Transition Metal Carbonitride MXenes Anchored with Pt Sub-Nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range
Corresponding Author: Jiabao Yi
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 123
Abstract
Transition metal carbides, known as MXenes, particularly Ti3C2Tx, have been extensively explored as promising materials for electrochemical reactions. However, transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported. In this work, transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts, ranging from single atoms to sub-nanometer dimensions, are explored for hydrogen evolution reaction (HER). The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes. The optimized sample shows low overpotentials of 28, 65, and 154 mV at a current densities of 10, 100, and 500 mA cm−2, a small Tafel slope of 29 mV dec−1, a high mass activity of 1203 mA mgPt−1 and an excellent turnover frequency of 6.1 s−1 in the acidic electrolyte. Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites, increased surface functional groups, faster charge transfer dynamics, and stronger electronic interaction between Pt and MXene, resulting in optimized hydrogen absorption/desorption toward better HER. This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.
Highlights:
1 Two-dimensional mono- and few-layered Ti3CNTx MXene nanosheets with extremely high nitrogen content were synthesized.
2 Better performance for hydrogen evolution reaction (HER) than Pt/C catalyst in acidic, neutral and alkaline solutions.
3 Exceptional performance of HER in both acidic and alkaline solutions.
4 A large current density (> 500 mA cm−2) has been achieved for HER.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Lei, J.M. Lee, G. Singh, C.I. Sathish, X. Chu et al., Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 36, 514–550 (2021). https://doi.org/10.1016/j.ensm.2021.01.004
- Z. Lei, C. Sathish, Y. Liu, A. Karokoti, J. Wang et al., Single metal atoms catalysts: Promising candidates for next generation energy storage and conversion devices. EcoMat 4, e12186 (2022). https://doi.org/10.1002/eom2.12186
- G. Yasin, S. Ali, S. Ibraheem, A. Kumar, M. Tabish et al., Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS Catal. 13, 2313–2325 (2023). https://doi.org/10.1021/acscatal.2c05654
- S. Ali, S. Ali, P.M. Ismail, H. Shen, A. Zada et al., Synthesis and bader analyzed cobalt-phthalocyanine modified solar UV-blind β-Ga2O3 quadrilateral nanorods photocatalysts for wide-visible-light driven H2 evolution. Appl. Catal. B Environ. Energy 307, 121149 (2022). https://doi.org/10.1016/j.apcatb.2022.121149
- M. Li, P. Selvarajan, S. Wang, T. Wan, S. Xi et al., Thermostable 1T-MoS2 nanosheets achieved by spontaneous intercalation of Cu single atoms at room temperature and their enhanced HER performance. Small Struct. 4, 2300010 (2023). https://doi.org/10.1002/sstr.202300010
- X. Chu, C.I. Sathish, J.-H. Yang, X. Guan, X. Zhang et al., Strategies for improving the photocatalytic hydrogen evolution reaction of carbon nitride-based catalysts. Small 19, e2302875 (2023). https://doi.org/10.1002/smll.202302875
- X. Guan, M. Fawaz, R. Sarkar, C.-H. Lin, Z. Li et al., S-doped C3N5 derived from thiadiazole for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 11, 12837–12845 (2023). https://doi.org/10.1039/d3ta00318c
- C. Li, Z. Chen, H. Yi, Y. Cao, L. Du et al., Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 59, 15902–15907 (2020). https://doi.org/10.1002/anie.202005282
- G. Singh, K. Ramadass, V.D.B.C. DasiReddy, X. Yuan, Y. Sik Ok et al., Material-based generation, storage, and utilisation of hydrogen. Prog. Mater. Sci. 135, 101104 (2023). https://doi.org/10.1016/j.pmatsci.2023.101104
- H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu et al., 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv. Mater. 32, e1904870 (2020). https://doi.org/10.1002/adma.201904870
