402291
H. Zhang, Y. Gao, X. Liu, L. Zhou, J. Li et al., Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy Mater. 13, 2300149 (2023). https://doi.org/10.1002/aenm.202300149
Y. Zhao, Y. Kang, J. Wozny, J. Lu, H. Du et al., Recycling of sodium-ion batteries. Nat. Rev. Mater. 8, 623–634 (2023). https://doi.org/10.1038/s41578-023-00574-w
X. Rui, X. Zhang, S. Xu, H. Tan, Y. Jiang et al., A low-temperature sodium-ion full battery: superb kinetics and cycling stability. Adv. Funct. Mater. 31, 2009458 (2021). https://doi.org/10.1002/adfm.202009458
P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018). https://doi.org/10.1002/anie.201703772
P. Yadav, A. Patrike, K. Wasnik, V. Shelke, M. Shelke, Strategies and practical approaches for stable and high energy density sodium-ion battery: a step closer to commercialization. Mater. Today Sustain. 22, 100385 (2023). https://doi.org/10.1016/j.mtsust.2023.100385
Y. Jiang, Z. Zhang, H. Liao, Y. Zheng, X. Fu et al., Progress and prospect of bimetallic oxides for sodium-ion batteries: synthesis, mechanism, and optimization strategy. ACS Nano 18, 7796–7824 (2024). https://doi.org/10.1021/acsnano.4c00613
J. Lu, Z. Zhang, Y. Zheng, Y. Gao, In situ transmission electron microscopy for sodium-ion batteries. Adv. Mater. 35, 2300359 (2023). https://doi.org/10.1002/adma.202300359
X. Zhang, Z. Zhang, S. Xu, C. Xu, X. Rui, Advanced vanadium oxides for sodium-ion batteries. Adv. Funct. Mater. 33, 2306055 (2023). https://doi.org/10.1002/adfm.202306055
Z. Song, R. Liu, W.-D. Liu, Y. Chen, W. Hu, Low-cost polyanion-type cathode materials for sodium-ion battery. Adv. Energy Sustain. Res. 4, 2300102 (2023). https://doi.org/10.1002/aesr.202300102
S. Qiao, Q. Zhou, M. Ma, H.K. Liu, S.X. Dou et al., Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano 17, 11220–11252 (2023). https://doi.org/10.1021/acsnano.3c02892
J. Wu, G. Wang, W. Zhang, L. Wang, J. Peng et al., Universal architecture and defect engineering dual strategy for hierarchical antimony phosphate composite toward fast and durable sodium storage. J. Energy Chem. 90, 110–119 (2024). https://doi.org/10.1016/j.jechem.2023.11.013
Q. Li, W. Zhang, J. Peng, D. Yu, Z. Liang et al., Nanodot-in-nanofiber structured carbon-confined Sb2Se3 crystallites for fast and durable sodium storage. Adv. Funct. Mater. 32, 2112776 (2022). https://doi.org/10.1002/adfm.202112776
Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin et al., Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15, 1805381 (2019). https://doi.org/10.1002/smll.201805381
J. Park, Y. Jeong, H. Kang, T.-Y. Yu, X. Xu et al., A dual-functional electrolyte additive for high-performance potassium metal batteries. Adv. Funct. Mater. 33, 2304069 (2023). https://doi.org/10.1002/adfm.202304069
Y. Gao, X. Wu, L. Wang, Y. Zhu, G. Sun et al., Structurally stable, low H2O Prussian blue analogs toward high performance sodium storage. Adv. Funct. Mater. 34, 2314860 (2024). https://doi.org/10.1002/adfm.202314860
W. Shu, J. Li, G. Zhang, J. Meng, X. Wang et al., Progress on transition metal ions dissolution suppression strategies in prussian blue analogs for aqueous sodium-/potassium-ion batteries. Nano-Micro Lett. 16, 128 (2024). https://doi.org/10.1007/s40820-024-01355-y
M. Baumann, M. Häringer, M. Schmidt, L. Schneider, J.F. Peters et al., Prospective sustainability screening of sodium-ion battery cathode materials. Adv. Energy Mater. 12, 2202636 (2022). https://doi.org/10.1002/aenm.202202636
X. Tu, Y. Liu, K. Wang, Z. Ding, X. Xu et al., Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization. J. Colloid Interface Sci. 642, 680–690 (2023). https://doi.org/10.1016/j.jcis.2023.04.007
K. Lin, Q. Liu, Y. Zhou, H. Chen, J. Liu et al., Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-structured SIBs: Combined theoretical and experimental study. Chem. Eng. J. 463, 142464 (2023). https://doi.org/10.1016/j.cej.2023.142464
J. Zhang, Y. Liu, X. Zhao, L. He, H. Liu et al., A novel NASICON-type Na4 MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 32, e1906348 (2020). https://doi.org/10.1002/adma.201906348
X.X. Zhao, W. Fu, H.X. Zhang, J.Z. Guo, Z.Y. Gu et al., Pearl-structure-enhanced NASICON cathode toward ultrastable sodium-ion batteries. Adv. Sci. 10, e2301308 (2023). https://doi.org/10.1002/advs.202301308
Q. Zhou, L. Wang, W. Li, K. Zhao, M. Liu et al., Sodium superionic conductors (NASICONs) as cathode materials for sodium-ion batteries. Electrochem. Energy Rev. 4, 793–823 (2021). https://doi.org/10.1007/s41918-021-00120-8
W. Zhou, Y. Li, S. Xin, J.B. Goodenough, Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017). https://doi.org/10.1021/acscentsci.6b00321
J. Chen, S. Feng, H. Lai, Y. Lu, W. Liu et al., Interface ionic/electronic redistribution driven by conversion-alloy reaction for high-performance solid-state sodium batteries. Small Methods 8, e2301201 (2024). https://doi.org/10.1002/smtd.202301201
B. Patra, R. Hegde, A. Natarajan, D. Deb, D. Sachdeva et al., Stabilizing multi-electron NASICON-Na1.5V0.5Nb1.5(PO4)3 anode via structural modulation for long-life sodium-ion batteries. Adv. Energy Mater. 14, 2304091 (2024). https://doi.org/10.1002/aenm.202304091
M. Li, C. Sun, X. Yuan, Y. Li, Y. Yuan et al., A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries. Adv. Funct. Mater. 34, 2314019 (2024). https://doi.org/10.1002/adfm.202314019
Z.L. Jian, C.C. Yuan, W.Z. Han, X. Lu, L. Gu et al., Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014). https://doi.org/10.1002/adfm.201400173
Z. Yang, G. Li, J. Sun, L. Xie, Y. Jiang et al., High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries. Energy Storage Mater. 25, 724–730 (2020). https://doi.org/10.1016/j.ensm.2019.09.014
