Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications
Corresponding Author: Tom Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 16
Abstract
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance. Among these, inorganic perovskite quantum dots (QDs) stand out for their prominent merits, such as quantum confinement effects, high photoluminescence quantum yield, and defect-tolerant structures. Additionally, ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices. This review presents the state-of-the-art research progress on inorganic perovskite QDs, emphasizing their electronic applications. In detail, the physical properties of inorganic perovskite QDs will be introduced first, followed by a discussion of synthesis methods and growth control. Afterwards, the emerging applications of inorganic perovskite QDs in electronics, including transistors and memories, will be presented. Finally, this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
Highlights:
1 Research progress on inorganic perovskites quantum dots is reviewed from three aspects: physical properties, synthesis approaches, and electronic applications.
2 Inorganic perovskite quantum dots have been exploited as either the active layers or the additives in high-performance transistors and memories.
3 Challenges and outlook on future advancement of perovskites quantum dots-based electronics are elaborated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Møller, A phase transition in cæsium plumbochloride. Nature 180(4593), 981–982 (1957). https://doi.org/10.1038/180981a0
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- H. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
- B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10, 295 (2016). https://doi.org/10.1038/nphoton.2016.62
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang et al., Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Lett. 12, 156 (2020). https://doi.org/10.1007/s40820-020-00494-2
- C.H. Lin, L. Hu, X. Guan, J. Kim, C.Y. Huang et al., Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34(18), 2108616 (2022). https://doi.org/10.1002/adma.202108616
- F. Li, C. Ma, H. Wang, W. Hu, W. Yu et al., Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015). https://doi.org/10.1038/ncomms9238
- W. Peng, L. Wang, B. Murali, K.T. Ho, A. Bera et al., Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28, 3383–3390 (2016). https://doi.org/10.1002/adma.201506292
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- A. Younis, C.H. Lin, X. Guan, S. Shahrokhi, C.Y. Huang et al., Halide perovskites: a new era of solution-processed electronics. Adv. Mater. 33(23), 2005000 (2021). https://doi.org/10.1002/adma.202005000
- K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 13, 172 (2021). https://doi.org/10.1007/s40820-021-00690-8
- A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996). https://doi.org/10.1126/science.271.5251.933
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000). https://doi.org/10.1126/science.290.5490.314
- O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong et al., Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013). https://doi.org/10.1038/nmat3539
- D. Bimberg, N. Kirstaedter, N. Ledentsov, Z.I. Alferov, P. Kop’Ev et al., InGaAs-GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997). https://doi.org/10.1109/2944.605656
- J. Johansen, S. Stobbe, I.S. Nikolaev, T. Lund-Hansen, P.T. Kristensen et al., Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements. Phys. Rev. B 77, 073303 (2008). https://doi.org/10.1103/PhysRevB.77.073303
- S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu et al., Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015). https://doi.org/10.1038/ncomms9056
- B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou et al., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 7, 407–412 (2013). https://doi.org/10.1038/nphoton.2013.70
- L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.R. Hyun et al., Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 7, 369–373 (2012). https://doi.org/10.1038/nnano.2012.63
- O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao et al., Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011). https://doi.org/10.1126/science.1209845
- L. Duan, L. Hu, X. Guan, C.H. Lin, D. Chu et al., Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11(20), 2100354 (2021). https://doi.org/10.1002/aenm.202100354
- E.U. Rafailov, M.A. Cataluna, W. Sibbett, Mode-locked quantum-dot lasers. Nat. Photonics 1, 395–401 (2007). https://doi.org/10.1038/nphoton.2007.120
- V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff et al., Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007). https://doi.org/10.1021/nl071546n
- I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005). https://doi.org/10.1038/nmat1390
- P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff et al., A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000). https://doi.org/10.1126/science.290.5500.2282
- P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026 (2017). https://doi.org/10.1038/nnano.2017.218
- C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997). https://doi.org/10.1109/5.573740
- X. Hu, S.D. Sarma, Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301 (2000). https://doi.org/10.1103/PhysRevA.61.062301
- Z. Liu, C.H. Lin, B.R. Hyun, C.W. Sher, Z. Lv et al., Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 1–23 (2020). https://doi.org/10.1038/s41377-020-0268-1
- Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Quantum dots and their multimodal applications: a review. Materials 3, 2260–2345 (2010). https://doi.org/10.3390/ma3042260
- A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50(1), 1–208 (2001). https://doi.org/10.1080/00018730010006608
- J. Mock, E. Groß, M.J. Kloberg, B. Rieger, M. Becherer, Surface engineering of silicon quantum dots: does the ligand length impact the optoelectronic properties of light-emitting diodes? Adv. Photonics Res. 2(9), 2100083 (2021). https://doi.org/10.1002/adpr.202100083
- K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. MacNeil et al., Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008). https://doi.org/10.1063/1.2912340
- L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram et al., Nontemplate synthesis of CH3NH3PbBr3 perovskite nanops. J. Am. Chem. Soc. 136, 850–853 (2014). https://doi.org/10.1021/ja4109209
- G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A.D. Carlo et al., In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016). https://doi.org/10.1038/nenergy.2015.12
- Q. Sun, W.J. Yin, Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 139(42), 14905–14908 (2017). https://doi.org/10.1021/jacs.7b09379
- J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
- A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15(7), 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903
- L. Protesescu, S. Yakunin, O. Nazarenko, D.N. Dirin, M.V. Kovalenko, Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1(3), 1300–1308 (2018). https://doi.org/10.1021/acsanm.8b00038
- Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu et al., Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X= Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 5(42), 10947–10954 (2017). https://doi.org/10.1039/C7TC03774K
- Y. Tong, E. Bladt, M.F. Aygüler, A. Manzi, K.Z. Milowska et al., Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55(44), 13887–13892 (2016). https://doi.org/10.1002/anie.201605909
- M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang et al., Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 27(23), 1701121 (2017). https://doi.org/10.1002/adfm.201701121
- H. Huang, M.I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko, A.L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2(9), 2071–2083 (2017). https://doi.org/10.1021/acsenergylett.7b00547
- J. Lin, Y. Lu, X. Li, F. Huang, C. Yang et al., Perovskite quantum dots glasses based backlit displays. ACS Energy Lett. 6(2), 519–528 (2021). https://doi.org/10.1021/acsenergylett.0c02561
- M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14, 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
- W. Zhang, L. Peng, J. Liu, A. Tang, J.S. Hu et al., Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 28(21), 4040–4046 (2016). https://doi.org/10.1002/adma.201505927
- Z. Gu, K. Wang, W. Sun, J. Li, S. Liu et al., Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4(3), 472–479 (2016). https://doi.org/10.1002/adom.201500597
- Y. Fu, H. Zhu, J. Chen, M.P. Hautzinger, X.Y. Zhu et al., Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019). https://doi.org/10.1038/s41578-019-0080-9
- S. Chu, Y. Zhang, P. Xiao, W. Chen, R. Tangb et al., Large-area and efficient sky-blue perovskite light-emitting diodes via blade-coating. Adv. Mater. 34(16), 2108939 (2022). https://doi.org/10.1002/adma.202108939
- C.Y. Kang, C.H. Lin, C.H. Lin, T.Y. Li, S.W.H. Chen et al., Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv. Sci. 6(24), 1902230 (2019). https://doi.org/10.1002/advs.201902230
- M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093
- C.H. Lin, B. Cheng, T.Y. Li, J.R.D. Retamal, T.C. Wei et al., Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13(2), 1168–1176 (2019). https://doi.org/10.1021/acsnano.8b05859
- J.D. Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295