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- S. Ali, Z. Xie, H. Xu, Stability and catalytic performance of single-atom supported on Ti2CO2 for low-temperature CO oxidation: a first-principles study. ChemPhysChem 22, 2352–2361 (2021). https://doi.org/10.1002/cphc.202100436
- Y. Zou, S.A. Kazemi, G. Shi, J. Liu, Y. Yang et al., Ruthenium single-atom modulated Ti3C2Tx MXene for efficient alkaline electrocatalytic hydrogen production. EcoMat 5, e12274 (2023). https://doi.org/10.1002/eom2.12274
- S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, Y. Liu et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu et al., Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 16, e2002888 (2020). https://doi.org/10.1002/smll.202002888
- S. Zhou, Y. Zhao, R. Shi, Y. Wang, A. Ashok et al., Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 34, e2204388 (2022). https://doi.org/10.1002/adma.202204388
- W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng et al., Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2001364 (2020). https://doi.org/10.1002/aenm.202001364
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
- Y. Wu, W.-Q. Wei, R. Yu, L. Xia, X. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32, 2110910 (2022). https://doi.org/10.1002/adfm.202110910
- W. Peng, J. Han, Y.-R. Lu, M. Luo, T.-S. Chan et al., A general strategy for engineering single-metal sites on 3D porous N, P co-doped Ti3C2TX MXene. ACS Nano 16, 4116–4125 (2022). https://doi.org/10.1021/acsnano.1c09841
- X. Wang, J. Ding, W. Song, X. Yang, T. Zhang et al., Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 13, 2300148 (2023). https://doi.org/10.1002/aenm.202300148
- R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu et al., Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- V. Ramalingam, P. Varadhan, H.-C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31, e1903841 (2019). https://doi.org/10.1002/adma.201903841
- Y.-L. Zhang, B. Liu, Y. Dai, Y.-F. Xia, P. Guo et al., Electronic delocalization regulates the occupancy and energy level of Co 3dz2 orbitals to enhance bifunctional oxygen catalytic activity. Adv. Funct. Mater. 32, 2209499 (2022). https://doi.org/10.1002/adfm.202209499
- H. Gu, W. Yue, J. Hu, X. Niu, H. Tang et al., Asymmetrically coordinated Cu–N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium–sulfur batteries. Adv. Energy Mater. 13, 2204014 (2023). https://doi.org/10.1002/aenm.202204014
- D.A. Kuznetsov, Z. Chen, P.V. Kumar, A. Tsoukalou, A. Kierzkowska et al., Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 141, 17809–17816 (2019). https://doi.org/10.1021/jacs.9b08897
- H. Liu, Z. Hu, Q. Liu, P. Sun, Y. Wang et al., Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. 8, 24710–24717 (2020). https://doi.org/10.1039/D0TA09538A
- H. Zong, S. Gong, K. Yu, Z. Zhu, Ni-doped Ti3CNTx-coated nanoporous covalent organic frameworks to accelerate hydrogen diffusion for enhanced hydrogen evolution. ACS Appl. Nano Mater. 5, 15042–15052 (2022). https://doi.org/10.1021/acsanm.2c03218
- T.A. Le, Q.V. Bui, N.Q. Tran, Y. Cho, Y. Hong et al., Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem. Eng. 7, 16879–16888 (2019). https://doi.org/10.1021/acssuschemeng.9b04470
- J. Zhu, M. Wang, M. Lyu, Y. Jiao, A. Du et al., Two-dimensional titanium carbonitride MXene for high-performance sodium ion batteries. ACS Appl. Nano Mater. 1, 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330
- L. Pu, J. Zhang, N.K.L. Jiresse, Y. Gao, H. Zhou et al., N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 5, 356–369 (2022). https://doi.org/10.1007/s42114-021-00371-5
- D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
- L. Gao, H. Chen, A.V. Kuklin, S. Wageh, A.A. Al-Ghamdi et al., Optical properties of few-layer Ti3CN MXene: from experimental observations to theoretical calculations. ACS Nano 16, 3059–3069 (2022). https://doi.org/10.1021/acsnano.1c10577