Y. Wu, X. Meng, L. Yan, Q. Kang, H. Du et al., Vanadium-free NASICON-type electrode materials for sodium-ion batteries. J. Mater. Chem. A 10, 21816–21837 (2022). https://doi.org/10.1039/d2ta05653d
Y. Zhao, Y. Zhang, Y. Li, C. Ma, X. Qi et al., Dual-complexing agent dominated synthesis of carbon coated Na3V2(PO4)3 cathodes for high-performance sodium ion batteries. J. Alloys Compd. 986, 174127 (2024). https://doi.org/10.1016/j.jallcom.2024.174127
Z. Wang, L. Chen, K. Yang, B. Liang, X. Guo et al., Exploration of a novel vanadium source for the synthesis of a Na3V2(PO4)3 cathode of sodium-ion batteries. ACS Sustain Chem. Eng. 12, 1973–1983 (2024). https://doi.org/10.1021/acssuschemeng.3c06339
Z.L. Jian, W.Z. Han, X. Lu, H.X. Yang, Y.S. Hu et al., Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013). https://doi.org/10.1002/aenm.201200558
Y. Zhou, X. Yang, M. Hou, L. Zhao, X. Zhang et al., Manipulating amorphous and crystalline hybridization of Na3V2(PO4)3/C for enhancing sodium-ion diffusion kinetics. J. Colloid Interface Sci. 667, 64–72 (2024). https://doi.org/10.1016/j.jcis.2024.04.046
Y. Zhu, H. Xu, S. Li, Y. Chen, N-doped dual carbon-layer-modified Na3V2(PO4)3 as a high-performance cathode material for sodium-ion batteries. Electrochim. Acta 480, 143895 (2024). https://doi.org/10.1016/j.electacta.2024.143895
G. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review. Adv. Funct. Mater. 30, 2001289 (2020). https://doi.org/10.1002/adfm.202001289
R.S. Kate, H.S. Jadhav, U.P. Chothe, K. Bhattacharjee, M.V. Kulkarni et al., Critical review of the recent progress and challenges of polyanion Na3V2(PO4)3 cathode materials in rechargeable sodium-ion batteries. J. Mater. Chem. A 12, 7418–7451 (2024). https://doi.org/10.1039/D3TA07545A
Q. Huang, Z. Hu, K. Chen, Z. Zeng, Y. Sun et al., Partial modification strategies of NASICON-type Na3V2(PO4)3 materials for cathodes of sodium-ion batteries: progress and perspectives. ACS Appl. Energy Mater. 6, 2657–2679 (2023). https://doi.org/10.1021/acsaem.2c04083
R. Thirupathi, V. Kumari, S. Chakrabarty, S. Omar, Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 137, 101128 (2023). https://doi.org/10.1016/j.pmatsci.2023.101128
Y. Chen, Y. Xu, X. Sun, C. Wang, Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries. J. Power. Sources 375, 82–92 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.043
Y. Liu, X. Wu, A. Moeez, Z. Peng, Y. Xia et al., Na-rich Na3V2(PO4)3 cathodes for long cycling rechargeable sodium full cells. Adv. Energy Mater. 13, 2203283 (2023). https://doi.org/10.1002/aenm.202203283
W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang et al., First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2, 5358–5362 (2014). https://doi.org/10.1039/C4TA00230J
Q. Wang, M. Zhang, C. Zhou, Y. Chen, Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework. J. Phys. Chem. C 122, 16649–16654 (2018). https://doi.org/10.1021/acs.jpcc.8b06120
Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li et al., Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012). https://doi.org/10.1016/j.elecom.2011.11.009
Z. Ahsan, Z. Cai, S. Wang, M. Moin, H. Wang et al., Recent development of phosphate based polyanion cathode materials for sodium-ion batteries. Adv. Energy Mater. 14, 2400373 (2024). https://doi.org/10.1002/aenm.202400373
Y. Liu, C. Sun, Q. Ni, Z. Sun, M. Li et al., Enhanced electrochemical performance of NASICON-type sodium ion cathode based on charge balance theory. Energy Storage Mater. 53, 881–889 (2022). https://doi.org/10.1016/j.ensm.2022.10.011
X. Dong, X. Zhao, Y. Chen, C. Wang, Investigations about the influence of different carbon matrixes on the electrochemical performance of Na3V2(PO4)3 cathode material for sodium ion batteries. Adv. Compos. Hybrid Mater. 4, 1070–1081 (2021). https://doi.org/10.1007/s42114-021-00319-9
T. Akçay, M. Häringer, K. Pfeifer, J. Anhalt, J.R. Binder et al., Na3V2(PO4)3─a highly promising anode and cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 4, 12688–12695 (2021). https://doi.org/10.1021/acsaem.1c02413
W. Li, Z. Yao, C.-A. Zhou, X. Wang, X. Xia et al., Boosting high-rate sodium storage performance of N-doped carbon-encapsulated Na3V2(PO4)3 nanops anchoring on carbon cloth. Small 15, e1902432 (2019). https://doi.org/10.1002/smll.201902432
X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji et al., Extending the cycle life of Na3V2(PO4)3 cathodes in sodium-ion batteries through interdigitated carbon scaffolding. J. Mater. Chem. A 4, 14669–14674 (2016). https://doi.org/10.1039/C6TA05030A
R.S. Kate, S.V. Kadam, M.V. Kulkarni, R.J. Deokate, B.B. Kale et al., Highly stable and nanoporous Na3V2(PO4)3@C cathode material for sodium-ion batteries using thermal management. J. Energy Storage 74, 109245 (2023). https://doi.org/10.1016/j.est.2023.109245
D. Fan, Q. Shen, H. Li, X. Qu, L. Jiao et al., Redox couple modulation in NASICON phosphates toward high-performance cathodes for Na-ion batteries. Energy Mater. Adv. 5, 73 (2024). https://doi.org/10.34133/energymatadv.0073
S. Zhao, W. Qi, C. Yang, R. Ling, Triggering reversible V4+/V5+ redox couples in Na3V2(PO4)3 porous flower-like cathodes by Mg2+ substitution for high-performance Na-ion batteries. J. Power. Sources 595, 234076 (2024). https://doi.org/10.1016/j.jpowsour.2024.234076
Y. Chen, X. Liao, P. Wang, J. Chen, X. Zhang et al., A high-energy-density NASICON-type Na3V1.25Ga0.75(PO4)3 cathode with reversible V4+/V5+ redox couple for sodium ion batteries. J. Colloid Interface Sci. 653, 1–10 (2024). https://doi.org/10.1016/j.jcis.2023.09.057
S. Liu, Z. Xu, L. Ren, W. Xu, Y. Liu et al., Fe-modified NASICON-type Na3V2(PO4)3 as a cathode material for sodium ion batteries. RSC Adv. 14, 4835–4843 (2024). https://doi.org/10.1039/D3RA08714J