- H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang et al., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019). https://doi.org/10.1038/s41467-019-09047-7
- F. Bertolotti, L. Protesescu, M.V. Kovalenko, S. Yakunin, A. Cervellino et al., Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11(4), 3819–3831 (2017). https://doi.org/10.1021/acsnano.7b00017
- W. Rahim, A. Cheng, C. Lyu, T. Shi, Z. Wang et al., Geometric analysis and formability of the cubic A2BX6 vacancy-ordered double perovskite structure. Chem. Mater. 32, 9573–9583 (2020). https://doi.org/10.1021/acs.chemmater.0c02806
- R.J. Sutton, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger et al., Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3(8), 1787–1794 (2018). https://doi.org/10.1021/acsenergylett.8b00672
- S. Shahrokhi, M. Dubajic, Z.Z. Dai, S. Bhattacharyya, R.A. Mole et al., Anomalous structural evolution and glassy lattice in mixed-halide hybrid perovskites. Small 18(21), 2200847 (2022). https://doi.org/10.1002/smll.202200847
- N.A.N. Ouedraogo, Y. Chen, Y.Y. Xiao, Q. Meng, C.B. Han et al., Stability of all-inorganic perovskite solar cells. Nano Energy 67, 104249 (2020). https://doi.org/10.1016/j.nanoen.2019.104249
- C.C. Stoumpos, M.G. Kanatzidis, The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48(10), 2791–2802 (2015). https://doi.org/10.1021/acs.accounts.5b00229
- D.B. Straus, S. Guo, R.J. Cava, Kinetically stable single crystals of perovskite-phase CsPbI3. J. Am. Chem. Soc. 141(29), 11435–11439 (2019). https://doi.org/10.1021/jacs.9b06055
- S. Masi, A.F. Gualdrón-Reyes, I. Mora-Sero, Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett. 5(6), 1974–1985 (2020). https://doi.org/10.1021/acsenergylett.0c00801
- J. Chen, J. Wang, X. Xu, J. Li, J. Song et al., Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 15, 238–244 (2021). https://doi.org/10.1038/s41566-020-00743-1
- J. Butkus, P. Vashishtha, K. Chen, J.K. Gallaher, S.K. Prasad et al., The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 29, 3644–3652 (2017). https://doi.org/10.1021/acs.chemmater.7b00478
- H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Company, Singapore, 2009)
- J. Shamsi, A.S. Urban, M. Imran, L.D. Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
- Y. Li, X. Luo, Y. Liu, X. Lu, K. Wu, Size-and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5(5), 1701–1708 (2020). https://doi.org/10.1021/acsenergylett.0c00525
- M. Gao, H. Liu, S. Yu, S. Louisia, Y. Zhang et al., Scaling laws of exciton recombination kinetics in low dimensional halide perovskite nanostructures. J. Am. Chem. Soc. 142(19), 8871–8879 (2020). https://doi.org/10.1021/jacs.0c02000
- X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
- J. Li, L. Xu, T. Wang, J. Song, J. Chen et al., 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29(5), 1603885 (2017). https://doi.org/10.1002/adma.201603885
- M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin et al., Prospects of nanoscience with nanocrystals. ACS Nano 9(2), 1012–1057 (2015). https://doi.org/10.1021/nn506223h
- G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). https://doi.org/10.1126/science.aaf9717
- M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). https://doi.org/10.1126/science.aah5557
- V.K. Ravi, G.B. Markad, A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X= Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 1(4), 665–671 (2016). https://doi.org/10.1021/acsenergylett.6b00337
- S. Meloni, G. Palermo, N. Ashari-Astani, M. Grätzel, U. Rothlisberger, Valence and conduction band tuning in halide perovskites for solar cell applications. J. Mater. Chem. A 4(41), 15997–16002 (2016). https://doi.org/10.1039/C6TA04949D
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82
- Q. Chen, N.D. Marco, Y.M. Yang, T.B. Song, C.C. Chen et al., Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009
- S. Sarkar, S. Banerjee, A. Swarnkar, P. Mandal, Effect of capping ligand engineering on transport properties and carrier dynamics in cubic CsPbI3 nanocrystal film. J. Phys. Chem. C 125(19), 10539–10548 (2021). https://doi.org/10.1021/acs.jpcc.1c02350
- S.G. Álvarez, W. Lin, M. Abdellah, J. Meng, K. Žídek et al., Charge carrier diffusion dynamics in multisized quaternary alkylammonium-capped CsPbBr3 perovskite nanocrystal solids. ACS Appl. Mater. Interfaces 13(37), 44742–44750 (2021). https://doi.org/10.1021/acsami.1c11676
- G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag et al., Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16, 4838–4848 (2016). https://doi.org/10.1021/acs.nanolett.6b01168
- D.K. Chaudhary, A. Ghosh, M.Y. Ali, S. Bhattacharyya, Charge transport between coaxial polymer nanorods and grafted all-inorganic perovskite nanocrystals for hybrid organic solar cells with enhanced photoconversion efficiency. J. Phys. Chem. C 124(1), 246–255 (2020). https://doi.org/10.1021/acs.jpcc.9b11303
- Y. Kang, S. Han, Intrinsic carrier mobility of cesium lead halide perovskites. Phys. Rev. Appl. 10, 044013 (2018). https://doi.org/10.1103/PhysRevApplied.10.044013
- O. Ostroverkhova, Handbook of Organic Materials for Electronic and Photonic Devices (Woodhead Publishing, Cambridge, 2018)
- D. Zhou, D. Liu, G. Pan, X. Chen, D. Li et al., Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 29(42), 1704149 (2017). https://doi.org/10.1002/adma.201704149
- Y. Liu, X. Rong, M. Li, M.S. Molokeev, J. Zhao et al., Incorporating rare-earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence. Angew. Chem. Int. Ed. 59(28), 11634–11640 (2020). https://doi.org/10.1002/anie.202004562
- C.Y. Wang, P. Liang, R.J. Xie, Y. Yao, P. Liu et al., Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 32, 7814–7821 (2020). https://doi.org/10.1021/acs.chemmater.0c02463
- T.A. Cohen, T.J. Milstein, D.M. Kroupa, J.D. MacKenzie, C.K. Luscombe et al., Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. J. Mater. Chem. A 7(15), 9279–9288 (2019). https://doi.org/10.1039/C9TA01261C
- D. Chen, X. Chen, Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C 7(6), 1413–1446 (2019). https://doi.org/10.1039/C8TC05545A
- D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, Q. Zhang, All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. J. Mater. Chem. C 7(4), 757–789 (2019). https://doi.org/10.1039/C8TC04381G
- F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015). https://doi.org/10.1021/acsnano.5b01154
- X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26(15), 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
- H. Huang, F. Zhao, L. Liu, F. Zhang, X. Wu et al., Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7(51), 28128–28133 (2015). https://doi.org/10.1021/acsami.5b10373
- W. Yang, R. Su, D. Luo, Q. Hu, F. Zhang et al., Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy 67, 104189 (2020). https://doi.org/10.1016/j.nanoen.2019.104189
- H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider et al., Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents. Angew. Chem. Int. Ed. 129(32), 9699–9704 (2017). https://doi.org/10.1002/ange.201705595
- Y. Tong, E.P. Yao, A. Manzi, E. Bladt, K. Wang et al., Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: toward filling the green gap. Adv. Mater. 30(29), 1801117 (2018). https://doi.org/10.1002/adma.201801117
- Y. Tong, B.J. Bohn, E. Bladt, K. Wang, P. Müller-Buschbaum et al., From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56(44), 13887–13892 (2017). https://doi.org/10.1002/anie.201707224
- Y. Tong, M. Fu, E. Bladt, H. Huang, A.F. Richter et al., Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3 (X= Cl, Br, I) nanorods. Angew. Chem. Int. Ed. 57(49), 16094–16098 (2018). https://doi.org/10.1002/anie.201810110
- C.H. Lin, Z. Lyu, Y. Zhuo, C. Zhao, J. Yang et al., Microwave synthesis and high-mobility charge transport of carbon-nanotube-in-perovskite single crystals. Adv. Opt. Mater. 8(24), 2001740 (2020). https://doi.org/10.1002/adom.202001740
- I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A.J. deMello, M.V. Kovalenko, Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16(3), 1869–1877 (2016). https://doi.org/10.1021/acs.nanolett.5b04981
- S. Li, J. Probst, P.D. Howes, A.J. deMello, Long-armed hexapod nanocrystals of cesium lead bromide. Nanoscale 12(27), 14808–14817 (2020). https://doi.org/10.1039/D0NR02985H
- M. Chen, H. Hu, Y. Tan, N. Yao, Q. Zhong et al., Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy 53, 559–566 (2018). https://doi.org/10.1016/j.nanoen.2018.09.020
- L. Peng, S.K. Dutta, D. Mondal, B. Hudait, S. Shyamal et al., Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 141(40), 16160–16168 (2019). https://doi.org/10.1021/jacs.9b09157
- A. Jana, M. Mittal, A. Singla, S. Sapra, Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanops. Chem. Commun. 53, 3046–3049 (2017). https://doi.org/10.1039/C7CC00666G
- X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14, 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8
- C. Tian, F. Wang, Y. Wang, Z. Yang, X. Chen et al., Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Appl. Mater. Interfaces 11(17), 15804–15812 (2019). https://doi.org/10.1021/acsami.9b03551
- J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao et al., Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 17, 460–466 (2017). https://doi.org/10.1021/acs.nanolett.6b04450
