Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors
Corresponding Author: Jiabao Yi
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 50
Abstract
Two-dimensional (2D) materials have attracted extensive interest due to their excellent electrical, thermal, mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide (TMDC), another kind of 2D material, has a nonzero direct band gap (same charge carrier momentum in valence and conduction band) at monolayer state, promising for the efficient switching devices (e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2D-TMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). doi:10.1038/nnano.2012.193
- J.A. Wilson, F.J. Di Salvo, S. Mahajan, Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32(16), 882–885 (1974). doi:10.1103/PhysRevLett.32.882
- A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater Sci. 73, 44–126 (2015). doi:10.1016/j.pmatsci.2015.02.002
- X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1(1), 33–44 (2015). doi:10.1016/j.jmat.2015.03.003
- G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015). doi:10.1021/acsnano.5b05556
- S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D material. Annu. Rev. Mater. Res. 45(1), 63–84 (2015). doi:10.1146/annurev-matsci-070214-020901
- S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Beyond Graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45(1), 1–27 (2015). doi:10.1146/annurev-matsci-070214-021034
- X. Tong, E. Ashalley, F. Lin, H. Li, Z.M. Wang, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(3), 203–218 (2015). doi:10.1007/s40820-015-0034-8
- S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). doi:10.1021/nn400280c
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). doi:10.1021/nn500064s
- F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014). doi:10.1038/nphoton.2014.271
- X.R. Wang, Y. Shi, R. Zhang, Field-effect transistors based on two-dimensional materials for logic applications. Chin. Phys. B 22(9), 098505 (2013). doi:10.1088/1674-1056/22/9/098505
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). doi:10.1038/nnano.2014.207
- C. Nitin, R.I. Muhammad, K. Narae, T. Laurene, J. Yeonwoong, I.K. Saiful, Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys.: Condens. Matter. 28(36), 364002 (2016). doi:10.1088/0953-8984/28/36/364002
- H.-Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne, S. Yang, N. Lu, S.K. Banerjee, D. Akinwande, Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28(9), 1818–1823 (2016). doi:10.1002/adma.201504309
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). doi:10.1126/Science1246501
- N. Choudhary, M.D. Patel, J. Park, B. Sirota, W. Choi, Synthesis of large scale MoS2 for electronics and energy applications. J. Mater. Res. 31(7), 824–831 (2016). doi:10.1557/jmr.2016.100
- V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys. 17(5), 2960–2986 (2015). doi:10.1039/C4CP04245J
- S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015). doi:10.3390/electronics4030651
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). doi:10.1021/cr300263a
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
- X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008). doi:10.1103/PhysRevLett.100.206803
- Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Phys. B Condens. Matter. 406(11), 2254–2260 (2011). doi:10.1016/j.physb.2011.03.044
- C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116(16), 8983–8999 (2012). doi:10.1021/jp212558p
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). doi:10.1103/PhysRevLett.105.136805
- A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska et al., Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014). doi:10.1038/srep06608
- F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). doi:10.1021/acs.jpcc.5b02950
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005). doi:10.1073/pnas.0502848102
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). doi:10.1038/nnano.2010.279
- M.S. Fuhrer, J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 146–147 (2013). doi:10.1038/nnano.2013.30
- B. Radisavljevic, A. Kis, Reply to measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 147–148 (2013). doi:10.1038/nnano.2013.31
- Z. Yu, Z.-Y. Ong, Y. Pan, Y. Cui, R. Xin et al., Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28(3), 547–552 (2016). doi:10.1002/adma.201503033
- X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M.B. Nardelli, K.W. Kim, Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87(11), 115418 (2013). doi:10.1103/PhysRevB.87.115418
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 1–7 (2014). doi:10.1038/ncomms5475
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). doi:10.1038/nnano.2014.35
- W. Zhu, S. Park, M.N. Yogeesh, K.M. McNicholas, S.R. Bank, D. Akinwande, Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett. 16(4), 2301–2306 (2016). doi:10.1021/acs.nanolett.5b04768
- M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). doi:10.1038/nature08956
- J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai, Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4(12), 7293–7302 (2010). doi:10.1021/nn102246a
- A.S. Karakoti, O. Tsigkou, S. Yue, P.D. Lee, M.M. Stevens, J.R. Jones, S. Seal, Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20(40), 8912–8919 (2010). doi:10.1039/C0JM01072C
- J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). doi:10.1016/j.pmatsci.2011.08.003