P.B. Madambikkattil, S.V. Nair, D. Santhanagopalan, Synergetic effect of isovalent- and aliovalent-ion dual-doping in the vanadium site of Na3V2(PO4)3 for wide-temperature operating sodium-ion batteries. ACS Appl. Energy Mater. 5, 10473–10482 (2022). https://doi.org/10.1021/acsaem.2c01053
J. Yan, C. Zhang, Z. Li, F. Liu, H. Wang et al., Trace topological doping strategy and deep learning to reveal high-rate sodium storage regulation of barium-doped Na3V2(PO4)3. Nanoscale 16, 4578–4590 (2024). https://doi.org/10.1039/D3NR04300B
R. Zhang, Y. Hu, J. Li, X. Zhu, Y. Peng et al., In situ constructing ultrafast ion channel for promoting high-rate cycle stability of nano-Na3V2(PO4)3 cathode. ACS Appl. Mater. Interfaces 16, 2389–2396 (2024). https://doi.org/10.1021/acsami.3c16409
J. Li, Y. Chen, T. Zhou, H. Shi, Z. Zheng et al., Dual-carbon coated Na3V2(PO4)3 derived from reduced graphene oxide and nanocellulose with porous structure for high performance sodium-ion batteries. Appl. Surf. Sci. 610, 155553 (2023). https://doi.org/10.1016/j.apsusc.2022.155553
J. Cong, S.-H. Luo, P.-Y. Li, K. Li, P.-W. Li et al., Towards enhanced structural stability by investigation of the mechanism of K ion doping in Na3V2(PO4)3/C for sodium ion batteries. J. Energy Storage 72, 108808 (2023). https://doi.org/10.1016/j.est.2023.108808
N. Li, Y. Tong, D. Yi, X. Cui, X. Zhang, 3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries. Ceram. Int. 46, 27493–27498 (2020). https://doi.org/10.1016/j.ceramint.2020.07.238
Y. Zhu, H. Xu, J. Ma, P. Chen, Y. Chen, The N-doped carbon coated Na3V2(PO4)3 with different N sources as cathode material for sodium-ion batteries: experimental and theoretical study. Surf. Interfaces 45, 103888 (2024). https://doi.org/10.1016/j.surfin.2024.103888
Q. Wei, X. Chang, J. Wang, T. Huang, X. Huang et al., An ultrahigh-power mesocarbon microbeads|Na+-diglyme|Na3V2(PO4)3 sodium-ion battery. Adv. Mater. 34, e2108304 (2022). https://doi.org/10.1002/adma.202108304
J. Cong, S.-H. Luo, P. Li, K. Li, P. Li et al., Ultracapacity properties of the refined structure in Na-rich Na3.4V2(PO4)3/C as sodium-ion battery cathodes by tapping the Na-vacancy potential. ACS Sustain Chem. Eng. 11, 16341–16353 (2023). https://doi.org/10.1021/acssuschemeng.3c05572
B. Pandit, M. Johansen, C. Susana Martínez-Cisneros, J.M. Naranjo-Balseca, B. Levenfeld et al., Na3V2(PO4)3 cathode for room-temperature solid-state sodium-ion batteries: advanced in situ synchrotron X-ray studies to understand intermediate phase evolution. Chem. Mater. 36, 2314–2324 (2024). https://doi.org/10.1021/acs.chemmater.3c02585
H. Shi, L. Guo, Y. Chen, Unraveling the modified mechanism of ruthenium substitution on Na3V2(PO4)3 with superior rate capability and ultralong cyclic performance. J. Colloid Interface Sci. 664, 487–499 (2024). https://doi.org/10.1016/j.jcis.2024.03.061
J. Li, Y. Chen, H. Shi, T. Zhou, Z. Tian et al., One step in situ synthesis of Na3V2(PO4)3/Na3V3(PO4)4 biphase coexisted cathode with high energy density by inducing of polyvinylpyrrolidone for sodium ion batteries. J. Power. Sources 562, 232802 (2023). https://doi.org/10.1016/j.jpowsour.2023.232802
J. Xu, E. Gu, Z. Zhang, Z. Xu, Y. Xu et al., Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. J. Colloid Interface Sci. 567, 84–91 (2020). https://doi.org/10.1016/j.jcis.2020.01.121
B. Zare, S.K. Sadrnezhaad, State-of-the-art design of cathodes of multivalent batteries by electrospinning: a mini review on opportunities and challenges. J. Energy Storage 82, 110514 (2024). https://doi.org/10.1016/j.est.2024.110514
T. Zhu, W. Liu, X. Liao, M. Wang, H. Fan et al., A novel NASICON-type Na3.5MnCr0.5Ti0.5(PO4)3 nanofiber with multi-electron reaction for high-performance sodium-ion batteries. Adv. Fiber Mater. 6, 561–569 (2024). https://doi.org/10.1007/s42765-023-00367-4
X. Hu, X. Fan, Z. Mou, W. Kang, D. Sun, Controlled synthesis of multi-doped highly-disordered porous biomass carbon microsphere for ultra-stable and fast sodium storage. J. Energy Storage 83, 110619 (2024). https://doi.org/10.1016/j.est.2024.110619
L. Yu, N. Liu, B. Liu, F. Yu, J. Ma, In-situ-derived carbon coated sea urchin-like Na3V2(PO4)3 from V2C MXene for high-performance capacitive deionization. J. Alloys Compd. 965, 171501 (2023). https://doi.org/10.1016/j.jallcom.2023.171501
J. Li, Y. Chen, Z. Tian, Y. Wang, L. Guo, Mechanisms and principles of Na3V2(PO4)3 modification by carbon materials. Curr. Opin. Electrochem. 37, 101200 (2023). https://doi.org/10.1016/j.coelec.2022.101200
L. Shen, Y. Li, S. Roy, X. Yin, W. Liu et al., A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chin. Chem. Lett. 32, 3570–3574 (2021). https://doi.org/10.1016/j.cclet.2021.03.005
U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 38, 309–328 (2021). https://doi.org/10.1016/j.ensm.2021.03.015
Z. Wang, C. Tang, Z. Wang, Q. Zhang, P. Lv et al., High-energy Na4MnCr(PO4)3@C cathode for solid-state sodium metal batteries. Energy Mater. Adv. 4, 0036 (2023). https://doi.org/10.34133/energymatadv.0036
S.Y. Gültekin, A. Güler, D. Kuruahmet, H. Güngör, M.M. Singil et al., Graphene aerogel-supported Na3V2(PO4)3/C cathodes for sodium-ion batteries. Diam. Relat. Mater. 139, 110399 (2023). https://doi.org/10.1016/j.diamond.2023.110399
H.H. Li, H. Zhang, M. Zarrabeitia, H.P. Liang, D. Geiger et al., Metal–organic framework derived copper chalcogenides-carbon composites as high-rate and stable storage materials for Na ions. Adv. Sustain. Syst. 6, 2200109 (2022). https://doi.org/10.1002/adsu.202200109
C. Luo, Q. Li, D. Shen, R. Zheng, D. Huang et al., Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solid-state batteries. Energy Storage Mater. 43, 463–470 (2021). https://doi.org/10.1016/j.ensm.2021.09.031
