Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries
Corresponding Author: Daqiang Gao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 68
Abstract
One approach to accelerate the stagnant kinetics of both the oxygen reduction and evolution reactions (ORR/OER) is to develop a rationally designed multiphase nanocomposite, where the functions arising from each of the constituent phases, their interfaces, and the overall structure are properly controlled. Herein, we successfully synthesized an oxygen electrocatalyst consisting of Ni nanoparticles purposely interpenetrated into mesoporous NiO nanosheets (porous Ni/NiO). Benefiting from the contributions of the Ni and NiO phases, the well-established pore channels for charge transport at the interface between the phases, and the enhanced conductivity due to oxygen-deficiency at the pore edges, the porous Ni/NiO nanosheets show a potential of 1.49 V (10 mA cm−2) for the OER and a half-wave potential of 0.76 V for the ORR, outperforming their noble metal counterparts. More significantly, a Zn–air battery employing the porous Ni/NiO nanosheets exhibits an initial charging–discharging voltage gap of 0.83 V (2 mA cm−2), specific capacity of 853 mAh g−1Zn at 20 mA cm−2, and long-time cycling stability (120 h). In addition, the porous Ni/NiO-based solid-like Zn–air battery shows excellent electrochemical performance and flexibility, illustrating its great potential as a next-generation rechargeable power source for flexible electronics.
Highlights:
1 An oxygen electrocatalyst consisting of Ni nanoparticles interpenetrated in porous NiO nanosheets was successfully synthesized.
2 The liquid Zn–air battery reveals a large open-circuit potential of 1.47 V, the maximum power density at 225 mW cm−2, and excellent device stability of over 120 h.
3 The flexible solid-like rechargeable Zn–air battery shows excellent stability (no evident weakening after 240 cycles) and bendability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, S.P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16(1), 23–34 (2016). https://doi.org/10.1038/nmat4676
- N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2(9), 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
- B. Hua, M. Li, W. Pang, W. Tang, S. Zhao et al., Activating p-blocking centers in perovskite for efficient water splitting. Chem 4(12), 2902–2916 (2018). https://doi.org/10.1016/j.chempr.2018.09.012
- J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 11(1), 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
- W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11(1), 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang, J.B. Goodenough, Hierarchically mesoporous nickel–iron nitride as a cost efficient and highly durable electrocatalyst for Zn–air battery. Nano Energy 39, 77–85 (2017). https://doi.org/10.1016/j.nanoen.2017.06.029
- J. Fu, F.M. Hassan, J. Li, D.U. Lee, A.R. Ghannoum, G. Lui, M.A. Hoque, Z. Chen, Flexible rechargeable zinc–air batteries through morphological emulation of human hair array. Adv. Mater. 28(30), 6421–6428 (2016). https://doi.org/10.1002/adma.201600762
- W. Wan, X. Liu, H. Li, X. Peng, D. Xi, J. Luo, 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Appl. Catal. B Environ. 240, 193–200 (2019). https://doi.org/10.1016/j.apcatb.2018.08.081
- D. Yang, L. Zhang, X. Yan, X. Yao, Recent progress in oxygen electrocatalysts for Zinc–air batteries. Small Methods 1(12), 1700209 (2017). https://doi.org/10.1002/smtd.201700209
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- Y. Cheng, S. Dou, J.P. Veder, S. Wang, M. Saunders, S.P. Jiang, Efficient and durable bifunctional oxygen catalysts based on NiFeO@MnOx core-shell structures for rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces 9(9), 8121–8133 (2017). https://doi.org/10.1021/acsami.6b16180
- H. Li, W. Wan, X. Liu, H. Liu, S. Shen, F. Iv, J. Luo, Poplar–catkin–derived N, P co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn–air batteries. ChemElectroChem 5(7), 1113–1119 (2018). https://doi.org/10.1002/celc.201701224
- Q. Shao, J. Liu, Q. Wu, Q. Li, H.G. Wang, Y. Li, D. Qian, In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn–air battery. Nano-Micro Lett. 11(1), 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
- Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Y. Tian, W. Gao, Hollow nanocages of NixCo1−xSe for efficient zinc–air batteries and overall water splitting. Nano-Micro Lett. 11(1), 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
- F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem. Int. Ed. 52(9), 2474–2477 (2013). https://doi.org/10.1002/anie.201208582
- X. Chen, C. Zhong, B. Liu, Z. Liu, X. Bi et al., Atomic layer Co3O4 nanosheets: the key to knittable Zn–air batteries. Small 14(43), 1702987 (2018). https://doi.org/10.1002/smll.201702987
- P.T. Babar, A.C. Lokhande, M.G. Gang, B.S. Pawar, S.M. Pawar, J.H. Kim, Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application. J. Ind. Eng. Chem. 60, 493–497 (2018). https://doi.org/10.1016/j.jiec.2017.11.037
- L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29(17), 1606793 (2017). https://doi.org/10.1002/adma.201606793
- K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic et al., Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 9(5), 5180–5188 (2015). https://doi.org/10.1021/acsnano.5b00520
- X. Zou, J. Su, R. Silva, A. Goswami, B.R. Sathe, T. Asefa, Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem. Commun. 49(68), 7522–7524 (2013). https://doi.org/10.1039/c3cc42891e
- J. Wang, K. Li, H. Zhong, D. Xu, Z. Wang, Z. Jiang, Z. Wu, X. Zhang, Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water oxidation performance. Angew. Chem. Int. Ed. 54(36), 10530–10534 (2015). https://doi.org/10.1002/anie.201504358
- H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu et al., Homologous NiO//Ni2P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. Nanoscale 9(13), 4409–4418 (2017). https://doi.org/10.1039/C6NR07953A
- D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2015). https://doi.org/10.1126/science.aad0832
- H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu et al., Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small 10(16), 3371–3378 (2014). https://doi.org/10.1002/smll.201400781
- G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.M. Lee, Y. Tang, Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 30(5), 1704609 (2018). https://doi.org/10.1002/adma.201704609
- C. Zhu, A.L. Wang, W. Xiao, D. Chao, X. Zhang et al., In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 30(13), e1705516 (2018). https://doi.org/10.1002/adma.201705516
- L. Lv, D. Zha, Y. Ruan, Z. Li, X. Ao et al., A universal method to engineer metal oxide–metal–carbon interface for highly efficient oxygen reduction. ACS Nano 12(3), 3042–3051 (2018). https://doi.org/10.1021/acsnano.8b01056
- Z. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang et al., MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem. Int. Ed. 57(2), 496–500 (2018). https://doi.org/10.1002/anie.201708748
- E. Navarro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A: Chem. 226(2), 179–197 (2005). https://doi.org/10.1016/j.molcata.2004.10.029
- D.S. Hall, C. Bock, B.R. MacDougall, The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. J. Electrochem. Soc. 160(3), F235–F243 (2013). https://doi.org/10.1149/2.026303jes
- M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695–4700 (2015). https://doi.org/10.1038/ncomms5695
- Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29(44), 1702698 (2017). https://doi.org/10.1002/adma.201702698
- W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc–air battery. Adv. Energy Mater. 8(20), 1800480 (2018). https://doi.org/10.1002/aenm.20180048
- Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv. Mater. 30(4), 1703657 (2018). https://doi.org/10.1002/adma.201703657
- A. Rohrbach, J. Hafner, G. Kresse, Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100). Phys. Rev. B 69(7), 075413 (2004). https://doi.org/10.1103/PhysRevB.69.075413
- S. Park, H.S. Ahn, C.K. Lee, H. Kim, H. Jin, H.S. Lee, S. Seo, J. Yu, S. Han, Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 77(13), 134103 (2008). https://doi.org/10.1103/PhysRevB.77.134103
- L. Qiao, X. Wang, L. Qiao, X. Sun, X. Li, Y. Zheng, D. He, Single electrospun porous NiO–ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5(7), 3037–3042 (2013). https://doi.org/10.1039/c3nr34103h