- R. Mas Balleste, C. Gomez Navarro, J. Gomez Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). doi:10.1039/C0NR00323A
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
- E. Canadell, A. LeBeuze, M.A. El Khalifa, R. Chevrel, M.H. Whangbo, Origin of metal clustering in transition-metal chalcogenide layers MX2 (M = Nb, Ta, Mo, Re; X = S, Se). J. Am. Chem. Soc. 111(11), 3778–3782 (1989). doi:10.1021/ja00193a002
- M.A. Lukowski, A.S. Daniel, C.R. English, F. Meng, A. Forticaux, R.J. Hamers, S. Jin, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7(8), 2608–2613 (2014). doi:10.1039/C4EE01329H
- R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051–20061 (2015). doi:10.1364/OE.23.020051
- J. Wilson, A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969). doi:10.1080/00018736900101307
- E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Adv. 7(45), 28234–28290 (2017). doi:10.1039/C7RA03599C
- P. May, U. Khan, J.N. Coleman, Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Appl. Phys. Lett. 103(16), 163106 (2013). doi:10.1063/1.4825279
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). doi:10.1016/j.mattod.2016.10.002
- R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). doi:10.1038/nmat4080
- A. Yoon, Z. Lee, Synthesis and properties of two dimensional doped transition metal dichalcogenides. Appl. Microsc. 47(1), 19–28 (2017). doi:10.9729/AM.2017.47.1.19
- R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. 2(9), 092516 (2014). doi:10.1063/1.4896077
- G.L. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys. Rev. B 57(11), 6666–6671 (1998). doi:10.1103/PhysRevB.57.6666
- F. Ji, X. Ren, X. Zheng, Y. Liu, L. Pang, J. Jiang, S.F. Liu, 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 8(16), 8696–8703 (2016). doi:10.1039/C6NR00880A
- J. Wang, C.J. Liu, Preparation of 2D WO3 Nanomaterials with enhanced catalytic activities: current status and perspective. ChemBioEng Rev. 2(5), 335–350 (2015). doi:10.1002/cben.201500014
- S.-J. Choi, J.-S. Jang, H.J. Park, I.-D. Kim, Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 27(13), 1606026 (2017). doi:10.1002/adfm.201606026
- Y. Zhang, W. Wu, K. Zhang, C. Liu, A. Yu, M. Peng, J. Zhai, Raman study of 2D anatase TiO2 nanosheets. Phys. Chem. Chem. Phys. 18(47), 32178–32184 (2016). doi:10.1039/C6CP05496J
- Z. Liu, K. Xu, P. She, S. Yin, X. Zhu, H. Sun, Self-assembly of 2D MnO2 nanosheets into high-purity aerogels with ultralow density. Chem. Sci. 7(3), 1926–1932 (2016). doi:10.1039/C5SC03217B
- G. Yang, H. Song, M. Wu, C. Wang, SnO2 nanoparticles anchored on 2D V2O5 nanosheets with enhanced lithium-storage performances. Electrochim. Acta 205, 153–160 (2016). doi:10.1016/j.electacta.2016.04.077
- X. Xu, K. Takada, K. Fukuda, T. Ohnishi, K. Akatsuka, M. Osada, B.T. Hang, K. Kumagai, T. Sekiguchi, T. Sasaki, Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte. Energy Environ. Sci. 4(9), 3509–3512 (2011). doi:10.1039/c1ee01389k
- G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). doi:10.1021/nn302422x
- H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, H. Zhang, Optical identification of single- and few-layer MoS2 sheets. Small 8(5), 682–686 (2012). doi:10.1002/smll.201101958
- S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12(11), 5576–5580 (2012). doi:10.1021/nl302584w
- K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10(4), 216–226 (2016). doi:10.1038/nphoton.2015.282
- M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012). doi:10.1002/adma.201103241
- R.A. Gordon, D. Yang, E.D. Crozier, D.T. Jiang, R.F. Frindt, Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65(12), 125407 (2002). doi:10.1103/PhysRevB.65.125407
- F.R. Gamble, J.H. Osiecki, M. Cais, R. Pisharody, F.J. DiSalvo, T.H. Geballe, Intercalation complexes of lewis bases and layered sulfides: a large class of new superconductors. Science 174(4008), 493–497 (1971). doi:10.1126/Science174.4008.493
- D.H. Keum, S. Cho, J.H. Kim, D.-H. Choe, H.-J. Sung et al., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11(6), 482–486 (2015). doi:10.1038/nphys3314
- T.A. Empante, Y. Zhou, V. Klee, A.E. Nguyen, I.H. Lu et al., Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: tunable properties of MoTe2 films. ACS Nano 11(1), 900–905 (2017). doi:10.1021/acsnano.6b07499
- A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115(50), 24586–24591 (2011). doi:10.1021/jp2076325
- D. Kong, W. Dang, J.J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10(6), 2245–2250 (2010). doi:10.1021/nl101260j
- S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13(4), 1596–1601 (2013). doi:10.1021/nl400001u
- J. Taha-Tijerina, T.N. Narayanan, G. Gao, M. Rohde, D.A. Tsentalovich, M. Pasquali, P.M. Ajayan, Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 6(2), 1214–1220 (2012). doi:10.1021/nn203862p
- Y. Ebina, T. Sasaki, M. Harada, M. Watanabe, Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14(10), 4390–4395 (2002). doi:10.1021/cm020622e
- T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem. Mater. 19(26), 6575–6580 (2007). doi:10.1021/cm702552p
- W.-T. Hsu, Z.-A. Zhao, L.-J. Li, C.-H. Chen, M.-H. Chiu, P.-S. Chang, Y.-C. Chou, W.-H. Chang, Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8(3), 2951–2958 (2014). doi:10.1021/nn500228r
- A. Acun, B. Poelsema, H.J.W. Zandvliet, R. van Gastel, The instability of silicene on Ag (111). Appl. Phys. Lett. 103(26), 263119 (2013). doi:10.1063/1.4860964