H. Chen, M. Zhou, X. Zhang, S. Xu, H. Zhou, V-MOFs derived Na3V2(PO4)3/C core-shell spheres toward ultrastable sodium-ion batteries. J. Energy Storage 77, 109932 (2024). https://doi.org/10.1016/j.est.2023.109932
H. Shi, Y. Chen, J. Li, L. Guo, Outstanding long cycle stability provide by bismuth doped Na3V2(PO4)3 enwrapped with carbon nanotubes cathode for sodium-ion batteries. J. Colloid Interface Sci. 652, 195–207 (2023). https://doi.org/10.1016/j.jcis.2023.08.067
Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu et al., Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 8, 1800068 (2018). https://doi.org/10.1002/aenm.201800068
Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang et al., Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 10, 2000927 (2020). https://doi.org/10.1002/aenm.202000927
Z. Chen, X. Wu, Z. Sun, J. Pan, J. Han et al., Enhanced fast-charging and longevity in sodium-ion batteries through nitrogen-doped carbon frameworks encasing flower-like bismuth microspheres. Adv. Energy Mater. 14, 2400132 (2024). https://doi.org/10.1002/aenm.202400132
H. Zhang, L. Wang, L. Ma, Y. Liu, B. Hou et al., Surface crystal modification of Na3V2(PO4)3 to cast intermediate Na2V2(PO4)3 phase toward high-rate sodium storage. Adv. Sci. 11, e2306168 (2024). https://doi.org/10.1002/advs.202306168
T. Zhou, Y. Chen, Thiourea induced the N/S Co-doped carbon skeleton suppressing the dissolution of V to boost superior cyclic stability of Na3V2(PO4)3. Carbon 218, 118778 (2024). https://doi.org/10.1016/j.carbon.2023.118778
C. Shi, J. Xu, T. Tao, X. Lu, G. Liu et al., Zero-strain Na3V2(PO4)2F3@rGO/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance. Small Methods 8, e2301277 (2024). https://doi.org/10.1002/smtd.202301277
J.C. Xi, Y.F. Yuan, M. Zhu, S.M. Yin, Y.B. Chen et al., Achieving long-life and efficient sodium storage through encapsulating Fe3Se4 nanops within hollow mesoporous carbon nanospheres. J. Energy Storage 81, 110499 (2024). https://doi.org/10.1016/j.est.2024.110499
R. Huang, D. Yan, Q. Zhang, G. Zhang, B. Chen et al., Unlocking charge transfer limitation in NASICON structured Na3V2(PO4)3 cathode via trace carbon incorporation. Adv. Energy Mater. 14, 2400595 (2024). https://doi.org/10.1002/aenm.202400595
S. Li, Y. Dong, L. Xu, X. Xu, L. He et al., Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014). https://doi.org/10.1002/adma.201305522
L. Li, Y. Qin, S. Zhang, H. Zhao, J. Zhao et al., Ion transport through carbon nanotubes enable highly crystalline Na3V2(PO4)2F3 cathode for ultra-stable sodium-ion storage. J. Power. Sources 576, 233226 (2023). https://doi.org/10.1016/j.jpowsour.2023.233226
C. Qian, M. Shi, C. Fan, C. Liu, Q. Huang et al., Facile Al2O3 coating suppress dissolution of Mn2+ in Mn-substituted Na3V2(PO4)3 with outstanding electrochemical performance for full sodium ion batteries. J. Colloid Interface Sci. 664, 573–587 (2024). https://doi.org/10.1016/j.jcis.2024.03.072
J. Guan, Q. Huang, L. Shao, X. Shi, D. Zhao et al., Polyanion-type Na3V2(PO4)2F3@rGO with high-voltage and ultralong-life for aqueous zinc ion batteries. Small 19, e2207148 (2023). https://doi.org/10.1002/smll.202207148
Z. Li, L. Yu, X. Tao, Y. Li, L. Zhang et al., Honeycomb-structured MoSe2/rGO composites as high-performance anode materials for sodium-ion batteries. Small 20, e2304124 (2024). https://doi.org/10.1002/smll.202304124
B. Chen, Z. Peng, Z. Yuan, Constructing sandwich structure of Nb-substituted Na3V2(PO4)3/C nanops enwrapped on three-dimensional graphene with superior sodium storage property. Ceram. Int. 48, 33957–33966 (2022). https://doi.org/10.1016/j.ceramint.2022.07.345
S. Li, H. Zhu, Y. Liu, Q. Wu, S. Cheng et al., Space-confined guest synthesis to fabricate Sn-monodispersed N-doped mesoporous host toward anode-free Na batteries. Adv. Mater. 35, e2301967 (2023). https://doi.org/10.1002/adma.202301967
Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan et al., Nanoconfined carbon-coated Na3V2(PO4)3 ps in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5, 1402104 (2015). https://doi.org/10.1002/aenm.201402104
N. Mubarak, F. Rehman, J. Wu, M. Ihsan-Ul-Haq, Y. Li et al., Morphology, chemistry, performance trident: Insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries. Nano Energy 86, 106132 (2021). https://doi.org/10.1016/j.nanoen.2021.106132
J. Wang, X. Zhang, W. He, Y. Yue, Y. Wang et al., Layered hybrid phase Li2NaV2(PO4)3/carbon dot nanocomposite cathodes for Li+/Na+ mixed-ion batteries. RSC Adv. 7, 2658–2666 (2017). https://doi.org/10.1039/C6RA25808E
Z. Tian, Y. Chen, S. Sun, H. Liu, C. Wang et al., Constructing hierarchical heterojunction structure for K/Co co-substituted Na3V2(PO4)3 by integrating carbon quantum dots. J. Colloid Interface Sci. 613, 536–546 (2022). https://doi.org/10.1016/j.jcis.2021.12.195
S. Liu, X. Cao, Y. Zhang, K. Wang, Q. Su et al., Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J. Mater. Chem. A 8, 18872–18879 (2020). https://doi.org/10.1039/d0ta04307a
Y. Li, Y. Mei, R. Momen, B. Song, Y. Huang et al., Boosting the interfacial dynamics and thermodynamics in polyanion cathode by carbon dots for ultrafast-charging sodium ion batteries. Chem. Sci. 15, 349–363 (2023). https://doi.org/10.1039/d3sc05593k
Y. Kim, G. Oh, J. Lee, J. Baek, G. Alfaza et al., High-voltage and high-rate cathode materials for sodium-ion batteries NASICON-type Na3V1.5Cr0.4Fe0.1(PO4)3 ACS Appl. Mater. Interfaces 16(5896), 5904 (2024). https://doi.org/10.1021/acsami.3c17166
R. Chen, X. Zhang, D. Li, Y. Li, S. Li et al., Novel NASICON-type Na-V-Mn-Ni-containing cathodes for high-rate and long-life SIBs. Small 20, e2306589 (2024). https://doi.org/10.1002/smll.202306589
Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao et al., An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 34, e2110108 (2022). https://doi.org/10.1002/adma.202110108