- L. Zhang, S. Shen, M. Li, L. Li, J. Zhang et al., Strategies for air-stable and tunable monolayer MoS2-based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv. Opt. Mater. 7(11), 1801744 (2019). https://doi.org/10.1002/adom.201801744
- Y. Zhang, J. Liu, Z. Wang, Y. Xue, Q. Ou et al., Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 52, 13637–13655 (2016). https://doi.org/10.1039/C6CC06425F
- L. Rao, Y. Tang, C. Yan, J. Li, G. Zhong et al., Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. J. Mater. Chem. C 6(20), 5375–5383 (2018). https://doi.org/10.1039/C8TC00582F
- T. Qiao, D. Parobek, Y. Dong, E. Ha, D.H. Son, Photoinduced Mn doping in cesium lead halide perovskite nanocrystals. Nanoscale 11(12), 5247–5253 (2019). https://doi.org/10.1039/C8NR10439E
- W. Stam, J.J. Geuchies, T. Altantzis, K.H. Bos, J.D. Meeldijk et al., Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139(11), 4087–4097 (2017). https://doi.org/10.1021/jacs.6b13079
- F. Palazon, C. Urso, L.D. Trizio, Q. Akkerman, S. Marras et al., Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett. 2(10), 2445–2448 (2017). https://doi.org/10.1021/acsenergylett.7b00842
- Z. Liu, Y. Bekenstein, X. Ye, S.C. Nguyen, J. Swabeck et al., Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 139(15), 5309–5312 (2017). https://doi.org/10.1021/jacs.7b01409
- L. Ruan, W. Shen, A. Wang, A. Xiang, Z. Deng, Alkyl-thiol ligand-induced shape-and crystalline phase-controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017). https://doi.org/10.1021/acs.jpclett.7b01657
- T. Udayabhaskararao, L. Houben, H. Cohen, M. Menahem, I. Pinkas et al., A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 30, 84–93 (2018). https://doi.org/10.1021/acs.chemmater.7b02425
- D. Yang, P. Li, Y. Zou, M. Cao, H. Hu et al., Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 31, 1575–1583 (2019). https://doi.org/10.1021/acs.chemmater.8b04651
- G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent et al., Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 15, 5635–5640 (2015). https://doi.org/10.1021/acs.nanolett.5b02404
- Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi et al., Nearly monodisperse insulator Cs4PbX6 (X= Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17, 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
- L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen et al., From nonluminescent Cs4PbX6 (X= Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 17, 5799–5804 (2017). https://doi.org/10.1021/acs.nanolett.7b02896
- H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J. Am. Chem. Soc. 131(11), 4078–4083 (2009). https://doi.org/10.1021/ja808790p
- Z. Liang, S. Zhao, Z. Xu, B. Qiao, P. Song et al., Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 8(42), 28824–28830 (2016). https://doi.org/10.1021/acsami.6b08528
- S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10(3), 3648–3657 (2016). https://doi.org/10.1021/acsnano.5b08193
- Y. Li, H. Huang, Y. Xiong, A.F. Richter, S.V. Kershaw et al., Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 13(7), 8237–8245 (2019). https://doi.org/10.1021/acsnano.9b03508
- B. Hudait, S.K. Dutta, A. Patra, D. Nasipuri, N. Pradhan, Facets directed connecting perovskite nanocrystals. J. Am. Chem. Soc. 142(15), 7207–7217 (2020). https://doi.org/10.1021/jacs.0c02168
- G. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang et al., Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater. 26(46), 8478–8486 (2016). https://doi.org/10.1002/adfm.201603734
- M. Imran, L. Peng, A. Pianetti, V. Pinchetti, J. Ramade et al., Halide perovskite–lead chalcohalide nanocrystal heterostructures. J. Am. Chem. Soc. 143(3), 1435–1446 (2021). https://doi.org/10.1021/jacs.0c10916
- G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A.H. Khan et al., Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 12(2), 1704–1711 (2018). https://doi.org/10.1021/acsnano.7b08357
- Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
- J. Pan, Y. Shang, J. Yin, M.D. Bastiani, W. Peng et al., Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140(2), 562–565 (2018). https://doi.org/10.1021/jacs.7b10647
- Q. Zhao, A. Hazarika, L.T. Schelhas, J. Liu, E.A. Gaulding et al., Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5(1), 238–247 (2019). https://doi.org/10.1021/acsenergylett.9b02395
- W. Chen, X. Xin, Z. Zang, X. Tang, C. Li et al., Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. J. Solid State Chem. 255, 115–120 (2017). https://doi.org/10.1016/j.jssc.2017.06.006
- Y. Tang, H. Lu, L. Rao, Z. Li, X. Ding et al., Regulating the emission spectrum of CsPbBr3 from green to blue via controlling the temperature and velocity of microchannel reactor. Materials 11, 371 (2018). https://doi.org/10.3390/ma11030371
- G. Gao, Q. Xi, H. Zhou, Y. Zhao, C. Wu et al., Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 9(33), 12032–12038 (2017). https://doi.org/10.1039/C7NR04421F
- J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao et al., High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv. 7, 36722–36727 (2017). https://doi.org/10.1039/C7RA06597C
- Z.J. Yong, S.Q. Guo, J.P. Ma, J.Y. Zhang, Z.Y. Li et al., Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140(31), 9942–9951 (2018). https://doi.org/10.1021/jacs.8b04763
- Y. Wang, X. Quintana, J. Kim, X. Guan, L. Hu et al., Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res. 8, A56–A71 (2020). https://doi.org/10.1364/PRJ.402411
- R.A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian et al., Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022). https://doi.org/10.1038/s41467-022-29727-1
- S. Zhou, G. Zhou, Y. Li, X. Xu, Y.J. Hsu et al., Understanding charge transport in all-inorganic halide perovskite nanocrystal thin-film field effect transistors. ACS Energy Lett. 5(8), 2614–2623 (2020). https://doi.org/10.1021/acsenergylett.0c01295
- L. Hu, X. Guan, W. Chen, Y. Yao, T. Wan et al., Linking phase segregation and photovoltaic performance of mixed-halide perovskite films through grain size engineering. ACS Energy Lett. 6(4), 1649–1658 (2021). https://doi.org/10.1021/acsenergylett.1c00213
- X. Guan, T. Wan, L. Hu, C.H. Lin, J. Yang et al., A solution-processed all-perovskite memory with dual-band light response and tri-mode operation. Adv. Funct. Mater. 32(16), 2110975 (2022). https://doi.org/10.1002/adfm.202110975
- X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian, B.W. Larson, W. Ma, 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9(28), 1900721 (2019). https://doi.org/10.1002/aenm.201900721
- J.K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
- Y. Bai, M. Hao, S. Ding, P. Chen, L. Wang, Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives. Adv. Mater. 34(4), 2105958 (2022). https://doi.org/10.1002/adma.202105958
- C. Huo, X. Liu, Z. Wang, X. Song, H. Zeng, High-performance low-voltage-driven phototransistors through CsPbBr3–2D crystal van der Waals heterojunctions. Adv. Opt. Mater. 6(16), 1800152 (2018). https://doi.org/10.1002/adom.201800152
- X. Liu, Z. Tao, W. Kuang, Q. Huang, Q. Li et al., Dual-gate phototransistor with perovskite quantum dots-PMMA photosensing nanocomposite insulator. IEEE Electron Device Lett. 38, 1270–1273 (2017). https://doi.org/10.1109/LED.2017.2724562
- Y. Chu, Y. Chen, J. Zhou, B. Zhou, J. Huang, Efficient and stable perovskite photodetectors based on thiocyanate-assisted film formation. ACS Appl. Mater. Interfaces 11(16), 14510–14514 (2019). https://doi.org/10.1021/acsami.9b01715
- F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof, Switched-on: progress, challenges, and opportunities in metal halide perovskite transistors. Adv. Funct. Mater. 31(29), 2101029 (2021). https://doi.org/10.1002/adfm.202101029
- A.N. Aleshin, I.P. Shcherbakov, E.V. Gushchina, L.B. Matyushkin, V.A. Moshnikov, Solution-processed field-effect transistors based on polyfluorene–cesium lead halide nanocrystals composite films with small hysteresis of output and transfer characteristics. Org. Electron. 50, 213–219 (2017). https://doi.org/10.1016/j.orgel.2017.08.004
- Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, High-performance inorganic perovskite quantum dot–organic semiconductor hybrid phototransistors. Adv. Mater. 29(44), 1704062 (2017). https://doi.org/10.1002/adma.201704062
- T.Y. Li, X. Xu, C.H. Lin, X. Guan, W.H. Hsu et al., Highly UV resistant inch-scale hybrid perovskite quantum dot papers. Adv. Sci. 7(17), 1902439 (2020). https://doi.org/10.1002/advs.201902439
- J. Zhang, T. Sun, S. Zeng, D. Hao, B. Yang et al., Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95, 106987 (2022). https://doi.org/10.1016/j.nanoen.2022.106987
- K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019). https://doi.org/10.1002/smll.201900010
- H. Yang, Y. Yan, X. Wu, Y. Liu, Q. Chen et al., A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J. Mater. Chem. C 8(8), 2861–2869 (2020). https://doi.org/10.1039/C9TC06622E
- S.S. Periyal, M. Jagadeeswararao, S.E. Ng, R.A. John, N. Mathews, Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 5(11), 2000514 (2020). https://doi.org/10.1002/admt.202000514
- Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
- E. Ercan, Y.C. Lin, W.C. Yang, W.C. Chen, Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater. 32(6), 2107925 (2022). https://doi.org/10.1002/adfm.202107925