- J. Zhu, L. Xia, R. Yu, R. Lu, J. Li et al., Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 144, 15529–15538 (2022). https://doi.org/10.1021/jacs.2c03982
- D. Cao, L. Zheng, Y. Wang, Y. Dong, Q. Li et al., Ultraviolet-assisted construction of low-Pt-loaded MXene catalysts for high-performance Li−O2 batteries. Energy Storage Mater. 51, 806–814 (2022). https://doi.org/10.1016/j.ensm.2022.07.026
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- M. Fan, J. Cui, J. Zhang, J. Wu, S. Chen et al., The modulating effect of N coordination on single-atom catalysts researched by Pt-Nx-C model through both experimental study and DFT simulation. J. Mater. Sci. Technol. 91, 160–167 (2021). https://doi.org/10.1016/j.jmst.2021.01.093
- Y. Wu et al., Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CTx MXene. Adv. Funct. Mater. 33, 2214375 (2023). https://doi.org/10.1002/adfm.202214375
- C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma et al., Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 30, 2000693 (2020). https://doi.org/10.1002/adfm.202000693
- E.P. Beaumier, A.J. Pearce, X.Y. See, I.A. Tonks, Modern applications of low-valent early transition metals in synthesis and catalysis. Nat. Rev. Chem. 3, 15–34 (2019). https://doi.org/10.1038/s41570-018-0059-x
- S. Zhang, M.-B. Li, Repurposing HER catalysis toward metal hydride-mediated electro-reductive transformations. Tetrahedron Chem 11, 100080 (2024). https://doi.org/10.1016/j.tchem.2024.100080
- M. Ma, G. Li, W. Yan, Z. Wu, Z. Zheng et al., Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 12, 2103336 (2022). https://doi.org/10.1002/aenm.202103336
- H. Jin, M. Ha, M.G. Kim, J.H. Lee, K.S. Kim, Engineering Pt coordination environment with atomically dispersed transition metal sites toward superior hydrogen evolution. Adv. Energy Mater. 13, 2204213 (2023). https://doi.org/10.1002/aenm.202204213
- Z. Sun, Y. Yang, C. Fang, Y. Yao, F. Qin et al., Atomic-level Pt electrocatalyst synthesized via iced photochemical method for hydrogen evolution reaction with high efficiency. Small 18, e2203422 (2022). https://doi.org/10.1002/smll.202203422
- D.-D. Qin, Y. Tang, G. Ma, L. Qin, C.-L. Tao et al., Molecular metal nanoclusters for ORR, HER and OER: achievements, opportunities and challenges. Int. J. Hydrog. Energy 46, 25771–25781 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.096
- K. Kwak, W. Choi, Q. Tang, D. Jiang, D. Lee, Rationally designed metal nanocluster for electrocatalytic hydrogen production from water. J. Mater. Chem. 6, 19495–19501 (2021). https://doi.org/10.1039/C8TA06306K
- Y. Zhao, X. Tan, X. Tan, W. Yang, C. Jia et al., Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59, 21493–21498 (2020). https://doi.org/10.1002/anie.202009616
References
Z. Lei, J.M. Lee, G. Singh, C.I. Sathish, X. Chu et al., Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 36, 514–550 (2021). https://doi.org/10.1016/j.ensm.2021.01.004
Z. Lei, C. Sathish, Y. Liu, A. Karokoti, J. Wang et al., Single metal atoms catalysts: Promising candidates for next generation energy storage and conversion devices. EcoMat 4, e12186 (2022). https://doi.org/10.1002/eom2.12186
G. Yasin, S. Ali, S. Ibraheem, A. Kumar, M. Tabish et al., Simultaneously engineering the synergistic-effects and coordination-environment of dual-single-atomic iron/cobalt-sites as a bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. ACS Catal. 13, 2313–2325 (2023). https://doi.org/10.1021/acscatal.2c05654
S. Ali, S. Ali, P.M. Ismail, H. Shen, A. Zada et al., Synthesis and bader analyzed cobalt-phthalocyanine modified solar UV-blind β-Ga2O3 quadrilateral nanorods photocatalysts for wide-visible-light driven H2 evolution. Appl. Catal. B Environ. Energy 307, 121149 (2022). https://doi.org/10.1016/j.apcatb.2022.121149
M. Li, P. Selvarajan, S. Wang, T. Wan, S. Xi et al., Thermostable 1T-MoS2 nanosheets achieved by spontaneous intercalation of Cu single atoms at room temperature and their enhanced HER performance. Small Struct. 4, 2300010 (2023). https://doi.org/10.1002/sstr.202300010