S. Sun, S. Liu, Y. Chen, L. Li, Q. Bai et al., Quantum physics and deep learning to reveal multiple dimensional modified regulation by ternary substitution of iron, manganese, and cobalt on Na3V2(PO4)3 for superior sodium storage. Adv. Funct. Mater. 33, 2213711 (2023). https://doi.org/10.1002/adfm.202213711
K. Wang, C. Gao, J. Tu, K. Guo, Y.-L. Ding, Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density. J. Mater. Chem. A 12, 6681–6692 (2024). https://doi.org/10.1039/D3TA07300A
A. Das, S.B. Majumder, A. Roy, Chaudhuri K+ and Mg2+ Co-doped bipolar Na3V2(PO4)3: an ultrafast electrode for symmetric sodium ion full cell. J. Power. Sources 461, 228149 (2020). https://doi.org/10.1016/j.jpowsour.2020.228149
H. Yu, Y. Gao, J. Wang, Q. Liang, J. Kang et al., Potassium doping towards enhanced Na-ion diffusivity in a fluorophosphate cathode for sodium-ion full cells. J. Mater. Chem. A 10, 22105–22113 (2022). https://doi.org/10.1039/D2TA05593G
L. Shen, Y. Li, C. Hu, Z. Huang, B. Wang et al., A high-rate cathode material based on potassium-doped Na3V2(PO4)3 for high/low-temperature sodium-ion batteries. Mater. Today Chem. 30, 101506 (2023). https://doi.org/10.1016/j.mtchem.2023.101506
J. Cong, S.-H. Luo, P.-Y. Li, X. Yan, L.-X. Qian et al., Stable cycling performance of lituium-doping Na3−xLixV2(PO4)3/C (0≤x≤0.4) cathode materials by Na-site manipulation strategy. Appl. Surf. Sci. 643, 158646 (2024). https://doi.org/10.1016/j.apsusc.2023.158646
Q. Tao, H. Ding, H. Zhao, J. Huang, B. Dai et al., Ca-doped Na-site NaNi1/3Fe1/3Mn1/3O2 as a high-performance cathode material for sodium ion batteries. J. Alloys Compd. 976, 172977 (2024). https://doi.org/10.1016/j.jallcom.2023.172977
M. Matsui, F. Mizukoshi, H. Hasegawa, N. Imanishi, Ca-substituted P3-type NaxNi1/3Mn1/3Co1/3O2 as a potential high voltage cathode active material for sodium-ion batteries. J. Power. Sources 485, 229346 (2021). https://doi.org/10.1016/j.jpowsour.2020.229346
P. Chen, C. Wu, Z. Wang, S. Li, X. Xu et al., Synergistically boosting sodium-storage performance of Na3V2(PO4)3 by regulating Na sites and constructing 3D interconnected carbon nanosheet frameworks. ACS Appl. Energy Mater. 5, 2542–2552 (2022). https://doi.org/10.1021/acsaem.1c04061
A. Rudola, R. Sayers, C.J. Wright, J. Barker, Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 8, 215–218 (2023). https://doi.org/10.1038/s41560-023-01215-w
X. Shen, M. Han, Y. Su, M. Wang, F. Wu, Alkali metal ion induced lattice regulation for all climate NASICON-type cathode with superior Na-storage performance. Nano Energy 114, 108640 (2023). https://doi.org/10.1016/j.nanoen.2023.108640
M. Chen, W. Hua, J. Xiao, J. Zhang, V.W. Lau et al., Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J. Am. Chem. Soc. 143, 18091–18102 (2021). https://doi.org/10.1021/jacs.1c06727
P. Hu, T. Zhu, C. Cai, X. Wang, L. Zhang et al., A high-energy NASICON-type Na3.2MnTi0.8V0.2(PO4)3 cathode material with reversible 3.2-electron redox reaction for sodium-ion batteries. Angew. Chem. Int. Ed. 62, e202219304 (2023). https://doi.org/10.1002/anie.202219304
Z.-Y. Gu, X.-X. Zhao, K. Li, J.-M. Cao, X.-T. Wang et al., Homeostatic solid solution reaction in phosphate cathode: breaking high-voltage barrier to achieve high energy density and long life of sodium-ion batteries. Adv. Mater. 36, e2400690 (2024). https://doi.org/10.1002/adma.202400690
H. Dong, C. Liu, Q. Huang, Y. Chen, Se-induced defective carbon nanotubes promoting superior kinetics and electrochemical performance in Na3V2(PO4)3 for half and full Na ion cells. J. Colloid Interface Sci. 660, 277–289 (2024). https://doi.org/10.1016/j.jcis.2024.01.087
H. Dong, C. Liu, Q. Huang, Z. Sun, T. Liang et al., Sc3+ substituted Na3V2(PO4)3 on N-doped porous carbon skeleton boosting high structural stability and superior electrochemical performance for full sodium ion batteries. J. Colloid Interface Sci. 667, 371–384 (2024). https://doi.org/10.1016/j.jcis.2024.04.105
Y. Chen, Q. Li, P. Wang, X. Liao, J. Chen et al., High-energy-density cathode achieved via the activation of a three-electron reaction in sodium manganese vanadium phosphate for sodium-ion batteries. Small 19, e2304002 (2023). https://doi.org/10.1002/smll.202304002
Q. Hu, J.-Y. Liao, X.-D. He, S. Wang, L.-N. Xiao et al., In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2−xGax(PO4)3 (0≤x≤0.6) for ultrafast and high energy sodium storage. J. Mater. Chem. A 7, 4660–4667 (2019). https://doi.org/10.1039/C8TA11890F
X. Liu, G. Feng, E. Wang, H. Chen, Z. Wu et al., Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of p morphology design, crystal structure modulation, and carbon graphitization regulation. ACS Appl. Mater. Interfaces 11, 12421–12430 (2019). https://doi.org/10.1021/acsami.8b21257
Y. Zhao, X. Gao, H. Gao, H. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv. Funct. Mater. 30, 1908680 (2020). https://doi.org/10.1002/adfm.201908680
R. Liu, G. Xu, Q. Li, S. Zheng, G. Zheng et al., Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 43632–43639 (2017). https://doi.org/10.1021/acsami.7b13018
W. Zhang, Y.L. Wu, Z.M. Xu, H.X. Li, M. Xu et al., Rationally designed sodium chromium vanadium phosphate cathodes with multi-electron reaction for fast-charging sodium-ion batteries. Adv. Energy Mater. 12, 2201065 (2022). https://doi.org/10.1002/aenm.202201065
J. Lee, S. Park, Y. Park, J. Song, B. Sambandam et al., Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chem. Eng. J. 422, 130052 (2021). https://doi.org/10.1016/j.cej.2021.130052
B. Mai, B. Xing, Y. Yue, N. Cai, C. Cai et al., Cr-doped Na3V2(PO4)3@C enables high-capacity with V2+/V5+ reaction and stable sodium storage. J. Mater. Sci. Technol. 165, 1–7 (2023). https://doi.org/10.1016/j.jmst.2023.05.005