- J. Pei, X. Wu, W.J. Liu, D.W. Zhang, S.J. Ding, Photoelectric logic and in situ memory transistors with stepped floating gates of perovskite quantum dots. ACS Nano 16(2), 2442–2451 (2022). https://doi.org/10.1021/acsnano.1c08945
- D.K. Kim, D. Choi, M. Park, K.S. Jeong, J.H. Choi, Cesium lead bromide quantum dot light-emitting field-effect transistors. ACS Appl. Mater. Interfaces 12(19), 21944–21951 (2020). https://doi.org/10.1021/acsami.0c06904
- S. Zhou, Y. Ma, G. Zhou, X. Xu, M. Qin et al., Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett. 4(2), 534–541 (2019). https://doi.org/10.1021/acsenergylett.8b02478
- J. Kim, L. Hu, H. Chen, X. Guan, P.R. Anandan et al., P-type charge transport and selective gas sensing of all-inorganic perovskite nanocrystals. ACS Mater. Lett. 2(11), 1368–1374 (2020). https://doi.org/10.1021/acsmaterialslett.0c00346
- S. Lee, J.Y. Kim, S. Choi, Y. Lee, K.S. Lee et al., Photosensitive n-type doping using perovskite CsPbX3 quantum-dots for two-dimensional MSe2 (M= Mo and W) field-effect transistors. ACS Appl. Mater. Interfaces 12(22), 25159–25167 (2020). https://doi.org/10.1021/acsami.0c04924
- D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang et al., Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 31(14), 2010655 (2021). https://doi.org/10.1002/adfm.202010655
- W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM SIGARCH Comput. Archit. News 23, 20–24 (1995). https://doi.org/10.1145/216585.216588
- Q. Cao, W. Lü, X.R. Wang, X. Guan, L. Wang et al., Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 12(38), 42449–42471 (2020). https://doi.org/10.1021/acsami.0c10184
- M. Dai, Z. Song, C.H. Lin, Y. Dong, T. Wu et al., Multi-functional multi-gate one-transistor process-in-memory electronics with foundry processing and footprint reduction. Commun. Mater. 3, 41 (2022). https://doi.org/10.1038/s43246-022-00261-3
- M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017). https://doi.org/10.1038/nature22994
- F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia et al., Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423–1427 (2017). https://doi.org/10.1126/science.aao3212
- V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747
- J.M. Hu, L.Q. Chen, C.W. Nan, Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28(1), 15–39 (2016). https://doi.org/10.1002/adma.201502824
- F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday, Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020). https://doi.org/10.1186/s11671-020-03299-9
- J. Di, J. Du, Z. Lin, S. Liu, J. Ouyang et al., Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 3, 293–315 (2021). https://doi.org/10.1002/inf2.12162
- K. Kang, H. Ahn, Y. Song, W. Lee, J. Kim et al., High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 31(21), 1804841 (2019). https://doi.org/10.1002/adma.201804841
- E.J. Yoo, M. Lyu, J.H. Yun, C.J. Kang, Y.J. Choi et al., Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv. Mater. 27(40), 6170–6175 (2015). https://doi.org/10.1002/adma.201502889
- J. Ye, M.M. Byranvand, C.O. Martínez, R.L.Z. Hoye, M. Saliba et al., Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60(40), 21636–21660 (2021). https://doi.org/10.1002/anie.202102360
- B. Park, S.I. Seok, Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31(20), 1805337 (2019). https://doi.org/10.1002/adma.201805337
- T. Zhang, C. Hu, S. Yang, Ion migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2020). https://doi.org/10.1002/smtd.201900552
- L. Hu, X. Guan, T. Wan, C.-H. Lin, S. Liu et al., Valence-regulated metal doping of mixed-halide perovskites to modulate phase segregation and solar cell performance. ACS Energy Lett. 7, 4160–4160 (2022). https://doi.org/10.1021/acsenergylett.2c02040
- X. Guan, W. Hu, M.A. Haque, N. Wei, Z. Liu et al., Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions. Adv. Funct. Mater. 28(3), 1704665 (2018). https://doi.org/10.1002/adfm.201704665
- Y. Shan, Z. Lyu, X. Guan, A. Younis, G. Yuan et al., Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites. Phys. Chem. Chem. Phys. 20, 23837–23846 (2018). https://doi.org/10.1039/C8CP03945C
- Y. Wang, Z. Lv, Q. Liao, H. Shan, J. Chen et al., Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 30(28), 1800327 (2018). https://doi.org/10.1002/adma.201800327
- S. Ge, X. Guan, Y. Wang, C.H. Lin, Y. Cui et al., Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater. 30(25), 2002110 (2020). https://doi.org/10.1002/adfm.202002110
- X. Guan, Z. Lei, X. Yu, C.H. Lin, J.K. Huang, C.Y. Huang, T. Wu, Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small 18(38), 2203311 (2022). https://doi.org/10.1002/smll.202203311
- Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu et al., Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 10, 1584–1594 (2017). https://doi.org/10.1007/s12274-016-1288-2
- H. An, W.K. Kim, C. Wu, T.W. Kim, Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 56, 41–45 (2018). https://doi.org/10.1016/j.orgel.2018.02.001
- Z. Chen, Y. Zhang, Y. Yu, M. Cao, Y. Che et al., Light assisted multilevel resistive switching memory devices based on all-inorganic perovskite quantum dots. Appl. Phys. Lett. 114, 181103 (2019). https://doi.org/10.1063/1.5087594
- M.C. Yen, C.J. Lee, K.H. Liu, Y. Peng, J. Leng et al., All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12, 4460 (2021). https://doi.org/10.1038/s41467-021-24762-w
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
- D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
- Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv et al., Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 5979 (2021). https://doi.org/10.1038/s41467-021-26314-8
- W. Lin, G. Chen, E. Li, L. He, W. Yu et al., Nonvolatile multilevel photomemory based on lead-free double perovskite Cs2AgBiBr6 nanocrystals wrapped within SiO2 as a charge trapping layer. ACS Appl. Mater. Interfaces 12(39), 43967–43975 (2020). https://doi.org/10.1021/acsami.0c12185
- C. Liu, Q. Zeng, H. Wei, Y. Yu, Y. Zhao et al., Metal halide perovskite nanocrystal solar cells: progress and challenges. Small Methods 4(10), 2000419 (2020). https://doi.org/10.1002/smtd.202000419
- K. Hills-Kimball, H. Yang, T. Cai, J. Wang, O. Chen, Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 8(12), 2100214 (2021). https://doi.org/10.1002/advs.202100214
- L.M. Wheeler, E.M. Sanehira, A.R. Marshall, P. Schulz, M. Suri et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140(33), 10504–10513 (2018). https://doi.org/10.1021/jacs.8b04984
- J. Pradhan, P. Moitra, B. Das Umesh, P. Mondal, G.S. Kumar, S. Bhattacharya, Encapsulation of CsPbBr3 nanocrystals by a tripodal amine markedly improves photoluminescence and stability concomitantly via anion defect elimination. Chem. Mater. 32(17), 7159–7171 (2020). https://doi.org/10.1021/acs.chemmater.0c00385
- K. Hills-Kimball, M.J. Pérez, Y. Nagaoka, T. Cai, H. Yang et al., Ligand engineering for Mn2+ doping control in CsPbCl3 perovskite nanocrystals via a quasi-solid–solid cation exchange reaction. Chem. Mater. 32, 2489–2500 (2020). https://doi.org/10.1021/acs.chemmater.9b05082
- B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng et al., Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem. Int. Ed. 56(41), 12471–12475 (2017). https://doi.org/10.1002/anie.201704739
- T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady et al., Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138(9), 2941–2944 (2016). https://doi.org/10.1021/jacs.5b13470
- J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang et al., High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 11(9), 9294–9302 (2017). https://doi.org/10.1021/acsnano.7b04683
- B. Yang, J. Chen, S. Yang, F. Hong, L. Sun et al., Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. Int. Ed. 57(19), 5359–5363 (2018). https://doi.org/10.1002/anie.201800660
- F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato et al., Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 140(40), 12989–12995 (2018). https://doi.org/10.1021/jacs.8b07983
- L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
- A.R. Kirmani, M. Woodhouse, J.M. Luther, Technoeconomic model suggests scaling-up perovskite quantum dots for optoelectronics warrants improved synthesis yield, solvent recycling, and automation. ACS Energy Lett. 7(4), 1255–1259 (2022). https://doi.org/10.1021/acsenergylett.2c00250
- S. Shi, W. Bai, T. Xuan, T. Zhou, G. Dong et al., In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 5(3), 2000889 (2021). https://doi.org/10.1002/smtd.202000889
- C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34(10), 2107798 (2022). https://doi.org/10.1002/adma.202107798
- L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
- L.J. Sutherland, H.C. Weerasinghe, G.P. Simon, A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv. Energy Mater. 11(34), 2101383 (2021). https://doi.org/10.1002/aenm.202101383
- X. Dai, Y. Deng, C.H.V. Brackle, S. Chen, P.N. Rudd et al., Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10(1), 1903108 (2020). https://doi.org/10.1002/aenm.201903108
- R.K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34, 9189–9192 (2001). https://doi.org/10.1021/ma010780b
- R. Singh, S. Ghosh, A.S. Subbiah, N. Mahuli, S.K. Sarkar, ALD Al2O3 on hybrid perovskite solar cells: unveiling the growth mechanism and long-term stability. Sol. Energy Mater. Sol. Cells 205, 110289 (2020). https://doi.org/10.1016/j.solmat.2019.110289