- L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015). doi:10.1038/nnano.2014.325
- H. Oughaddou, B. Aufray, J.P. Bibérian, J.Y. Hoarau, Growth mode and dissolution kinetics of germanium thin films on Ag(001) surface: an AES–LEED investigation. Surf. Sci. 429(1), 320–326 (1999). doi:10.1016/S0039-6028(99)00394-5
- E. Golias, E. Xenogiannopoulou, D. Tsoutsou, P. Tsipas, S.A. Giamini, A. Dimoulas, Surface electronic bands of submonolayer Ge on Ag(111). Phys. Rev. B 88(7), 075403 (2013). doi:10.1103/PhysRevB.88.075403
- B. Hao, Y. Yan, X. Wang, G. Chen, Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast Lithium storage. ACS Appl. Mater. Interfaces. 5(13), 6285–6291 (2013). doi:10.1021/am4013215
- M. Sterrer, T. Risse, U. Martinez Pozzoni, L. Giordano, M. Heyde, H.-P. Rust, G. Pacchioni, H.-J. Freund, Control of the charge state of metal atoms on thin MgO films. Phys. Rev. Lett. 98(9), 096107 (2007). doi:10.1103/PhysRevLett.98.096107
- H. Jung, J. Park, I.-K. Oh, T. Choi, S. Lee, J. Hong, T. Lee, S.-H. Kim, H. Kim, Fabrication of transferable Al2O3 nanosheet by atomic layer deposition for graphene FET. ACS Appl. Mater. Interfaces 6(4), 2764–2769 (2014). doi:10.1021/am4052987
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/Science1102896
- B.K. Miremadi, S.R. Morrison, High activity catalyst from exfoliated MoS2. J. Catalysis 103(2), 334–345 (1987). doi:10.1016/0021-9517(87)90125-4
- D.J. Late, Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces. 6(2), 1158–1163 (2014). doi:10.1021/am404847d
- P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori et al., 24 h stability of thick multilayer silicene in air. 2D Mater. 1(2), 1003 (2014). doi:10.1088/2053-1583/1/2/021003
- J.N. Coleman, M. Lotya, A.O. Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). doi:10.1126/Science1194975
- K.G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50(46), 10839–10842 (2011). doi:10.1002/anie.201105364
- R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan et al., Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011). doi:10.1002/adma.201102584
- B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. London 149, 249–259 (1859). doi:10.1098/rstl.1859.0013
- V.H. Luan, H.N. Tien, L.T. Hoa, N.T.M. Hien, E.-S. Oh et al., Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J. Mater. Chem. A 1(2), 208–211 (2013). doi:10.1039/C2TA00444E
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi:10.1021/ja01539a017
- G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21(20), 4796–4802 (2009). doi:10.1021/cm901052s
- F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li Intercalation in MoS2: in Situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15(10), 6777–6784 (2015). doi:10.1021/acs.nanolett.5b02619
- M. Petrović, I. Šrut Rakić, S. Runte, C. Busse, J.T. Sadowski et al., The mechanism of caesium intercalation of graphene. Nat. Commun. 4, 1–10 (2013). doi:10.1038/ncomms3772
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013). doi:10.1126/Science1226419
- Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966–971 (2012). doi:10.1002/smll.201102654
- Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
- K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). doi:10.1021/nl2043612
- E.S. Peters, C.J. Carmalt, I.P. Parkin, Dual-source chemical vapour deposition of titanium sulfide thin films from tetrakisdimethylamidotitanium and sulfur precursors. J. Mater. Chem. 14(23), 3474–3477 (2004). doi:10.1039/B410390D
- N.D. Boscher, C.S. Blackman, C.J. Carmalt, I.P. Parkin, A.G. Prieto, Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 253(14), 6041–6046 (2007). doi:10.1016/j.apsusc.2007.01.002
- N.D. Boscher, C.J. Carmalt, I.P. Parkin, Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces. J. Mater. Chem. 16(1), 122–127 (2006). doi:10.1039/B514440J
- C.J. Carmalt, I.P. Parkin, E.S. Peters, Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron 22(11), 1499–1505 (2003). doi:10.1016/S0277-5387(03)00194-3
- N.D. Boscher, C.J. Carmalt, R.G. Palgrave, J.J. Gil-Tomas, I.P. Parkin, Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vapor Depos. 12(11), 692–698 (2006). doi:10.1002/cvde.200606502
- F. Müller, K. Stöwe, H. Sachdev, Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt (111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 17(13), 3464–3467 (2005). doi:10.1021/cm048629e
- W. Auwärter, H.U. Suter, H. Sachdev, T. Greber, Synthesis of one monolayer of hexagonal boron nitride on Ni (111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 16(2), 343–345 (2004). doi:10.1021/cm034805s
- A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Electronic states of monolayer hexagonal boron nitride formed on the metal surfaces. Surf. Sci. 357, 307–311 (1996). doi:10.1016/0039-6028(96)00134-3
- Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee et al., Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12(6), 2784–2791 (2012). doi:10.1021/nl204562j
- Y. Zheng, A. Koëbel, J.F. Pétroff, J.C. Boulliard, B. Capelle, M. Eddrief, GaSeSi (111) heteroepitaxy: the early stages of growth. J. Cryst. Growth 162(3), 135–141 (1996). doi:10.1016/0022-0248(95)00952-3
- B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97(22), 223109 (2010). doi:10.1063/1.3524215