Y. Lu, L. Wang, J. Song, D. Zhang, M. Xu et al., Aluminum-stabilized NASICON-structured Li3V2(PO4)3. J. Mater. Chem. A 1, 68–72 (2013). https://doi.org/10.1039/c2ta00029f
G. Taveri, A. Güneren, M. Barlog, M. Hnatko, I. Zhukova et al., Understanding the benefits of Al3+-doping on NaSICONs explained through an out-of-the-scheme isovalent substitution of Fe3+ in Na3Fe2(PO4)3 series. J. Power. Sources 592, 233917 (2024). https://doi.org/10.1016/j.jpowsour.2023.233917
Q. Wang, H. Gao, J. Li, G.-B. Liu, H. Jin, Importance of crystallographic sites on sodium-ion extraction from NASICON-structured cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 13, 14312–14320 (2021). https://doi.org/10.1021/acsami.1c01663
Q.-Y. Zhao, J.-Y. Li, M.-J. Chen, H. Wang, Y.-T. Xu et al., Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries. Nano Lett. 22, 9685–9692 (2022). https://doi.org/10.1021/acs.nanolett.2c03916
F. Lalère, V. Seznec, M. Courty, R. David, J.N. Chotard et al., Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J. Mater. Chem. A 3, 16198–16205 (2015). https://doi.org/10.1039/C5TA03528G
C. Sun, Y. Zhao, Q. Ni, Z. Sun, X. Yuan et al., Reversible multielectron redox in NASICON cathode with high energy density for low-temperature sodium-ion batteries. Energy Storage Mater. 49, 291–298 (2022). https://doi.org/10.1016/j.ensm.2022.04.025
X. Liu, Y. Chen, P. Wang, Q. Zheng, Y. Huo et al., Activating three electron reaction in sodium vanadium ferric phosphate toward high energy density for Na-ion batteries. J. Alloys Compd. 972, 172890 (2024). https://doi.org/10.1016/j.jallcom.2023.172890
M.J. Aragón, P. Lavela, G.F. Ortiz, J.L. Tirado, Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J. Electrochem. Soc. 162, A3077–A3083 (2015). https://doi.org/10.1149/2.0151502jes
T. Zhou, Y. Chen, Heterojunction of Y3+−substituted Na3V2(PO4)3-NaYO2 accelerating kinetics with superior performance for full sodium-ion batteries. J. Colloid Interface Sci. 654, 1163–1176 (2024). https://doi.org/10.1016/j.jcis.2023.10.124
X. Shen, Y. Su, S. He, Y. Li, L. Xu et al., A zero-strain Na-deficient NASICON-type Na2.8Mn0.4V1.0Ti0.6(PO4)3 cathode for wide-temperature rechargeable Na-ion batteries. J. Mater. Chem. A 11, 16860–16870 (2023). https://doi.org/10.1039/D3TA03555G
B. Li, D. Xiao, C. Shang, X. Wang, M. Yan et al., Superior reversibility of NASICON-Na3.5Mn0.5V1.5(PO4)3 cathode enabled by dual-carbon conductive network. J. Alloys Compd. 977, 173259 (2024). https://doi.org/10.1016/j.jallcom.2023.173259
Z. Wang, G. Cui, Q. Zheng, X. Ren, Q. Yang et al., Ultrafast charge-discharge capable and long-life Na3.9Mn0.95Zr0.05V(PO4)3/C cathode material for advanced sodium-ion batteries. Small 19, e2206987 (2023). https://doi.org/10.1002/smll.202206987
J. Fang, S. Wang, X. Yao, X. Hu, Y. Wang et al., Ration design of porous Mn-doped Na3V2(PO4)3 cathode for high rate and super stable sodium-ion batteries. Electrochim. Acta 295, 262–269 (2019). https://doi.org/10.1016/j.electacta.2018.10.150
M.V. Zakharkin, O.A. Drozhzhin, S.V. Ryazantsev, D. Chernyshov, M.A. Kirsanova et al., Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries. J. Power. Sources 470, 228231 (2020). https://doi.org/10.1016/j.jpowsour.2020.228231
S. Ghosh, N. Barman, M. Mazumder, S.K. Pati, G. Rousse et al., High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures. Adv. Energy Mater. 10, 1902918 (2020). https://doi.org/10.1002/aenm.201902918
J. Zhang, X. Zhao, Y. Song, Q. Li, Y. Liu et al., Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode. Energy Storage Mater. 23, 25–34 (2019). https://doi.org/10.1016/j.ensm.2019.05.041
F. Lu, J. Wang, S. Chang, L. He, M. Tang et al., New-type NASICON-Na4FeV(PO4)3 cathode with high retention and durability for sodium ion batteries. Carbon 196, 562–572 (2022). https://doi.org/10.1016/j.carbon.2022.05.033
S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Duttine et al., An asymmetric sodium extraction/insertion mechanism for the Fe/V-mixed NASICON Na4FeV(PO4)3. Chem. Mater. 34, 4142–4152 (2022). https://doi.org/10.1021/acs.chemmater.2c00501
B.M. de Boisse, J. Ming, S.-I. Nishimura, A. Yamada, Alkaline excess strategy to NASICON-type compounds towards higher-capacity battery electrodes. J. Electrochem. Soc. 163, A1469–A1473 (2016). https://doi.org/10.1149/2.0041608jes
S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Courty et al., Crystal structures and local environments of NASICON-type Na3FeV(PO4)3 and Na4FeV(PO4)3 positive electrode materials for Na-ion batteries. Chem. Mater. 33, 5355–5367 (2021). https://doi.org/10.1021/acs.chemmater.1c01457
C. Wang, J. Xiu, K. Lü, Y. Li, M. Wei, Compositing pine pollen derived carbon matrix with Na4FeV(PO4)3 nanop for cost-effective sodium-ion batteries cathode. J. Colloid Interface Sci. 667, 510–519 (2024). https://doi.org/10.1016/j.jcis.2024.04.143
C. Xu, J. Zhao, Y.-A. Wang, W. Hua, Q. Fu et al., Reversible activation of V4+/V5+ redox couples in NASICON phosphate cathodes. Adv. Energy Mater. 12, 2200966 (2022). https://doi.org/10.1002/aenm.202200966
M. Hadouchi, N. Yaqoob, P. Kaghazchi, M. Tang, J. Liu et al., Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: a novel sodium-deficient NASICON cathode for sodium-ion batteries. Energy Storage Mater. 35, 192–202 (2021). https://doi.org/10.1016/j.ensm.2020.11.010
Y. Zhou, G. Xu, J. Lin, Y. Zhang, G. Fang et al., Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy-density and long-life sodium-ion full batteries. Adv. Mater. 35, e2304428 (2023). https://doi.org/10.1002/adma.202304428
R. Chen, D.S. Butenko, S. Li, D. Li, X. Zhang et al., Effects of low doping on the improvement of cathode materials Na3+xV2−xMx(PO4)3 (M = Co2+, Cu2+; x = 0.01–0.05) for SIBs. J. Mater. Chem. A 9, 17380–17389 (2021). https://doi.org/10.1039/D1TA05000A