X. Chu, C.I. Sathish, J.-H. Yang, X. Guan, X. Zhang et al., Strategies for improving the photocatalytic hydrogen evolution reaction of carbon nitride-based catalysts. Small 19, e2302875 (2023). https://doi.org/10.1002/smll.202302875
X. Guan, M. Fawaz, R. Sarkar, C.-H. Lin, Z. Li et al., S-doped C3N5 derived from thiadiazole for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 11, 12837–12845 (2023). https://doi.org/10.1039/d3ta00318c
C. Li, Z. Chen, H. Yi, Y. Cao, L. Du et al., Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 59, 15902–15907 (2020). https://doi.org/10.1002/anie.202005282
G. Singh, K. Ramadass, V.D.B.C. DasiReddy, X. Yuan, Y. Sik Ok et al., Material-based generation, storage, and utilisation of hydrogen. Prog. Mater. Sci. 135, 101104 (2023). https://doi.org/10.1016/j.pmatsci.2023.101104
H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu et al., 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv. Mater. 32, e1904870 (2020). https://doi.org/10.1002/adma.201904870
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
S. Ali, Z. Xie, H. Xu, Stability and catalytic performance of single-atom supported on Ti2CO2 for low-temperature CO oxidation: a first-principles study. ChemPhysChem 22, 2352–2361 (2021). https://doi.org/10.1002/cphc.202100436
Y. Zou, S.A. Kazemi, G. Shi, J. Liu, Y. Yang et al., Ruthenium single-atom modulated Ti3C2Tx MXene for efficient alkaline electrocatalytic hydrogen production. EcoMat 5, e12274 (2023). https://doi.org/10.1002/eom2.12274
S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, Y. Liu et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu et al., Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 16, e2002888 (2020). https://doi.org/10.1002/smll.202002888
S. Zhou, Y. Zhao, R. Shi, Y. Wang, A. Ashok et al., Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 34, e2204388 (2022). https://doi.org/10.1002/adma.202204388
W. Peng, M. Luo, X. Xu, K. Jiang, M. Peng et al., Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2001364 (2020). https://doi.org/10.1002/aenm.202001364
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong et al., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1
Y. Wu, W.-Q. Wei, R. Yu, L. Xia, X. Hong et al., Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 32, 2110910 (2022). https://doi.org/10.1002/adfm.202110910
W. Peng, J. Han, Y.-R. Lu, M. Luo, T.-S. Chan et al., A general strategy for engineering single-metal sites on 3D porous N, P co-doped Ti3C2TX MXene. ACS Nano 16, 4116–4125 (2022). https://doi.org/10.1021/acsnano.1c09841
X. Wang, J. Ding, W. Song, X. Yang, T. Zhang et al., Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 13, 2300148 (2023). https://doi.org/10.1002/aenm.202300148
R. Xing, T. Zhou, Y. Zhou, R. Ma, Q. Liu et al., Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 10, 3 (2018). https://doi.org/10.1007/s40820-017-0157-1
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
V. Ramalingam, P. Varadhan, H.-C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31, e1903841 (2019). https://doi.org/10.1002/adma.201903841
Y.-L. Zhang, B. Liu, Y. Dai, Y.-F. Xia, P. Guo et al., Electronic delocalization regulates the occupancy and energy level of Co 3dz2 orbitals to enhance bifunctional oxygen catalytic activity. Adv. Funct. Mater. 32, 2209499 (2022). https://doi.org/10.1002/adfm.202209499
H. Gu, W. Yue, J. Hu, X. Niu, H. Tang et al., Asymmetrically coordinated Cu–N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium–sulfur batteries. Adv. Energy Mater. 13, 2204014 (2023). https://doi.org/10.1002/aenm.202204014
D.A. Kuznetsov, Z. Chen, P.V. Kumar, A. Tsoukalou, A. Kierzkowska et al., Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 141, 17809–17816 (2019). https://doi.org/10.1021/jacs.9b08897
H. Liu, Z. Hu, Q. Liu, P. Sun, Y. Wang et al., Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. 8, 24710–24717 (2020). https://doi.org/10.1039/D0TA09538A