- E.Y. Choi, J. Kim, S. Lim, E. Han, A.W.Y. Ho-Baillie et al., Enhancing stability for organic–inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Sol. Energy Mater. Sol. Cells 188, 37–45 (2018). https://doi.org/10.1016/j.solmat.2018.08.016
References
C. Møller, A phase transition in cæsium plumbochloride. Nature 180(4593), 981–982 (1957). https://doi.org/10.1038/180981a0
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
H. Zhou, Q. Chen, G. Li, S. Luo, T. Song et al., Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). https://doi.org/10.1126/science.1254050
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10, 295 (2016). https://doi.org/10.1038/nphoton.2016.62
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
K. Liao, C. Li, L. Xie, Y. Yuan, S. Wang et al., Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Lett. 12, 156 (2020). https://doi.org/10.1007/s40820-020-00494-2
C.H. Lin, L. Hu, X. Guan, J. Kim, C.Y. Huang et al., Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34(18), 2108616 (2022). https://doi.org/10.1002/adma.202108616
F. Li, C. Ma, H. Wang, W. Hu, W. Yu et al., Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015). https://doi.org/10.1038/ncomms9238
W. Peng, L. Wang, B. Murali, K.T. Ho, A. Bera et al., Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28, 3383–3390 (2016). https://doi.org/10.1002/adma.201506292
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
A. Younis, C.H. Lin, X. Guan, S. Shahrokhi, C.Y. Huang et al., Halide perovskites: a new era of solution-processed electronics. Adv. Mater. 33(23), 2005000 (2021). https://doi.org/10.1002/adma.202005000
K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 13, 172 (2021). https://doi.org/10.1007/s40820-021-00690-8
A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996). https://doi.org/10.1126/science.271.5251.933
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015). https://doi.org/10.1021/nl5048779
V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth et al., Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000). https://doi.org/10.1126/science.290.5490.314
O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong et al., Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013). https://doi.org/10.1038/nmat3539
D. Bimberg, N. Kirstaedter, N. Ledentsov, Z.I. Alferov, P. Kop’Ev et al., InGaAs-GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997). https://doi.org/10.1109/2944.605656
J. Johansen, S. Stobbe, I.S. Nikolaev, T. Lund-Hansen, P.T. Kristensen et al., Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements. Phys. Rev. B 77, 073303 (2008). https://doi.org/10.1103/PhysRevB.77.073303
S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu et al., Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015). https://doi.org/10.1038/ncomms9056
B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou et al., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 7, 407–412 (2013). https://doi.org/10.1038/nphoton.2013.70
L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.R. Hyun et al., Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 7, 369–373 (2012). https://doi.org/10.1038/nnano.2012.63
O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao et al., Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011). https://doi.org/10.1126/science.1209845
L. Duan, L. Hu, X. Guan, C.H. Lin, D. Chu et al., Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11(20), 2100354 (2021). https://doi.org/10.1002/aenm.202100354
E.U. Rafailov, M.A. Cataluna, W. Sibbett, Mode-locked quantum-dot lasers. Nat. Photonics 1, 395–401 (2007). https://doi.org/10.1038/nphoton.2007.120
V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff et al., Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007). https://doi.org/10.1021/nl071546n
I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005). https://doi.org/10.1038/nmat1390
P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff et al., A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000). https://doi.org/10.1126/science.290.5500.2282
P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026 (2017). https://doi.org/10.1038/nnano.2017.218
C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997). https://doi.org/10.1109/5.573740
X. Hu, S.D. Sarma, Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301 (2000). https://doi.org/10.1103/PhysRevA.61.062301
Z. Liu, C.H. Lin, B.R. Hyun, C.W. Sher, Z. Lv et al., Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 1–23 (2020). https://doi.org/10.1038/s41377-020-0268-1
Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Quantum dots and their multimodal applications: a review. Materials 3, 2260–2345 (2010). https://doi.org/10.3390/ma3042260
A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50(1), 1–208 (2001). https://doi.org/10.1080/00018730010006608
J. Mock, E. Groß, M.J. Kloberg, B. Rieger, M. Becherer, Surface engineering of silicon quantum dots: does the ligand length impact the optoelectronic properties of light-emitting diodes? Adv. Photonics Res. 2(9), 2100083 (2021). https://doi.org/10.1002/adpr.202100083
K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. MacNeil et al., Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008). https://doi.org/10.1063/1.2912340
L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram et al., Nontemplate synthesis of CH3NH3PbBr3 perovskite nanops. J. Am. Chem. Soc. 136, 850–853 (2014). https://doi.org/10.1021/ja4109209
G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A.D. Carlo et al., In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016). https://doi.org/10.1038/nenergy.2015.12
Q. Sun, W.J. Yin, Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 139(42), 14905–14908 (2017). https://doi.org/10.1021/jacs.7b09379
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu et al., All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227
A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15(7), 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903
L. Protesescu, S. Yakunin, O. Nazarenko, D.N. Dirin, M.V. Kovalenko, Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1(3), 1300–1308 (2018). https://doi.org/10.1021/acsanm.8b00038
Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu et al., Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X= Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes. J. Mater. Chem. C 5(42), 10947–10954 (2017). https://doi.org/10.1039/C7TC03774K
Y. Tong, E. Bladt, M.F. Aygüler, A. Manzi, K.Z. Milowska et al., Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55(44), 13887–13892 (2016). https://doi.org/10.1002/anie.201605909
M. Chen, Y. Zou, L. Wu, Q. Pan, D. Yang et al., Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire. Adv. Funct. Mater. 27(23), 1701121 (2017). https://doi.org/10.1002/adfm.201701121
H. Huang, M.I. Bodnarchuk, S.V. Kershaw, M.V. Kovalenko, A.L. Rogach, Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2(9), 2071–2083 (2017). https://doi.org/10.1021/acsenergylett.7b00547
J. Lin, Y. Lu, X. Li, F. Huang, C. Yang et al., Perovskite quantum dots glasses based backlit displays. ACS Energy Lett. 6(2), 519–528 (2021). https://doi.org/10.1021/acsenergylett.0c02561
M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14, 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
W. Zhang, L. Peng, J. Liu, A. Tang, J.S. Hu et al., Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 28(21), 4040–4046 (2016). https://doi.org/10.1002/adma.201505927
Z. Gu, K. Wang, W. Sun, J. Li, S. Liu et al., Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4(3), 472–479 (2016). https://doi.org/10.1002/adom.201500597
Y. Fu, H. Zhu, J. Chen, M.P. Hautzinger, X.Y. Zhu et al., Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019). https://doi.org/10.1038/s41578-019-0080-9
S. Chu, Y. Zhang, P. Xiao, W. Chen, R. Tangb et al., Large-area and efficient sky-blue perovskite light-emitting diodes via blade-coating. Adv. Mater. 34(16), 2108939 (2022). https://doi.org/10.1002/adma.202108939
C.Y. Kang, C.H. Lin, C.H. Lin, T.Y. Li, S.W.H. Chen et al., Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv. Sci. 6(24), 1902230 (2019). https://doi.org/10.1002/advs.201902230
M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093
C.H. Lin, B. Cheng, T.Y. Li, J.R.D. Retamal, T.C. Wei et al., Orthogonal lithography for halide perovskite optoelectronic nanodevices. ACS Nano 13(2), 1168–1176 (2019). https://doi.org/10.1021/acsnano.8b05859
J.D. Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295
H. Zhang, X. Fu, Y. Tang, H. Wang, C. Zhang et al., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019). https://doi.org/10.1038/s41467-019-09047-7
F. Bertolotti, L. Protesescu, M.V. Kovalenko, S. Yakunin, A. Cervellino et al., Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11(4), 3819–3831 (2017). https://doi.org/10.1021/acsnano.7b00017
W. Rahim, A. Cheng, C. Lyu, T. Shi, Z. Wang et al., Geometric analysis and formability of the cubic A2BX6 vacancy-ordered double perovskite structure. Chem. Mater. 32, 9573–9583 (2020). https://doi.org/10.1021/acs.chemmater.0c02806
R.J. Sutton, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger et al., Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3(8), 1787–1794 (2018). https://doi.org/10.1021/acsenergylett.8b00672
S. Shahrokhi, M. Dubajic, Z.Z. Dai, S. Bhattacharyya, R.A. Mole et al., Anomalous structural evolution and glassy lattice in mixed-halide hybrid perovskites. Small 18(21), 2200847 (2022). https://doi.org/10.1002/smll.202200847