- C. Léandri, H. Oughaddou, B. Aufray, J.M. Gay, G. Le Lay, A. Ranguis, Y. Garreau, Growth of Si nanostructures on Ag(001). Surf. Sci. 601(1), 262–267 (2007). doi:10.1016/j.susc.2006.09.030
- B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96(18), 183–192 (2010). doi:10.1063/1.3419932
- P. De Padova, O. Kubo, B. Olivieri, C. Quaresima, T. Nakayama, M. Aono, G. Le Lay, Multilayer silicene nanoribbons. Nano Lett. 12(11), 5500–5503 (2012). doi:10.1021/nl302598x
- H. Oughaddou, J.M. Gay, B. Aufray, L. Lapena, G. Le Lay, O. Bunk, G. Falkenberg, J.H. Zeysing, R.L. Johnson, Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface x-ray diffraction and STM study. Phys. Rev. B 61(8), 5692–5697 (2000). doi:10.1103/PhysRevB.61.5692
- Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, Y. Qian, Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 30(8), 772–773 (2001). doi:10.1246/cl.2001.772
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). doi:10.1021/ja201269b
- S. Jeong, D. Yoo, J.-T. Jang, M. Kim, J. Cheon, Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134(44), 18233–18236 (2012). doi:10.1021/ja3089845
- L. Qiliang, K. Sang-Mo, C.A. Richter, M.D. Edelstein, J.E. Bonevich, J.J. Kopanski, J.S. Suehle, E.M. Vogel, Precise alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures. IEEE Trans. Nanotechnol. 6(2), 256–262 (2007). doi:10.1109/TNANO.2007.891827
- Y.-W. Jun, J.-W. Seo, S.J. Oh, J. Cheon, Recent advances in the shape control of inorganic nano-building blocks. Coordin. Chem. Rev. 249(17), 1766–1775 (2005). doi:10.1016/j.ccr.2004.12.008
- Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen, A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21(12), 1275–1279 (2009). doi:10.1002/adma.200801617
- Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008). doi:10.1038/nnano.2008.215
- D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). doi:10.1038/nature06016
- Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). doi:10.1021/ja302846n
- G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009). doi:10.1016/j.Carbon2009.03.053
- G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014). doi:10.1039/C3EE43182G
- M.D. Patel, E. Cha, N. Choudhary, C. Kang, W. Lee, J.Y. Hwang, W. Choi, Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries. Nanotechnology 27(49), 495401 (2016). doi:10.1088/0957-4484/27/49/495401
- J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter et al., Ultrathin planar graphene supercapacitors. Nano Lett. 11(4), 1423–1427 (2011). doi:10.1021/nl200225j
- A. Mhamdi, E.B. Salem, S. Jaziri, Electronic reflection for a single-layer graphene quantum well. Solid State Commun. 175, 106–113 (2013). doi:10.1016/j.ssc.2013.04.026
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/Science1158877
- Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009). doi:10.1038/nature08105
- T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by raman spectroscopy: G peak splitting, gruneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009). doi:10.1103/PhysRevB.79.205433
- H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626–3630 (2013). doi:10.1021/nl4014748
- X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/Science1150878
- R. Akis, D.K. Ferry, Using magnetic fields and band gap engineering to achieve robust spin filtering in finite quantum dot arrays. J. Phys: Conf. Ser. 109(1), 012005 (2008). doi:10.1088/1742-6596/109/1/012005
- J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). doi:10.1038/nature05545
- X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008). doi:10.1038/nnano.2008.199
- K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86(4), 463–467 (1982). doi:10.1021/j100393a010
- K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata, S. Takagi, Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. IEEE Int. Electron Devices Meeting (IEDM), pp. 47–50 (2002). doi:10.1109/IEDM.2002.1175776
- D. Yin, Y. Yoon, Design strategy of two-dimensional material field-effect transistors: engineering the number of layers in phosphorene FETs. J. Appl. Phys. 119(21), 214312 (2016). doi:10.1063/1.4953256
- T.F. Chung, T. Shen, H. Cao, A. Luis, W. Wu, Q. Yu, D. Newell, Y.P. Chen, Synthetic graphene grown by chemical vapor deposition on copper foils. Inter. J. Mod. Phys. B 27(10), 1341002 (2013). doi:10.1142/S0217979213410026
- K. Kalantar-Zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1(1), 5–16 (2016). doi:10.1021/acssensors.5b00142
- A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
- N. Mao, Y. Chen, D. Liu, J. Zhang, L. Xie, Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9(8), 1312–1315 (2013). doi:10.1002/smll.201202982
- H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh, Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 95(14), 141103 (2009). doi:10.1063/1.3244206
- S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang, Third order nonlinear optical property of Bi2Se3. Opt. Express 21(2), 2072–2082 (2013). doi:10.1364/OE.21.002072
- H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22(6), 7249–7260 (2014). doi:10.1364/OE.22.007249
- S.B. Lu, L.L. Miao, Z.N. Guo, X. Qi, C.J. Zhao, H. Zhang, S.C. Wen, D.Y. Tang, D.Y. Fan, Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express 23(9), 11183–11194 (2015). doi:10.1364/OE.23.011183
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi:10.1126/Science1156965
- G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008). doi:10.1038/nature05545