- V.A. Bharathan, R. Jain, C.S. Gopinath, C.P. Vinod, Diverse reactivity trends of Ni surfaces in Au@Ni core–shell nanoparticles probed by near ambient pressure (NAP) XPS. Catal. Sci. Technol. 7(19), 4489–4498 (2017). https://doi.org/10.1039/C7CY01070B
- L. Del Bianco, F. Boscherini, M. Tamisari, F. Spizzo, M. Vittori Antisari, E. Piscopiello, Exchange bias and interface structure in the Ni/NiO nanogranular system. J. Phys. D Appl. Phys. 41(13), 134008 (2008). https://doi.org/10.1088/0022-3727/41/13/134008
- L. Del Bianco, F. Boscherini, A.L. Fiorini, M. Tamisari, F. Spizzo, M.V. Antisari, E. Piscopiello, Exchange bias and structural disorder in the nanogranular Ni∕NiO system produced by ball milling and hydrogen reduction. Phys. Rev. B 77(9), 094408 (2008). https://doi.org/10.1103/PhysRevB.77.094408
- M. Patange, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Morphology controlled synthesis of monodispersed graphitic carbon coated core/shell structured Ni/NiO nanoparticles with enhanced magnetoresistance. Phys. Chem. Chem. Phys. 17(48), 32398–32412 (2015). https://doi.org/10.1039/C5CP05830A
- Uhlenbrockt, C. Scharfschwerdtt, M. Neumannt, G. Illing, H.J. Freund, The influence of defects on the Ni 2p and O 1s XPS of NiO. J. Phys.: Condens. Matter 4, 7973–7978 (1992). https://doi.org/10.1088/0953-8984/4/40/009
- M.A. Peck, M.A. Langell, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24(23), 4483–4490 (2012). https://doi.org/10.1021/cm300739y
- J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata et al., Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 7(17), 1700381 (2017). https://doi.org/10.1002/aenm.201700381
- D.Q. Gao, G.J. Yang, J.Y. Li, J. Zhang, J.L. Zhang, D.S. Xue, Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 114(43), 18347–18351 (2010). https://doi.org/10.1021/jp106015t
- H. Xu, Z.X. Shi, Y.X. Tong, G.R. Li, Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv. Mater. 30(21), 1705442 (2018). https://doi.org/10.1002/adma.201705442
- K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson et al., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981
- X. Liu, W. Xi, C. Li, X. Li, J. Shi et al., Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 44, 371–377 (2018). https://doi.org/10.1016/j.nanoen.2017.12.016
- H. Yin, C. Zhang, F. Liu, Y. Hou, Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 24(20), 2930–2937 (2014). https://doi.org/10.1002/adfm.201303902
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
- X. Liu, W. Liu, M. Ko, M. Park, M.G. Kim et al., Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 25(36), 5799–5808 (2015). https://doi.org/10.1002/adfm.201502217
- B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery. Adv. Funct. Mater. 27(37), 1700795 (2017). https://doi.org/10.1002/adfm.201700795
References
M.A. Green, S.P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16(1), 23–34 (2016). https://doi.org/10.1038/nmat4676
N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2(9), 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
B. Hua, M. Li, W. Pang, W. Tang, S. Zhao et al., Activating p-blocking centers in perovskite for efficient water splitting. Chem 4(12), 2902–2916 (2018). https://doi.org/10.1016/j.chempr.2018.09.012
J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn–air battery and water splitting. Nano-Micro Lett. 11(1), 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11(1), 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
G. Fu, Z. Cui, Y. Chen, L. Xu, Y. Tang, J.B. Goodenough, Hierarchically mesoporous nickel–iron nitride as a cost efficient and highly durable electrocatalyst for Zn–air battery. Nano Energy 39, 77–85 (2017). https://doi.org/10.1016/j.nanoen.2017.06.029
J. Fu, F.M. Hassan, J. Li, D.U. Lee, A.R. Ghannoum, G. Lui, M.A. Hoque, Z. Chen, Flexible rechargeable zinc–air batteries through morphological emulation of human hair array. Adv. Mater. 28(30), 6421–6428 (2016). https://doi.org/10.1002/adma.201600762
W. Wan, X. Liu, H. Li, X. Peng, D. Xi, J. Luo, 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Appl. Catal. B Environ. 240, 193–200 (2019). https://doi.org/10.1016/j.apcatb.2018.08.081