N.A.N. Ouedraogo, Y. Chen, Y.Y. Xiao, Q. Meng, C.B. Han et al., Stability of all-inorganic perovskite solar cells. Nano Energy 67, 104249 (2020). https://doi.org/10.1016/j.nanoen.2019.104249
C.C. Stoumpos, M.G. Kanatzidis, The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48(10), 2791–2802 (2015). https://doi.org/10.1021/acs.accounts.5b00229
D.B. Straus, S. Guo, R.J. Cava, Kinetically stable single crystals of perovskite-phase CsPbI3. J. Am. Chem. Soc. 141(29), 11435–11439 (2019). https://doi.org/10.1021/jacs.9b06055
S. Masi, A.F. Gualdrón-Reyes, I. Mora-Sero, Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett. 5(6), 1974–1985 (2020). https://doi.org/10.1021/acsenergylett.0c00801
J. Chen, J. Wang, X. Xu, J. Li, J. Song et al., Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 15, 238–244 (2021). https://doi.org/10.1038/s41566-020-00743-1
J. Butkus, P. Vashishtha, K. Chen, J.K. Gallaher, S.K. Prasad et al., The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 29, 3644–3652 (2017). https://doi.org/10.1021/acs.chemmater.7b00478
H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Company, Singapore, 2009)
J. Shamsi, A.S. Urban, M. Imran, L.D. Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644
Y. Li, X. Luo, Y. Liu, X. Lu, K. Wu, Size-and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5(5), 1701–1708 (2020). https://doi.org/10.1021/acsenergylett.0c00525
M. Gao, H. Liu, S. Yu, S. Louisia, Y. Zhang et al., Scaling laws of exciton recombination kinetics in low dimensional halide perovskite nanostructures. J. Am. Chem. Soc. 142(19), 8871–8879 (2020). https://doi.org/10.1021/jacs.0c02000
X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Lett. 16, 1415–1420 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
J. Li, L. Xu, T. Wang, J. Song, J. Chen et al., 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29(5), 1603885 (2017). https://doi.org/10.1002/adma.201603885
M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin et al., Prospects of nanoscience with nanocrystals. ACS Nano 9(2), 1012–1057 (2015). https://doi.org/10.1021/nn506223h
G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). https://doi.org/10.1126/science.aaf9717
M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). https://doi.org/10.1126/science.aah5557
V.K. Ravi, G.B. Markad, A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X= Cl, Br, I) perovskite nanocrystals. ACS Energy Lett. 1(4), 665–671 (2016). https://doi.org/10.1021/acsenergylett.6b00337
S. Meloni, G. Palermo, N. Ashari-Astani, M. Grätzel, U. Rothlisberger, Valence and conduction band tuning in halide perovskites for solar cell applications. J. Mater. Chem. A 4(41), 15997–16002 (2016). https://doi.org/10.1039/C6TA04949D
F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82
Q. Chen, N.D. Marco, Y.M. Yang, T.B. Song, C.C. Chen et al., Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015). https://doi.org/10.1016/j.nantod.2015.04.009
S. Sarkar, S. Banerjee, A. Swarnkar, P. Mandal, Effect of capping ligand engineering on transport properties and carrier dynamics in cubic CsPbI3 nanocrystal film. J. Phys. Chem. C 125(19), 10539–10548 (2021). https://doi.org/10.1021/acs.jpcc.1c02350
S.G. Álvarez, W. Lin, M. Abdellah, J. Meng, K. Žídek et al., Charge carrier diffusion dynamics in multisized quaternary alkylammonium-capped CsPbBr3 perovskite nanocrystal solids. ACS Appl. Mater. Interfaces 13(37), 44742–44750 (2021). https://doi.org/10.1021/acsami.1c11676
G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag et al., Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16, 4838–4848 (2016). https://doi.org/10.1021/acs.nanolett.6b01168
D.K. Chaudhary, A. Ghosh, M.Y. Ali, S. Bhattacharyya, Charge transport between coaxial polymer nanorods and grafted all-inorganic perovskite nanocrystals for hybrid organic solar cells with enhanced photoconversion efficiency. J. Phys. Chem. C 124(1), 246–255 (2020). https://doi.org/10.1021/acs.jpcc.9b11303
Y. Kang, S. Han, Intrinsic carrier mobility of cesium lead halide perovskites. Phys. Rev. Appl. 10, 044013 (2018). https://doi.org/10.1103/PhysRevApplied.10.044013
O. Ostroverkhova, Handbook of Organic Materials for Electronic and Photonic Devices (Woodhead Publishing, Cambridge, 2018)
D. Zhou, D. Liu, G. Pan, X. Chen, D. Li et al., Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 29(42), 1704149 (2017). https://doi.org/10.1002/adma.201704149
Y. Liu, X. Rong, M. Li, M.S. Molokeev, J. Zhao et al., Incorporating rare-earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence. Angew. Chem. Int. Ed. 59(28), 11634–11640 (2020). https://doi.org/10.1002/anie.202004562
C.Y. Wang, P. Liang, R.J. Xie, Y. Yao, P. Liu et al., Highly efficient lead-free (Bi, Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes. Chem. Mater. 32, 7814–7821 (2020). https://doi.org/10.1021/acs.chemmater.0c02463
T.A. Cohen, T.J. Milstein, D.M. Kroupa, J.D. MacKenzie, C.K. Luscombe et al., Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators. J. Mater. Chem. A 7(15), 9279–9288 (2019). https://doi.org/10.1039/C9TA01261C
D. Chen, X. Chen, Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. J. Mater. Chem. C 7(6), 1413–1446 (2019). https://doi.org/10.1039/C8TC05545A
D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, Q. Zhang, All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. J. Mater. Chem. C 7(4), 757–789 (2019). https://doi.org/10.1039/C8TC04381G
F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015). https://doi.org/10.1021/acsnano.5b01154
X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu et al., CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26(15), 2435–2445 (2016). https://doi.org/10.1002/adfm.201600109
H. Huang, F. Zhao, L. Liu, F. Zhang, X. Wu et al., Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: an alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 7(51), 28128–28133 (2015). https://doi.org/10.1021/acsami.5b10373
W. Yang, R. Su, D. Luo, Q. Hu, F. Zhang et al., Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy 67, 104189 (2020). https://doi.org/10.1016/j.nanoen.2019.104189
H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider et al., Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents. Angew. Chem. Int. Ed. 129(32), 9699–9704 (2017). https://doi.org/10.1002/ange.201705595
Y. Tong, E.P. Yao, A. Manzi, E. Bladt, K. Wang et al., Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: toward filling the green gap. Adv. Mater. 30(29), 1801117 (2018). https://doi.org/10.1002/adma.201801117
Y. Tong, B.J. Bohn, E. Bladt, K. Wang, P. Müller-Buschbaum et al., From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56(44), 13887–13892 (2017). https://doi.org/10.1002/anie.201707224
Y. Tong, M. Fu, E. Bladt, H. Huang, A.F. Richter et al., Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3 (X= Cl, Br, I) nanorods. Angew. Chem. Int. Ed. 57(49), 16094–16098 (2018). https://doi.org/10.1002/anie.201810110
C.H. Lin, Z. Lyu, Y. Zhuo, C. Zhao, J. Yang et al., Microwave synthesis and high-mobility charge transport of carbon-nanotube-in-perovskite single crystals. Adv. Opt. Mater. 8(24), 2001740 (2020). https://doi.org/10.1002/adom.202001740
I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A.J. deMello, M.V. Kovalenko, Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16(3), 1869–1877 (2016). https://doi.org/10.1021/acs.nanolett.5b04981
S. Li, J. Probst, P.D. Howes, A.J. deMello, Long-armed hexapod nanocrystals of cesium lead bromide. Nanoscale 12(27), 14808–14817 (2020). https://doi.org/10.1039/D0NR02985H
M. Chen, H. Hu, Y. Tan, N. Yao, Q. Zhong et al., Controlled growth of dodecapod-branched CsPbBr3 nanocrystals and their application in white light emitting diodes. Nano Energy 53, 559–566 (2018). https://doi.org/10.1016/j.nanoen.2018.09.020
L. Peng, S.K. Dutta, D. Mondal, B. Hudait, S. Shyamal et al., Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 141(40), 16160–16168 (2019). https://doi.org/10.1021/jacs.9b09157
A. Jana, M. Mittal, A. Singla, S. Sapra, Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanops. Chem. Commun. 53, 3046–3049 (2017). https://doi.org/10.1039/C7CC00666G
X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14, 82–88 (2020). https://doi.org/10.1038/s41566-019-0538-8
C. Tian, F. Wang, Y. Wang, Z. Yang, X. Chen et al., Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Appl. Mater. Interfaces 11(17), 15804–15812 (2019). https://doi.org/10.1021/acsami.9b03551
J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao et al., Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 17, 460–466 (2017). https://doi.org/10.1021/acs.nanolett.6b04450
L. Zhang, S. Shen, M. Li, L. Li, J. Zhang et al., Strategies for air-stable and tunable monolayer MoS2-based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv. Opt. Mater. 7(11), 1801744 (2019). https://doi.org/10.1002/adom.201801744
Y. Zhang, J. Liu, Z. Wang, Y. Xue, Q. Ou et al., Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 52, 13637–13655 (2016). https://doi.org/10.1039/C6CC06425F
L. Rao, Y. Tang, C. Yan, J. Li, G. Zhong et al., Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. J. Mater. Chem. C 6(20), 5375–5383 (2018). https://doi.org/10.1039/C8TC00582F
T. Qiao, D. Parobek, Y. Dong, E. Ha, D.H. Son, Photoinduced Mn doping in cesium lead halide perovskite nanocrystals. Nanoscale 11(12), 5247–5253 (2019). https://doi.org/10.1039/C8NR10439E