H. Zong, S. Gong, K. Yu, Z. Zhu, Ni-doped Ti3CNTx-coated nanoporous covalent organic frameworks to accelerate hydrogen diffusion for enhanced hydrogen evolution. ACS Appl. Nano Mater. 5, 15042–15052 (2022). https://doi.org/10.1021/acsanm.2c03218
T.A. Le, Q.V. Bui, N.Q. Tran, Y. Cho, Y. Hong et al., Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem. Eng. 7, 16879–16888 (2019). https://doi.org/10.1021/acssuschemeng.9b04470
J. Zhu, M. Wang, M. Lyu, Y. Jiao, A. Du et al., Two-dimensional titanium carbonitride MXene for high-performance sodium ion batteries. ACS Appl. Nano Mater. 1, 6854–6863 (2018). https://doi.org/10.1021/acsanm.8b01330
L. Pu, J. Zhang, N.K.L. Jiresse, Y. Gao, H. Zhou et al., N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 5, 356–369 (2022). https://doi.org/10.1007/s42114-021-00371-5
D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141, 4086–4093 (2019). https://doi.org/10.1021/jacs.8b13579
L. Gao, H. Chen, A.V. Kuklin, S. Wageh, A.A. Al-Ghamdi et al., Optical properties of few-layer Ti3CN MXene: from experimental observations to theoretical calculations. ACS Nano 16, 3059–3069 (2022). https://doi.org/10.1021/acsnano.1c10577
J. Zhu, L. Xia, R. Yu, R. Lu, J. Li et al., Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 144, 15529–15538 (2022). https://doi.org/10.1021/jacs.2c03982
D. Cao, L. Zheng, Y. Wang, Y. Dong, Q. Li et al., Ultraviolet-assisted construction of low-Pt-loaded MXene catalysts for high-performance Li−O2 batteries. Energy Storage Mater. 51, 806–814 (2022). https://doi.org/10.1016/j.ensm.2022.07.026
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
M. Fan, J. Cui, J. Zhang, J. Wu, S. Chen et al., The modulating effect of N coordination on single-atom catalysts researched by Pt-Nx-C model through both experimental study and DFT simulation. J. Mater. Sci. Technol. 91, 160–167 (2021). https://doi.org/10.1016/j.jmst.2021.01.093
Y. Wu et al., Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CTx MXene. Adv. Funct. Mater. 33, 2214375 (2023). https://doi.org/10.1002/adfm.202214375
C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma et al., Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 30, 2000693 (2020). https://doi.org/10.1002/adfm.202000693
E.P. Beaumier, A.J. Pearce, X.Y. See, I.A. Tonks, Modern applications of low-valent early transition metals in synthesis and catalysis. Nat. Rev. Chem. 3, 15–34 (2019). https://doi.org/10.1038/s41570-018-0059-x
S. Zhang, M.-B. Li, Repurposing HER catalysis toward metal hydride-mediated electro-reductive transformations. Tetrahedron Chem 11, 100080 (2024). https://doi.org/10.1016/j.tchem.2024.100080
M. Ma, G. Li, W. Yan, Z. Wu, Z. Zheng et al., Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 12, 2103336 (2022). https://doi.org/10.1002/aenm.202103336
H. Jin, M. Ha, M.G. Kim, J.H. Lee, K.S. Kim, Engineering Pt coordination environment with atomically dispersed transition metal sites toward superior hydrogen evolution. Adv. Energy Mater. 13, 2204213 (2023). https://doi.org/10.1002/aenm.202204213
Z. Sun, Y. Yang, C. Fang, Y. Yao, F. Qin et al., Atomic-level Pt electrocatalyst synthesized via iced photochemical method for hydrogen evolution reaction with high efficiency. Small 18, e2203422 (2022). https://doi.org/10.1002/smll.202203422
D.-D. Qin, Y. Tang, G. Ma, L. Qin, C.-L. Tao et al., Molecular metal nanoclusters for ORR, HER and OER: achievements, opportunities and challenges. Int. J. Hydrog. Energy 46, 25771–25781 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.096
K. Kwak, W. Choi, Q. Tang, D. Jiang, D. Lee, Rationally designed metal nanocluster for electrocatalytic hydrogen production from water. J. Mater. Chem. 6, 19495–19501 (2021). https://doi.org/10.1039/C8TA06306K
Y. Zhao, X. Tan, X. Tan, W. Yang, C. Jia et al., Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59, 21493–21498 (2020). https://doi.org/10.1002/anie.202009616