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). doi:10.1126/Science1157996
- C. Gómez-Navarro, M. Burghard, K. Kern, Elastic properties of chemically derived single graphene sheets. Nano Lett. 8(7), 2045–2049 (2008). doi:10.1021/nl801384y
- An Introduction to FETs. Radio Commun. 76(7), 1–5 (2000). http://www.colorado.edu/physics/phys3330/phys3330_sp15/resources/AN101FETintro.pdf (accessed)
- I. Ferain, C.A. Colinge, J.-P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373), 310–316 (2011). doi:10.1038/nature10676
- G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001). doi:10.1063/1.1361065
- A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010). doi:10.1109/JPROC.2010.2070470
- A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). doi:10.1038/nature10679
- R.K. Ghosh, S. Mahapatra, Monolayer transition metal dichalcogenide channel-based tunnel transistor. IEEE J. Electron Devices Soc. 1(10), 175–180 (2013). doi:10.1109/JEDS.2013.2292799
- Q. Zhang, G. Iannaccone, G. Fiori, Two-dimensional tunnel transistors based on Bi2Se3 thin film. IEEE Electron Device Lett. 35(1), 129–131 (2014). doi:10.1109/LED.2013.2288036
- W.G. Song, H.-J. Kwon, J. Park, J. Yeo, M. Kim et al., High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 26(15), 2426–2434 (2016). doi:10.1002/adfm.201505019
- Y.K. Hong, G. Yoo, J. Kwon, S. Hong, W.G. Song et al., High performance and transparent multilayer MoS2 transistors: tuning Schottky barrier characteristics. AIP Adv. 6(5), 055026 (2016). doi:10.1063/1.4953062
- L. Liu, Y. Lu, J. Guo, On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 60(12), 4133–4139 (2013). doi:10.1109/TED.2013.2284591
- L. Kai-Shin, W. Bo-Wei, L. Lain-Jong, L. Ming-Yang, C. Chia-Chin Kevin, et al., MoS2 U-shape MOSFET with 10 nm channel length and poly-Si source/drain serving as seed for full wafer CVD MoS2 availability. In Proc. IEEE Symp. VLSI Technol., pp. 1–2 (2016). doi:10.1109/VLSIT.2016.7573375
- K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). doi:10.1038/nature11458
- L. Liu, S.B. Kumar, Y. Ouyang, J. Guo, Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58(9), 3042–3047 (2011). doi:10.1109/TED.2011.2159221
- Y. Naveh, K. Likharev, Modeling of 10-nm-scale ballistic MOSFET’s. IEEE Electron Device Lett. 21(5), 242–244 (2000). doi:10.1109/55.841309
- A. Di Bartolomeo, Graphene schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016). doi:10.1016/j.physrep.2015.10.003
- MathSciNet
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.1021/nl0731872
- I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013). doi:10.1021/nl304060g
- S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). doi:10.1063/1.2907977
- J. Lan, J.-S. Wang, C.K. Gan, S.K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79(11), 115401 (2009). doi:10.1103/PhysRevB.79.115401
- D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009). doi:10.1103/PhysRevB.79.155413
- Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89(3), 035438 (2014). doi:10.1103/PhysRevB.89.035438
- X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013). doi:10.1063/1.4823509
- J.-W. Jiang, H.S. Park, T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): stillinger-weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013). doi:10.1063/1.4818414
- J.-Y. Kim, S.-M. Choi, W.-S. Seo, W.-S. Cho, Thermal and electronic properties of exfoliated metal chalcogenides. Bull. Korean Chem. Soc. 31(11), 3225–3227 (2010). doi:10.5012/bkcs.2010.31.11.3225
- S. Sahoo, A.P. Gaur, M. Ahmadi, M.J.-F. Guinel, R.S. Katiyar, Temperature-dependent raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117(17), 9042–9047 (2013). doi:10.1021/jp402509w
- Z. Zong, L. Li, J. Jang, N. Lu, M. Liu, Analytical surface-potential compact model for amorphous-IGZO thin-film transistors. J. Appl. Phys. 117(21), 215705 (2015). doi:10.1063/1.4922181
- S. Krishnamoorthy, M.H. Chowdhury, Investigation and a practical compact network model of thermal stress in integrated circuits. Integr. Comput.-Aided Eng. 16(2), 131–140 (2009). doi:10.3233/ICA-2009-0310
- X. Qian, Y. Wang, W. Li, J. Lu, J. Li, Modelling of stacked 2D materials and devices. 2D Mater. 2(3), 032003 (2015). doi:10.1088/2053-1583/2/3/032003/meta
- N. Lu, P. Sun, L. Li, Q. Liu, S. Long, L. Hangbing, M. Liu, Thermal effect on endurance performance of 3-dimensional RRAM crossbar array. Chin. Phys. B 25(5), 056501 (2016). doi:10.1088/1674-1056/25/5/056501
- P. Buccella, C. Stefanucci, H. Zou, Y. Moursy, R. Iskander, J.-M. Sallese, M. Kayal, Methodology for 3-D substrate network extraction for spice simulation of parasitic currents in smart power ICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(9), 1489–1502 (2016). doi:10.1109/TCAD.2015.2513008
- L. Nianduan, W. Lingfei, L. Ling, L. Ming, A review for compact model of graphene field-effect transistors. Chin. Phys. B 26(3), 036804 (2017). doi:10.1088/1674-1056/26/3/036804/meta
- Y. Yoon, K. Ganapathi, S. Salahuddin, How good can monolayer MoS2 transistors Be. Nano Lett. 11(9), 3768–3773 (2011). doi:10.1021/nl2018178
- N. Ma, D. Jena, Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater. 2(1), 015003 (2015). doi:10.1088/2053-1583/2/1/015003/meta
- Y. Taur, J. Wu, J. Min, A Short-Channel I-V Model for 2-D MOSFETs. IEEE Trans. Electron Devices 63(6), 2550–2555 (2016). doi:10.1109/TED.2016.2547949
- D. Jiménez, Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors. Appl. Phys. Lett. 101(24), 243501 (2012). doi:10.1063/1.4770313