W. Stam, J.J. Geuchies, T. Altantzis, K.H. Bos, J.D. Meeldijk et al., Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139(11), 4087–4097 (2017). https://doi.org/10.1021/jacs.6b13079
F. Palazon, C. Urso, L.D. Trizio, Q. Akkerman, S. Marras et al., Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett. 2(10), 2445–2448 (2017). https://doi.org/10.1021/acsenergylett.7b00842
Z. Liu, Y. Bekenstein, X. Ye, S.C. Nguyen, J. Swabeck et al., Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 139(15), 5309–5312 (2017). https://doi.org/10.1021/jacs.7b01409
L. Ruan, W. Shen, A. Wang, A. Xiang, Z. Deng, Alkyl-thiol ligand-induced shape-and crystalline phase-controlled synthesis of stable perovskite-related CsPb2Br5 nanocrystals at room temperature. J. Phys. Chem. Lett. 8, 3853–3860 (2017). https://doi.org/10.1021/acs.jpclett.7b01657
T. Udayabhaskararao, L. Houben, H. Cohen, M. Menahem, I. Pinkas et al., A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 30, 84–93 (2018). https://doi.org/10.1021/acs.chemmater.7b02425
D. Yang, P. Li, Y. Zou, M. Cao, H. Hu et al., Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 31, 1575–1583 (2019). https://doi.org/10.1021/acs.chemmater.8b04651
G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent et al., Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 15, 5635–5640 (2015). https://doi.org/10.1021/acs.nanolett.5b02404
Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi et al., Nearly monodisperse insulator Cs4PbX6 (X= Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17, 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen et al., From nonluminescent Cs4PbX6 (X= Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 17, 5799–5804 (2017). https://doi.org/10.1021/acs.nanolett.7b02896
H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J. Am. Chem. Soc. 131(11), 4078–4083 (2009). https://doi.org/10.1021/ja808790p
Z. Liang, S. Zhao, Z. Xu, B. Qiao, P. Song et al., Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 8(42), 28824–28830 (2016). https://doi.org/10.1021/acsami.6b08528
S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10(3), 3648–3657 (2016). https://doi.org/10.1021/acsnano.5b08193
Y. Li, H. Huang, Y. Xiong, A.F. Richter, S.V. Kershaw et al., Using polar alcohols for the direct synthesis of cesium lead halide perovskite nanorods with anisotropic emission. ACS Nano 13(7), 8237–8245 (2019). https://doi.org/10.1021/acsnano.9b03508
B. Hudait, S.K. Dutta, A. Patra, D. Nasipuri, N. Pradhan, Facets directed connecting perovskite nanocrystals. J. Am. Chem. Soc. 142(15), 7207–7217 (2020). https://doi.org/10.1021/jacs.0c02168
G. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang et al., Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater. 26(46), 8478–8486 (2016). https://doi.org/10.1002/adfm.201603734
M. Imran, L. Peng, A. Pianetti, V. Pinchetti, J. Ramade et al., Halide perovskite–lead chalcohalide nanocrystal heterostructures. J. Am. Chem. Soc. 143(3), 1435–1446 (2021). https://doi.org/10.1021/jacs.0c10916
G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A.H. Khan et al., Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 12(2), 1704–1711 (2018). https://doi.org/10.1021/acsnano.7b08357
Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
J. Pan, Y. Shang, J. Yin, M.D. Bastiani, W. Peng et al., Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 140(2), 562–565 (2018). https://doi.org/10.1021/jacs.7b10647
Q. Zhao, A. Hazarika, L.T. Schelhas, J. Liu, E.A. Gaulding et al., Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5(1), 238–247 (2019). https://doi.org/10.1021/acsenergylett.9b02395
W. Chen, X. Xin, Z. Zang, X. Tang, C. Li et al., Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. J. Solid State Chem. 255, 115–120 (2017). https://doi.org/10.1016/j.jssc.2017.06.006
Y. Tang, H. Lu, L. Rao, Z. Li, X. Ding et al., Regulating the emission spectrum of CsPbBr3 from green to blue via controlling the temperature and velocity of microchannel reactor. Materials 11, 371 (2018). https://doi.org/10.3390/ma11030371
G. Gao, Q. Xi, H. Zhou, Y. Zhao, C. Wu et al., Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 9(33), 12032–12038 (2017). https://doi.org/10.1039/C7NR04421F
J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao et al., High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv. 7, 36722–36727 (2017). https://doi.org/10.1039/C7RA06597C
Z.J. Yong, S.Q. Guo, J.P. Ma, J.Y. Zhang, Z.Y. Li et al., Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140(31), 9942–9951 (2018). https://doi.org/10.1021/jacs.8b04763
Y. Wang, X. Quintana, J. Kim, X. Guan, L. Hu et al., Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res. 8, A56–A71 (2020). https://doi.org/10.1364/PRJ.402411
R.A. John, Y. Demirağ, Y. Shynkarenko, Y. Berezovska, N. Ohannessian et al., Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022). https://doi.org/10.1038/s41467-022-29727-1
S. Zhou, G. Zhou, Y. Li, X. Xu, Y.J. Hsu et al., Understanding charge transport in all-inorganic halide perovskite nanocrystal thin-film field effect transistors. ACS Energy Lett. 5(8), 2614–2623 (2020). https://doi.org/10.1021/acsenergylett.0c01295
L. Hu, X. Guan, W. Chen, Y. Yao, T. Wan et al., Linking phase segregation and photovoltaic performance of mixed-halide perovskite films through grain size engineering. ACS Energy Lett. 6(4), 1649–1658 (2021). https://doi.org/10.1021/acsenergylett.1c00213
X. Guan, T. Wan, L. Hu, C.H. Lin, J. Yang et al., A solution-processed all-perovskite memory with dual-band light response and tri-mode operation. Adv. Funct. Mater. 32(16), 2110975 (2022). https://doi.org/10.1002/adfm.202110975
X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian, B.W. Larson, W. Ma, 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9(28), 1900721 (2019). https://doi.org/10.1002/aenm.201900721
J.K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022). https://doi.org/10.1038/s41586-022-04588-2
Y. Bai, M. Hao, S. Ding, P. Chen, L. Wang, Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives. Adv. Mater. 34(4), 2105958 (2022). https://doi.org/10.1002/adma.202105958
C. Huo, X. Liu, Z. Wang, X. Song, H. Zeng, High-performance low-voltage-driven phototransistors through CsPbBr3–2D crystal van der Waals heterojunctions. Adv. Opt. Mater. 6(16), 1800152 (2018). https://doi.org/10.1002/adom.201800152
X. Liu, Z. Tao, W. Kuang, Q. Huang, Q. Li et al., Dual-gate phototransistor with perovskite quantum dots-PMMA photosensing nanocomposite insulator. IEEE Electron Device Lett. 38, 1270–1273 (2017). https://doi.org/10.1109/LED.2017.2724562
Y. Chu, Y. Chen, J. Zhou, B. Zhou, J. Huang, Efficient and stable perovskite photodetectors based on thiocyanate-assisted film formation. ACS Appl. Mater. Interfaces 11(16), 14510–14514 (2019). https://doi.org/10.1021/acsami.9b01715
F. Paulus, C. Tyznik, O.D. Jurchescu, Y. Vaynzof, Switched-on: progress, challenges, and opportunities in metal halide perovskite transistors. Adv. Funct. Mater. 31(29), 2101029 (2021). https://doi.org/10.1002/adfm.202101029
A.N. Aleshin, I.P. Shcherbakov, E.V. Gushchina, L.B. Matyushkin, V.A. Moshnikov, Solution-processed field-effect transistors based on polyfluorene–cesium lead halide nanocrystals composite films with small hysteresis of output and transfer characteristics. Org. Electron. 50, 213–219 (2017). https://doi.org/10.1016/j.orgel.2017.08.004
Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, High-performance inorganic perovskite quantum dot–organic semiconductor hybrid phototransistors. Adv. Mater. 29(44), 1704062 (2017). https://doi.org/10.1002/adma.201704062
T.Y. Li, X. Xu, C.H. Lin, X. Guan, W.H. Hsu et al., Highly UV resistant inch-scale hybrid perovskite quantum dot papers. Adv. Sci. 7(17), 1902439 (2020). https://doi.org/10.1002/advs.201902439
J. Zhang, T. Sun, S. Zeng, D. Hao, B. Yang et al., Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95, 106987 (2022). https://doi.org/10.1016/j.nanoen.2022.106987
K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu et al., Light-stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15(11), 1900010 (2019). https://doi.org/10.1002/smll.201900010
H. Yang, Y. Yan, X. Wu, Y. Liu, Q. Chen et al., A multilevel vertical photonic memory transistor based on organic semiconductor/inorganic perovskite quantum dot blends. J. Mater. Chem. C 8(8), 2861–2869 (2020). https://doi.org/10.1039/C9TC06622E
S.S. Periyal, M. Jagadeeswararao, S.E. Ng, R.A. John, N. Mathews, Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 5(11), 2000514 (2020). https://doi.org/10.1002/admt.202000514
Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
E. Ercan, Y.C. Lin, W.C. Yang, W.C. Chen, Self-assembled nanostructures of quantum dot/conjugated polymer hybrids for photonic synaptic transistors with ultralow energy consumption and zero-gate bias. Adv. Funct. Mater. 32(6), 2107925 (2022). https://doi.org/10.1002/adfm.202107925
J. Pei, X. Wu, W.J. Liu, D.W. Zhang, S.J. Ding, Photoelectric logic and in situ memory transistors with stepped floating gates of perovskite quantum dots. ACS Nano 16(2), 2442–2451 (2022). https://doi.org/10.1021/acsnano.1c08945
D.K. Kim, D. Choi, M. Park, K.S. Jeong, J.H. Choi, Cesium lead bromide quantum dot light-emitting field-effect transistors. ACS Appl. Mater. Interfaces 12(19), 21944–21951 (2020). https://doi.org/10.1021/acsami.0c06904