C. Liu, C. Qian, H. Dong, Z. Lu, Q. Huang et al., Defect regulation of Co2+ substituting V3+ in Na3V2(PO4)3 for superior sodium storage performance: experimental and theoretical study. Compos. Commun. 40, 101610 (2023). https://doi.org/10.1016/j.coco.2023.101610
M. Jiang, D. Xu, B. Yang, C. Zhang, M. Cao, Oxygen vacancy engineering in Na3V2(PO4)3 for boosting sodium storage kinetics. Adv. Mater. Interfaces 8, 2100188 (2021). https://doi.org/10.1002/admi.202100188
M. Akhtar, S.B. Majumder, Effect of nickel doping on the electrochemical performances of carbon-coated Na3V2(PO4)3 cathodes for hybrid lithium-ion batteries. ACS Appl. Energy Mater. 4, 13538–13549 (2021). https://doi.org/10.1021/acsaem.1c02080
B. Zhang, H. Chen, H. Tong, X. Wang, J. Zheng et al., Synthesis and electrochemical performance of Ni doped Na3V2(PO4)3/C cathode materials for sodium ion batteries. J. Alloys Compd. 728, 976–983 (2017). https://doi.org/10.1016/j.jallcom.2017.09.020
H. Li, X. Yu, Y. Bai, F. Wu, C. Wu et al., Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J. Mater. Chem. A 3, 9578–9586 (2015). https://doi.org/10.1039/C5TA00277J
A. Inoishi, Y. Yoshioka, L. Zhao, A. Kitajou, S. Okada, Improvement in the energy density of Na3V2(PO4)3 by Mg substitution. ChemElectroChem 4, 2755–2759 (2017). https://doi.org/10.1002/celc.201700540
S. Ghosh, N. Barman, E. Gonzalez-Correa, M. Mazumder, A. Zaveri et al., Elucidating the impact of Mg substitution on the properties of NASICON-Na3+yV2–yMgy(PO4)3 cathodes. Adv. Funct. Mater. 31, 2105463 (2021). https://doi.org/10.1002/adfm.202105463
D.A. Puspitasari, J. Patra, R.F.H. Hernandha, Y.S. Chiang, A. Inoishi et al., Enhanced electrochemical performance of Ca-doped Na3V2(PO4)2F3/C cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 16, 496–506 (2024). https://doi.org/10.1021/acsami.3c12772
L. Zhao, H. Zhao, Z. Du, J. Wang, X. Long et al., Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium. J. Mater. Chem. A 7, 9807–9814 (2019). https://doi.org/10.1039/C9TA00869A
X. Jiang, C. Liu, Z. Tian, S. Sun, J. Li et al., Constructing p-type substitution induced by Ca2+ in defective Na3V2- xCax(PO4)3/C wrapped with conductive CNTs for high-performance sodium-ion batteries. Dalton Trans. 51, 16145–16157 (2022). https://doi.org/10.1039/d2dt02602c
S. Tong, H. Pan, H. Liu, X. Zhang, X. Liu et al., Titanium doping induced the suppression of irreversible phase transformation at high voltage for V-based phosphate cathodes of Na-ion batteries. ChemSusChem 16, e202300244 (2023). https://doi.org/10.1002/cssc.202300244
D. Wang, X. Bie, Q. Fu, D. Dixon, N. Bramnik et al., Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nat. Commun. 8, 15888 (2017). https://doi.org/10.1038/ncomms15888
H. Ding, X. He, Q. Tao, J. Teng, J. Li, Ti-doped Na3v2(PO4)3 activates additional Ti3+/Ti4+ and V4+/V5+ redox pairs for superior sodium ion storage. Energy Fuels 37, 4132–4142 (2023). https://doi.org/10.1021/acs.energyfuels.3c00242
Y. Huang, X. Li, J. Wang, L. Miao, C. Li et al., Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater. 15, 108–115 (2018). https://doi.org/10.1016/j.ensm.2018.03.021
X. Li, Y. Huang, J. Wang, L. Miao, Y. Li et al., High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery. J. Mater. Chem. A 6, 1390–1396 (2018). https://doi.org/10.1039/C7TA08970H
X.-X. Zhao, X.-T. Wang, Z.-Y. Gu, J.-Z. Guo, J.-M. Cao et al., Unlocking quasi-monophase behavior in NASICON cathode to drive fast-charging toward durable sodium-ion batteries. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402447
Y. Liu, C. Sun, Y. Li, H. Jin, Y. Zhao, Recent progress of Mn-based NASICON-type sodium ion cathodes. Energy Storage Mater. 57, 69–80 (2023). https://doi.org/10.1016/j.ensm.2023.02.005
W. Fu, B. Li, P. Wang, Z. Lin, K. Zhu, A high-entropy carbon-coated Na3V1.9(Mg, Cr, Al, Mo, Nb)0.1(PO4)2F3 cathode for superior performance sodium-ion batteries. Ceram. Int. 50, 16166–16171 (2024). https://doi.org/10.1016/j.ceramint.2024.02.096
M. Li, C. Sun, Q. Ni, Z. Sun, Y. Liu et al., High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 13, 2203971 (2023). https://doi.org/10.1002/aenm.202203971
Z. Hao, X. Shi, W. Zhu, Z. Yang, X. Zhou et al., Boosting multielectron reaction stability of sodium vanadium phosphate by high-entropy substitution. ACS Nano 18, 9354–9364 (2024). https://doi.org/10.1021/acsnano.3c09519
H. Li, M. Xu, H. Long, J. Zheng, L. Zhang et al., Stabilization of multicationic redox chemistry in polyanionic cathode by increasing entropy. Adv. Sci. 9, e2202082 (2022). https://doi.org/10.1002/advs.202202082
M.-Y. Wang, J.-Z. Guo, Z.-W. Wang, Z.-Y. Gu, X.-J. Nie et al., Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries. Small 16, e1907645 (2020). https://doi.org/10.1002/smll.201907645
V. Kapoor, B. Singh, G. Sai Gautam, A.K. Cheetham, P. Canepa, Rational design of mixed polyanion electrodes NaxV2P3–i(Si/S)iO12 for sodium batteries. Chem. Mater. 34, 3373–3382 (2022). https://doi.org/10.1021/acs.chemmater.2c00230
P. Hu, X. Wang, T. Wang, L. Chen, J. Ma et al., Boron substituted Na3V2(P1-xBxO4)3 cathode materials with enhanced performance for sodium-ion batteries. Adv. Sci. 3, 1600112 (2016). https://doi.org/10.1002/advs.201600112
Q. Qiu, C. Li, H. Liu, Y. Liao, C. Zhao et al., NMR evidence for the multielectron reaction mechanism of Na3V2(PO4)3 cathode and the impact of polyanion site substitution. J. Phys. Chem. C 125, 15200–15209 (2021). https://doi.org/10.1021/acs.jpcc.1c04099
X. Liu, J. Gong, X. Wei, L. Ni, H. Chen et al., MoO42–mediated engineering of Na3V2(PO4)3 as advanced cathode materials for sodium-ion batteries. J. Colloid Interface Sci. 606, 1897–1905 (2022). https://doi.org/10.1016/j.jcis.2021.10.007