- C. Kshirsagar, W. Xu, C. Kim, S. Koester, Design and analysis of MoS2-based MOSFETs for ultra-low-leakage dynamic memory applications. In 72nd Annu. Device Res. Conf., pp.187–188 (2014). doi:10.1109/DRC.2014.6872360
- W. Cao, J. Kang, W. Liu, K. Banerjee, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 61(12), 4282–4290 (2014). doi:10.1109/TED.2014.2365028
- C. Yadav, A. Agarwal, Y.S. Chauhan, Compact modeling of transition metal dichalcogenide based thin body transistors and circuit validation. IEEE Trans. Electron Devices 64(3), 1261–1268 (2017). doi:10.1109/TED.2016.2643698
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). doi:10.1038/nnano.2010.89
- A. Ayari, E. Cobas, O. Ogundadegbe, M.S. Fuhrer, Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101(1), 14507 (2007). doi:10.1063/1.2407388
- B. Radisavljevic, M.B. Whitwick, A. Kis, Correction to integrated circuits and logic operations based on single-layer MoS2. ACS Nano 7(4), 3729 (2013). doi:10.1021/nn400553g
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). doi:10.1038/nnano.2013.100
- W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952–958 (2013). doi:10.1038/nnano.2013.219
- M.R. Esmaeili-Rad, S. Salahuddin, High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 3, 1–6 (2013). doi:10.1038/srep02345
- B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, C. Zhou, Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9(6), 6119–6127 (2015). doi:10.1021/acsnano.5b01301
- H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). doi:10.1021/nl301702r
- V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, E. Bucher, High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84(17), 3301–3303 (2004). doi:10.1063/1.1723695
- J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014). doi:10.1021/nn405719x
- J.C. Bernède, M. Kettaf, A. Khelil, M. Spiesser, p-n junctions in molybdenum ditelluride. Phys. Status Solidi A 157(1), 205–209 (1996). doi:10.1002/pssa.2211570126
- A. Conan, A. Bonnet, M. Zoaeter, D. Ramoul, Dependence of the total mobility in a one-band model applicationto n-type MoTe2. Phys. Status Solidi B 124(1), 403–410 (1984). doi:10.1002/pssb.2221240144
- Y.-F. Lin, Y. Xu, C.-Y. Lin, Y.-W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27(42), 6612–6619 (2015). doi:10.1002/adma.201502677
- Y.-F. Lin, Y. Xu, S.-T. Wang, S.-L. Li, M. Yamamoto et al., Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26(20), 3263–3269 (2014). doi:10.1002/adma.201305845
- H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012). doi:10.1021/nn303513c
- S. Ghatak, A.N. Pal, A. Ghosh, Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011). doi:10.1021/nn202852j
- H. Liu, P.D. Ye, MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 33(4), 546–548 (2012). doi:10.1109/LED.2012.2184520
- K. Lee, H.-Y. Kim, M. Lotya, J.N. Coleman, G.-T. Kim, G.S. Duesberg, Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23(36), 4178–4182 (2011). doi:10.1002/adma.201101013
- M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.-C. Cheng, D. Tománek, Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449–4458 (2013). doi:10.1021/nn401053g
- G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). doi:10.1021/nn402954e
- S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.-W. Li, Y.-F. Lin, A. Aparecido-Ferreira, K. Tsukagoshi, Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13(8), 3546–3552 (2013). doi:10.1021/nl4010783
- S.-L. Li, K. Tsukagoshi, Carrier injection and scattering in atomically thin chalcogenides. J. Phys. Soc. Jpn. 84(12), 121011 (2015). doi:10.7566/JPSJ.84.121011
- X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10(6), 534–540 (2015). doi:10.1038/nnano.2015.70
- K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85(11), 115317 (2012). doi:10.1103/PhysRevB.85.115317
- B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13(9), 4212–4216 (2013). doi:10.1021/nl401916s
- S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101(22), 223104 (2012). doi:10.1063/1.4768218
- J.T. Ye, Y.J. Zhang, R. Akashi, M.S. Bahramy, R. Arita, Y. Iwasa, Superconducting dome in a gate-tuned band insulator. Science 338(6111), 1193–1196 (2012). doi:10.1126/Science1228006
- B. Radisavljevic, A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12(9), 815–820 (2013). doi:10.1038/nmat3687
- S.-L. Li, K. Komatsu, S. Nakaharai, Y.-F. Lin, M. Yamamoto, X. Duan, K. Tsukagoshi, Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. ACS Nano 8(12), 12836–12842 (2014). doi:10.1021/nn506138y
- S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)
- S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89(10), 106801 (2002). doi:10.1103/PhysRevLett.89.106801
- Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, Q. Chen, Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano 8(8), 7771–7779 (2014). doi:10.1021/nn503152r
- A. Dankert, L. Langouche, M.V. Kamalakar, S.P. Dash, High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014). doi:10.1021/nn404961e
- J.-R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). doi:10.1021/nl4010157
- A. Gold, Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. Phys. Rev. B 35(2), 723–733 (1987). doi:10.1103/PhysRevB.35.723
- T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982). doi:10.1103/RevModPhys.54.437
- S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407–470 (2011). doi:10.1103/RevModPhys.83.407