D. Yang, L. Zhang, X. Yan, X. Yao, Recent progress in oxygen electrocatalysts for Zinc–air batteries. Small Methods 1(12), 1700209 (2017). https://doi.org/10.1002/smtd.201700209
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
Y. Cheng, S. Dou, J.P. Veder, S. Wang, M. Saunders, S.P. Jiang, Efficient and durable bifunctional oxygen catalysts based on NiFeO@MnOx core-shell structures for rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces 9(9), 8121–8133 (2017). https://doi.org/10.1021/acsami.6b16180
H. Li, W. Wan, X. Liu, H. Liu, S. Shen, F. Iv, J. Luo, Poplar–catkin–derived N, P co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn–air batteries. ChemElectroChem 5(7), 1113–1119 (2018). https://doi.org/10.1002/celc.201701224
Q. Shao, J. Liu, Q. Wu, Q. Li, H.G. Wang, Y. Li, D. Qian, In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn–air battery. Nano-Micro Lett. 11(1), 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
Z. Qian, Y. Chen, Z. Tang, Z. Liu, X. Wang, Y. Tian, W. Gao, Hollow nanocages of NixCo1−xSe for efficient zinc–air batteries and overall water splitting. Nano-Micro Lett. 11(1), 28 (2019). https://doi.org/10.1007/s40820-019-0258-0
F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, J. Chen, Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem. Int. Ed. 52(9), 2474–2477 (2013). https://doi.org/10.1002/anie.201208582
X. Chen, C. Zhong, B. Liu, Z. Liu, X. Bi et al., Atomic layer Co3O4 nanosheets: the key to knittable Zn–air batteries. Small 14(43), 1702987 (2018). https://doi.org/10.1002/smll.201702987
P.T. Babar, A.C. Lokhande, M.G. Gang, B.S. Pawar, S.M. Pawar, J.H. Kim, Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application. J. Ind. Eng. Chem. 60, 493–497 (2018). https://doi.org/10.1016/j.jiec.2017.11.037
L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29(17), 1606793 (2017). https://doi.org/10.1002/adma.201606793
K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic et al., Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 9(5), 5180–5188 (2015). https://doi.org/10.1021/acsnano.5b00520
X. Zou, J. Su, R. Silva, A. Goswami, B.R. Sathe, T. Asefa, Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem. Commun. 49(68), 7522–7524 (2013). https://doi.org/10.1039/c3cc42891e
J. Wang, K. Li, H. Zhong, D. Xu, Z. Wang, Z. Jiang, Z. Wu, X. Zhang, Synergistic effect between metal–nitrogen–carbon sheets and NiO nanoparticles for enhanced electrochemical water oxidation performance. Angew. Chem. Int. Ed. 54(36), 10530–10534 (2015). https://doi.org/10.1002/anie.201504358
H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu et al., Homologous NiO//Ni2P nanoarrays grown on nickel foams: a well matched electrode pair with high stability in overall water splitting. Nanoscale 9(13), 4409–4418 (2017). https://doi.org/10.1039/C6NR07953A
D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2015). https://doi.org/10.1126/science.aad0832
H. Zhang, Y. Wang, D. Wang, Y. Li, X. Liu et al., Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction. Small 10(16), 3371–3378 (2014). https://doi.org/10.1002/smll.201400781
G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.M. Lee, Y. Tang, Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 30(5), 1704609 (2018). https://doi.org/10.1002/adma.201704609
C. Zhu, A.L. Wang, W. Xiao, D. Chao, X. Zhang et al., In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 30(13), e1705516 (2018). https://doi.org/10.1002/adma.201705516
L. Lv, D. Zha, Y. Ruan, Z. Li, X. Ao et al., A universal method to engineer metal oxide–metal–carbon interface for highly efficient oxygen reduction. ACS Nano 12(3), 3042–3051 (2018). https://doi.org/10.1021/acsnano.8b01056
Z. Zhuang, Y. Li, Z. Li, F. Lv, Z. Lang et al., MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem. Int. Ed. 57(2), 496–500 (2018). https://doi.org/10.1002/anie.201708748
E. Navarro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A: Chem. 226(2), 179–197 (2005). https://doi.org/10.1016/j.molcata.2004.10.029
D.S. Hall, C. Bock, B.R. MacDougall, The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. J. Electrochem. Soc. 160(3), F235–F243 (2013). https://doi.org/10.1149/2.026303jes