T. Zhou, Y. Chen, Constructing heterostructure by co-doping of Ta5+ and F− with carbon nanotubes to improve kinetic properties of Na3V2(PO4)3. J. Energy Storage 85, 111139 (2024). https://doi.org/10.1016/j.est.2024.111139
Z.J. Song, Y.H. Liu, Z.X. Guo, Z.D. Liu, Z.K. Li et al., Ultrafast synthesis of large-sized and conductive Na3V2(PO4)2F simultaneously approaches high tap density, rate and cycling capability. Adv. Funct. Mater. 34, 2313998 (2024). https://doi.org/10.1002/adfm.202313998
J. Wang, Q. Liu, S. Cao, H. Zhu, Y. Wang, Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes. J. Colloid Interface Sci. 665, 1043–1053 (2024). https://doi.org/10.1016/j.jcis.2024.04.003
Y. Chen, Y. Xu, X. Sun, B. Zhang, S. He et al., Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J. Power. Sources 378, 423–432 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.073
Y. Chen, Y. Xu, X. Sun, B. Zhang, S. He et al., F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J. Power. Sources 397, 307–317 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.006
P. Li, M. Gao, D. Wang, Z. Li, Y. Liu et al., Optimizing vanadium redox reaction in Na3V2(PO4)3 cathodes for sodium-ion batteries by the synergistic effect of additional electrons from heteroatoms. ACS Appl. Mater. Interfaces 15, 9475–9485 (2023). https://doi.org/10.1021/acsami.2c22038
S.K. Pal, R. Thirupathi, S. Chakrabarty, S. Omar, Improving the electrochemical performance of Na3V2(PO4)3 cathode in Na-ion batteries by Si-doping. ACS Appl. Energy Mater. 3, 12054–12065 (2020). https://doi.org/10.1021/acsaem.0c02188
Y. Chen, J. Cheng, Z. He, Y. Wang, C. Wang et al., Silicon substituted Na3V2(PO4)3/C nanocomposites enwrapped on conducting graphene for high-rate and long-lifespan sodium ion batteries. Ceram. Int. 46, 27660–27669 (2020). https://doi.org/10.1016/j.ceramint.2020.07.262
J. Cheng, Y. Chen, Y. Wang, C. Wang, Z. He et al., Insights into the enhanced sodium storage property and kinetics based on the Zr/Si codoped Na3V2(PO4)3/C cathode with superior rate capability and long lifespan. J. Power. Sources 474, 228632 (2020). https://doi.org/10.1016/j.jpowsour.2020.228632
M. Dou, Y. Zhang, J. Wang, X. Zheng, J. Chen et al., Simultaneous cation-anion regulation of sodium vanadium phosphate cathode materials for high-energy and cycle-stable sodium-ion batteries. J. Power. Sources 560, 232709 (2023). https://doi.org/10.1016/j.jpowsour.2023.232709
Y. Chen, J. Cheng, S. Sun, Z. Tian, X. Jiang et al., Constructing hierarchical porous Fe/F-codoped Na3V2(PO4)3/C composite enwrapped with carbon nanotubes as high-performance cathode for symmetric sodium ion batteries. J. Power. Sources 513, 230545 (2021). https://doi.org/10.1016/j.jpowsour.2021.230545
Y. Chen, Z. Tian, J. Li, T. Zhou, In-situ constructing pearl necklace-shaped heterostructure: Zn2+ substituted Na3V2(PO4)3 attached on carbon nano fibers with high performance for half and full Na ion cells. Chem. Eng. J. 472, 145041 (2023). https://doi.org/10.1016/j.cej.2023.145041
L. Wu, S. Shi, X. Zhang, Y. Yang, J. Liu et al., Room-temperature pre-reduction of spinning solution for the synthesis of Na3V2(PO4)3/C nanofibers as high-performance cathode materials for Na-ion batteries. Electrochim. Acta 274, 233–241 (2018). https://doi.org/10.1016/j.electacta.2018.04.122
C. Liu, Z.-X. Zhang, R. Tan, J.-W. Deng, Q.-H. Li et al., Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries. Rare Met. 41, 806–813 (2022). https://doi.org/10.1007/s12598-021-01825-x
S. Sun, Y. Chen, Q. Bai, Z. Tian, Q. Huang et al., Unravelling the regulation mechanism of nanoflower shaped Na3V2(PO4)3 in methanol–water system for high performance sodium ion batteries. Chem. Eng. J. 451, 138780 (2023). https://doi.org/10.1016/j.cej.2022.138780
W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei et al., Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25, 145–153 (2016). https://doi.org/10.1016/j.nanoen.2016.03.018
X. Li, S. Wang, X. Tang, R. Zang, P. Li et al., Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. J. Colloid Interface Sci. 539, 168–174 (2019). https://doi.org/10.1016/j.jcis.2018.12.071
M. Guo, J. Wang, H. Dou, G. Gao, S. Wang et al., Agglomeration-resistant 2D nanoflakes configured with super electronic networks for extraordinary fast and stable sodium-ion storage. Nano Energy 56, 502–511 (2019). https://doi.org/10.1016/j.nanoen.2018.11.091
Y. Zhou, X. Zhang, Y. Liu, X. Xie, X. Rui et al., A high-temperature Na-ion battery: boosting the rate capability and cycle life by structure engineering. Small 16, e1906669 (2020). https://doi.org/10.1002/smll.201906669
Q. Su, Y. Zhou, J. Zhu, H. Chang, M. Hou et al., Nanoflake-assembled hierarchical Na3V2(PO4)3@C microspheres for ultrafast and highly durable sodium storage. ACS Appl. Energy Mater. 6, 10128–10136 (2023). https://doi.org/10.1021/acsaem.3c01871
X. Cao, A. Pan, B. Yin, G. Fang, Y. Wang et al., Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 60, 312–323 (2019). https://doi.org/10.1016/j.nanoen.2019.03.066
Y. Wang, G. Su, X. Li, L. Hou, L. Liang et al., Boosting sodium-storage properties of hierarchical Na3V2(PO4)3@C micro-flower cathodes by tiny Cr doping: The effect of “four ounces moving a thousand pounds”. Nano Res. 17, 235–244 (2024). https://doi.org/10.1007/s12274-023-5555-8
H. Chen, Y. Yang, R. Nie, C. Li, S. Xu et al., Micro-nano Na3V2(PO4)3/C derived from metal-organic frameworks for high performance sodium ion batteries. J. Alloys Compd. 932, 167695 (2023). https://doi.org/10.1016/j.jallcom.2022.167695
J. Yang, D. Li, X. Wang, X. Zhang, J. Xu et al., Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode. Energy Storage Mater. 24, 694–699 (2020). https://doi.org/10.1016/j.ensm.2019.07.002