- K. Kaasbjerg, K.S. Thygesen, A.-P. Jauho, Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87(23), 235312 (2013). doi:10.1103/PhysRevB.87.235312
- N. Ma, D. Jena, Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4(1), 011043 (2014). doi:10.1103/PhysRevX.4.011043
- A.M. DaSilva, K. Zou, J.K. Jain, J. Zhu, Mechanism for current saturation and energy dissipation in graphene transistors. Phys. Rev. Lett. 104(23), 236601 (2010). doi:10.1103/PhysRevLett.104.236601
- B.T. Moore, D.K. Ferry, Remote polar phonon scattering in Si inversion layers. J. Appl. Phys. 51(5), 2603–2605 (1980). doi:10.1063/1.327988
- J. Hong, Z. Hu, M. Probert, K. Li, D. Lv et al., Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 1–8 (2015). doi:10.1038/ncomms7293
- H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar et al., Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14(4), 1909–1913 (2014). doi:10.1021/nl4046922
- E.H. Hwang, S. Adam, S.D. Sarma, Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98(18), 186806 (2007). doi:10.1103/PhysRevLett.98.186806
- X. Zou, Y. Liu, B.I. Yakobson, Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13(1), 253–258 (2013). doi:10.1021/nl3040042
- Y. Shi, H. Li, L.-J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44(9), 2744–2756 (2015). doi:10.1039/C4CS00256C
- J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015). doi:10.1039/C5SC01941A
- W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). doi:10.1021/jacs.5b10519
- I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822–8832 (2015). doi:10.1021/acsnano.5b02019
- Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1–6 (2013). doi:10.1038/srep01866
- D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi, S.V. Morozov et al., High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12(3), 223–227 (2017). doi:10.1038/nnano.2016.242
- H.C. Diaz, R. Addou, M. Batzill, Interface properties of CVD grown graphene transferred onto MoS2 (0001). Nanoscale 6(2), 1071–1078 (2014). doi:10.1039/c3nr03692h
- N. Choudhary, J. Park, J.Y. Hwang, H.-S. Chung, K.H. Dumas, S.I. Khondaker, W. Choi, Y. Jung, Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure. Sci. Rep. 6, 1–7 (2016). doi:10.1038/srep25456
- T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 8(6), 6259–6264 (2014). doi:10.1021/nn501723y
- R. Späh, M. Lux-Steiner, M. Obergfell, E. Bucher, S. Wagner, n-MoSe2/p-WSe2 heterojunctions. Appl. Phys. Lett. 47(8), 871–873 (1985). doi:10.1063/1.95960
- J.H. Yu, H.R. Lee, S.S. Hong, D. Kong, H.-W. Lee, H. Wang, F. Xiong, S. Wang, Y. Cui, Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15(2), 1031–1035 (2015). doi:10.1021/nl503897h
- M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin et al., Epitaxial growth of a monolayer WSe2/MoS2 lateral p-n junction with an atomically sharp interface. Science 349(6247), 524–528 (2015). doi:10.1126/Scienceaab4097
- C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). doi:10.1038/nnano.2014.150
- A. Nourbakhsh, A. Zubair, M.S. Dresselhaus, T. Palacios, Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16(2), 1359–1366 (2016). doi:10.1021/acs.nanolett.5b04791
- R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin et al., Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014). doi:10.1021/nl502075n
- D. Jariwala, V.K. Sangwan, C.-C. Wu, P.L. Prabhumirashi, M.L. Geier, T.J. Marks, L.J. Lauhon, M.C. Hersam, Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. 110(45), 18076–18080 (2013). doi:10.1073/pnas.1317226110
- S. Chuang, R. Kapadia, H. Fang, T. Chia Chang, W.-C. Yen, Y.-L. Chueh, A. Javey, Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Appl. Phys. Lett. 102(24), 242101 (2013). doi:10.1063/1.4809815
- W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7(12), 1731–1737 (2014). doi:10.1007/s12274-014-0532-x
References
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). doi:10.1038/nnano.2012.193
J.A. Wilson, F.J. Di Salvo, S. Mahajan, Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32(16), 882–885 (1974). doi:10.1103/PhysRevLett.32.882
A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene. Prog. Mater Sci. 73, 44–126 (2015). doi:10.1016/j.pmatsci.2015.02.002
X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1(1), 33–44 (2015). doi:10.1016/j.jmat.2015.03.003
G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509–11539 (2015). doi:10.1021/acsnano.5b05556
S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D material. Annu. Rev. Mater. Res. 45(1), 63–84 (2015). doi:10.1146/annurev-matsci-070214-020901
S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Beyond Graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45(1), 1–27 (2015). doi:10.1146/annurev-matsci-070214-021034
X. Tong, E. Ashalley, F. Lin, H. Li, Z.M. Wang, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(3), 203–218 (2015). doi:10.1007/s40820-015-0034-8
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). doi:10.1021/nn400280c
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). doi:10.1021/nn500064s
F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014). doi:10.1038/nphoton.2014.271
X.R. Wang, Y. Shi, R. Zhang, Field-effect transistors based on two-dimensional materials for logic applications. Chin. Phys. B 22(9), 098505 (2013). doi:10.1088/1674-1056/22/9/098505
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). doi:10.1038/nnano.2014.207