S. Zhou, Y. Ma, G. Zhou, X. Xu, M. Qin et al., Ag-doped halide perovskite nanocrystals for tunable band structure and efficient charge transport. ACS Energy Lett. 4(2), 534–541 (2019). https://doi.org/10.1021/acsenergylett.8b02478
J. Kim, L. Hu, H. Chen, X. Guan, P.R. Anandan et al., P-type charge transport and selective gas sensing of all-inorganic perovskite nanocrystals. ACS Mater. Lett. 2(11), 1368–1374 (2020). https://doi.org/10.1021/acsmaterialslett.0c00346
S. Lee, J.Y. Kim, S. Choi, Y. Lee, K.S. Lee et al., Photosensitive n-type doping using perovskite CsPbX3 quantum-dots for two-dimensional MSe2 (M= Mo and W) field-effect transistors. ACS Appl. Mater. Interfaces 12(22), 25159–25167 (2020). https://doi.org/10.1021/acsami.0c04924
D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang et al., Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 31(14), 2010655 (2021). https://doi.org/10.1002/adfm.202010655
W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM SIGARCH Comput. Archit. News 23, 20–24 (1995). https://doi.org/10.1145/216585.216588
Q. Cao, W. Lü, X.R. Wang, X. Guan, L. Wang et al., Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 12(38), 42449–42471 (2020). https://doi.org/10.1021/acsami.0c10184
M. Dai, Z. Song, C.H. Lin, Y. Dong, T. Wu et al., Multi-functional multi-gate one-transistor process-in-memory electronics with foundry processing and footprint reduction. Commun. Mater. 3, 41 (2022). https://doi.org/10.1038/s43246-022-00261-3
M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017). https://doi.org/10.1038/nature22994
F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia et al., Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423–1427 (2017). https://doi.org/10.1126/science.aao3212
V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747
J.M. Hu, L.Q. Chen, C.W. Nan, Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28(1), 15–39 (2016). https://doi.org/10.1002/adma.201502824
F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday, Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 15, 90 (2020). https://doi.org/10.1186/s11671-020-03299-9
J. Di, J. Du, Z. Lin, S. Liu, J. Ouyang et al., Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 3, 293–315 (2021). https://doi.org/10.1002/inf2.12162
K. Kang, H. Ahn, Y. Song, W. Lee, J. Kim et al., High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 31(21), 1804841 (2019). https://doi.org/10.1002/adma.201804841
E.J. Yoo, M. Lyu, J.H. Yun, C.J. Kang, Y.J. Choi et al., Resistive switching behavior in organic–inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv. Mater. 27(40), 6170–6175 (2015). https://doi.org/10.1002/adma.201502889
J. Ye, M.M. Byranvand, C.O. Martínez, R.L.Z. Hoye, M. Saliba et al., Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60(40), 21636–21660 (2021). https://doi.org/10.1002/anie.202102360
B. Park, S.I. Seok, Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31(20), 1805337 (2019). https://doi.org/10.1002/adma.201805337
T. Zhang, C. Hu, S. Yang, Ion migration: a “double-edged sword” for halide-perovskite-based electronic devices. Small Methods 4(5), 1900552 (2020). https://doi.org/10.1002/smtd.201900552
L. Hu, X. Guan, T. Wan, C.-H. Lin, S. Liu et al., Valence-regulated metal doping of mixed-halide perovskites to modulate phase segregation and solar cell performance. ACS Energy Lett. 7, 4160–4160 (2022). https://doi.org/10.1021/acsenergylett.2c02040
X. Guan, W. Hu, M.A. Haque, N. Wei, Z. Liu et al., Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions. Adv. Funct. Mater. 28(3), 1704665 (2018). https://doi.org/10.1002/adfm.201704665
Y. Shan, Z. Lyu, X. Guan, A. Younis, G. Yuan et al., Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites. Phys. Chem. Chem. Phys. 20, 23837–23846 (2018). https://doi.org/10.1039/C8CP03945C
Y. Wang, Z. Lv, Q. Liao, H. Shan, J. Chen et al., Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 30(28), 1800327 (2018). https://doi.org/10.1002/adma.201800327
S. Ge, X. Guan, Y. Wang, C.H. Lin, Y. Cui et al., Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater. 30(25), 2002110 (2020). https://doi.org/10.1002/adfm.202002110
X. Guan, Z. Lei, X. Yu, C.H. Lin, J.K. Huang, C.Y. Huang, T. Wu, Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small 18(38), 2203311 (2022). https://doi.org/10.1002/smll.202203311
Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu et al., Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 10, 1584–1594 (2017). https://doi.org/10.1007/s12274-016-1288-2
H. An, W.K. Kim, C. Wu, T.W. Kim, Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 56, 41–45 (2018). https://doi.org/10.1016/j.orgel.2018.02.001
Z. Chen, Y. Zhang, Y. Yu, M. Cao, Y. Che et al., Light assisted multilevel resistive switching memory devices based on all-inorganic perovskite quantum dots. Appl. Phys. Lett. 114, 181103 (2019). https://doi.org/10.1063/1.5087594
M.C. Yen, C.J. Lee, K.H. Liu, Y. Peng, J. Leng et al., All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 12, 4460 (2021). https://doi.org/10.1038/s41467-021-24762-w
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 12(35), 39487–39495 (2020). https://doi.org/10.1021/acsami.0c10851
Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv et al., Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 5979 (2021). https://doi.org/10.1038/s41467-021-26314-8
W. Lin, G. Chen, E. Li, L. He, W. Yu et al., Nonvolatile multilevel photomemory based on lead-free double perovskite Cs2AgBiBr6 nanocrystals wrapped within SiO2 as a charge trapping layer. ACS Appl. Mater. Interfaces 12(39), 43967–43975 (2020). https://doi.org/10.1021/acsami.0c12185
C. Liu, Q. Zeng, H. Wei, Y. Yu, Y. Zhao et al., Metal halide perovskite nanocrystal solar cells: progress and challenges. Small Methods 4(10), 2000419 (2020). https://doi.org/10.1002/smtd.202000419
K. Hills-Kimball, H. Yang, T. Cai, J. Wang, O. Chen, Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 8(12), 2100214 (2021). https://doi.org/10.1002/advs.202100214
L.M. Wheeler, E.M. Sanehira, A.R. Marshall, P. Schulz, M. Suri et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140(33), 10504–10513 (2018). https://doi.org/10.1021/jacs.8b04984
J. Pradhan, P. Moitra, B. Das Umesh, P. Mondal, G.S. Kumar, S. Bhattacharya, Encapsulation of CsPbBr3 nanocrystals by a tripodal amine markedly improves photoluminescence and stability concomitantly via anion defect elimination. Chem. Mater. 32(17), 7159–7171 (2020). https://doi.org/10.1021/acs.chemmater.0c00385
K. Hills-Kimball, M.J. Pérez, Y. Nagaoka, T. Cai, H. Yang et al., Ligand engineering for Mn2+ doping control in CsPbCl3 perovskite nanocrystals via a quasi-solid–solid cation exchange reaction. Chem. Mater. 32, 2489–2500 (2020). https://doi.org/10.1021/acs.chemmater.9b05082
B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng et al., Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem. Int. Ed. 56(41), 12471–12475 (2017). https://doi.org/10.1002/anie.201704739
T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady et al., Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138(9), 2941–2944 (2016). https://doi.org/10.1021/jacs.5b13470
J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang et al., High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 11(9), 9294–9302 (2017). https://doi.org/10.1021/acsnano.7b04683
B. Yang, J. Chen, S. Yang, F. Hong, L. Sun et al., Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem. Int. Ed. 57(19), 5359–5363 (2018). https://doi.org/10.1002/anie.201800660
F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato et al., Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 140(40), 12989–12995 (2018). https://doi.org/10.1021/jacs.8b07983
L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
A.R. Kirmani, M. Woodhouse, J.M. Luther, Technoeconomic model suggests scaling-up perovskite quantum dots for optoelectronics warrants improved synthesis yield, solvent recycling, and automation. ACS Energy Lett. 7(4), 1255–1259 (2022). https://doi.org/10.1021/acsenergylett.2c00250
S. Shi, W. Bai, T. Xuan, T. Zhou, G. Dong et al., In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks. Small Methods 5(3), 2000889 (2021). https://doi.org/10.1002/smtd.202000889
C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 34(10), 2107798 (2022). https://doi.org/10.1002/adma.202107798
L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
L.J. Sutherland, H.C. Weerasinghe, G.P. Simon, A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics. Adv. Energy Mater. 11(34), 2101383 (2021). https://doi.org/10.1002/aenm.202101383
X. Dai, Y. Deng, C.H.V. Brackle, S. Chen, P.N. Rudd et al., Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10(1), 1903108 (2020). https://doi.org/10.1002/aenm.201903108
R.K. Bharadwaj, Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34, 9189–9192 (2001). https://doi.org/10.1021/ma010780b
R. Singh, S. Ghosh, A.S. Subbiah, N. Mahuli, S.K. Sarkar, ALD Al2O3 on hybrid perovskite solar cells: unveiling the growth mechanism and long-term stability. Sol. Energy Mater. Sol. Cells 205, 110289 (2020). https://doi.org/10.1016/j.solmat.2019.110289
E.Y. Choi, J. Kim, S. Lim, E. Han, A.W.Y. Ho-Baillie et al., Enhancing stability for organic–inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation. Sol. Energy Mater. Sol. Cells 188, 37–45 (2018). https://doi.org/10.1016/j.solmat.2018.08.016