M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695–4700 (2015). https://doi.org/10.1038/ncomms5695
Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29(44), 1702698 (2017). https://doi.org/10.1002/adma.201702698
W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, Apically dominant mechanism for improving catalytic activities of N-doped carbon nanotube arrays in rechargeable zinc–air battery. Adv. Energy Mater. 8(20), 1800480 (2018). https://doi.org/10.1002/aenm.20180048
Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv. Mater. 30(4), 1703657 (2018). https://doi.org/10.1002/adma.201703657
A. Rohrbach, J. Hafner, G. Kresse, Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100). Phys. Rev. B 69(7), 075413 (2004). https://doi.org/10.1103/PhysRevB.69.075413
S. Park, H.S. Ahn, C.K. Lee, H. Kim, H. Jin, H.S. Lee, S. Seo, J. Yu, S. Han, Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 77(13), 134103 (2008). https://doi.org/10.1103/PhysRevB.77.134103
L. Qiao, X. Wang, L. Qiao, X. Sun, X. Li, Y. Zheng, D. He, Single electrospun porous NiO–ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5(7), 3037–3042 (2013). https://doi.org/10.1039/c3nr34103h
V.A. Bharathan, R. Jain, C.S. Gopinath, C.P. Vinod, Diverse reactivity trends of Ni surfaces in Au@Ni core–shell nanoparticles probed by near ambient pressure (NAP) XPS. Catal. Sci. Technol. 7(19), 4489–4498 (2017). https://doi.org/10.1039/C7CY01070B
L. Del Bianco, F. Boscherini, M. Tamisari, F. Spizzo, M. Vittori Antisari, E. Piscopiello, Exchange bias and interface structure in the Ni/NiO nanogranular system. J. Phys. D Appl. Phys. 41(13), 134008 (2008). https://doi.org/10.1088/0022-3727/41/13/134008
L. Del Bianco, F. Boscherini, A.L. Fiorini, M. Tamisari, F. Spizzo, M.V. Antisari, E. Piscopiello, Exchange bias and structural disorder in the nanogranular Ni∕NiO system produced by ball milling and hydrogen reduction. Phys. Rev. B 77(9), 094408 (2008). https://doi.org/10.1103/PhysRevB.77.094408
M. Patange, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Morphology controlled synthesis of monodispersed graphitic carbon coated core/shell structured Ni/NiO nanoparticles with enhanced magnetoresistance. Phys. Chem. Chem. Phys. 17(48), 32398–32412 (2015). https://doi.org/10.1039/C5CP05830A
Uhlenbrockt, C. Scharfschwerdtt, M. Neumannt, G. Illing, H.J. Freund, The influence of defects on the Ni 2p and O 1s XPS of NiO. J. Phys.: Condens. Matter 4, 7973–7978 (1992). https://doi.org/10.1088/0953-8984/4/40/009
M.A. Peck, M.A. Langell, Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24(23), 4483–4490 (2012). https://doi.org/10.1021/cm300739y
J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata et al., Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater. 7(17), 1700381 (2017). https://doi.org/10.1002/aenm.201700381
D.Q. Gao, G.J. Yang, J.Y. Li, J. Zhang, J.L. Zhang, D.S. Xue, Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 114(43), 18347–18351 (2010). https://doi.org/10.1021/jp106015t
H. Xu, Z.X. Shi, Y.X. Tong, G.R. Li, Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv. Mater. 30(21), 1705442 (2018). https://doi.org/10.1002/adma.201705442
K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson et al., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016). https://doi.org/10.1038/ncomms11981
X. Liu, W. Xi, C. Li, X. Li, J. Shi et al., Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 44, 371–377 (2018). https://doi.org/10.1016/j.nanoen.2017.12.016
H. Yin, C. Zhang, F. Liu, Y. Hou, Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 24(20), 2930–2937 (2014). https://doi.org/10.1002/adfm.201303902
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv. Mater. 30(10), 1705431 (2018). https://doi.org/10.1002/adma.201705431
X. Liu, W. Liu, M. Ko, M. Park, M.G. Kim et al., Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 25(36), 5799–5808 (2015). https://doi.org/10.1002/adfm.201502217
B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen, H. Yin, MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn–air battery. Adv. Funct. Mater. 27(37), 1700795 (2017). https://doi.org/10.1002/adfm.201700795