C. Nitin, R.I. Muhammad, K. Narae, T. Laurene, J. Yeonwoong, I.K. Saiful, Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys.: Condens. Matter. 28(36), 364002 (2016). doi:10.1088/0953-8984/28/36/364002
H.-Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne, S. Yang, N. Lu, S.K. Banerjee, D. Akinwande, Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28(9), 1818–1823 (2016). doi:10.1002/adma.201504309
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). doi:10.1126/Science1246501
N. Choudhary, M.D. Patel, J. Park, B. Sirota, W. Choi, Synthesis of large scale MoS2 for electronics and energy applications. J. Mater. Res. 31(7), 824–831 (2016). doi:10.1557/jmr.2016.100
V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys. 17(5), 2960–2986 (2015). doi:10.1039/C4CP04245J
S.S. Varghese, S.H. Varghese, S. Swaminathan, K.K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electronics 4(3), 651–687 (2015). doi:10.3390/electronics4030651
M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). doi:10.1021/cr300263a
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008). doi:10.1103/PhysRevLett.100.206803
Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. Phys. B Condens. Matter. 406(11), 2254–2260 (2011). doi:10.1016/j.physb.2011.03.044
C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116(16), 8983–8999 (2012). doi:10.1021/jp212558p
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). doi:10.1021/nl903868w
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). doi:10.1103/PhysRevLett.105.136805
A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska et al., Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014). doi:10.1038/srep06608
F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). doi:10.1021/acs.jpcc.5b02950
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005). doi:10.1073/pnas.0502848102
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). doi:10.1038/nnano.2010.279
M.S. Fuhrer, J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 146–147 (2013). doi:10.1038/nnano.2013.30
B. Radisavljevic, A. Kis, Reply to measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8(3), 147–148 (2013). doi:10.1038/nnano.2013.31
Z. Yu, Z.-Y. Ong, Y. Pan, Y. Cui, R. Xin et al., Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28(3), 547–552 (2016). doi:10.1002/adma.201503033
X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M.B. Nardelli, K.W. Kim, Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87(11), 115418 (2013). doi:10.1103/PhysRevB.87.115418
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 1–7 (2014). doi:10.1038/ncomms5475
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). doi:10.1038/nnano.2014.35
W. Zhu, S. Park, M.N. Yogeesh, K.M. McNicholas, S.R. Bank, D. Akinwande, Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett. 16(4), 2301–2306 (2016). doi:10.1021/acs.nanolett.5b04768
M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). doi:10.1038/nature08956
J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai, Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4(12), 7293–7302 (2010). doi:10.1021/nn102246a
A.S. Karakoti, O. Tsigkou, S. Yue, P.D. Lee, M.M. Stevens, J.R. Jones, S. Seal, Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20(40), 8912–8919 (2010). doi:10.1039/C0JM01072C
J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). doi:10.1016/j.pmatsci.2011.08.003
R. Mas Balleste, C. Gomez Navarro, J. Gomez Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). doi:10.1039/C0NR00323A
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
E. Canadell, A. LeBeuze, M.A. El Khalifa, R. Chevrel, M.H. Whangbo, Origin of metal clustering in transition-metal chalcogenide layers MX2 (M = Nb, Ta, Mo, Re; X = S, Se). J. Am. Chem. Soc. 111(11), 3778–3782 (1989). doi:10.1021/ja00193a002
M.A. Lukowski, A.S. Daniel, C.R. English, F. Meng, A. Forticaux, R.J. Hamers, S. Jin, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7(8), 2608–2613 (2014). doi:10.1039/C4EE01329H
R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051–20061 (2015). doi:10.1364/OE.23.020051
J. Wilson, A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969). doi:10.1080/00018736900101307
E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Adv. 7(45), 28234–28290 (2017). doi:10.1039/C7RA03599C
P. May, U. Khan, J.N. Coleman, Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Appl. Phys. Lett. 103(16), 163106 (2013). doi:10.1063/1.4825279
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). doi:10.1016/j.mattod.2016.10.002
R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). doi:10.1038/nmat4080
A. Yoon, Z. Lee, Synthesis and properties of two dimensional doped transition metal dichalcogenides. Appl. Microsc. 47(1), 19–28 (2017). doi:10.9729/AM.2017.47.1.19
R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce et al., Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater. 2(9), 092516 (2014). doi:10.1063/1.4896077
G.L. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys. Rev. B 57(11), 6666–6671 (1998). doi:10.1103/PhysRevB.57.6666
F. Ji, X. Ren, X. Zheng, Y. Liu, L. Pang, J. Jiang, S.F. Liu, 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 8(16), 8696–8703 (2016). doi:10.1039/C6NR00880A
J. Wang, C.J. Liu, Preparation of 2D WO3 Nanomaterials with enhanced catalytic activities: current status and perspective. ChemBioEng Rev. 2(5), 335–350 (2015). doi:10.1002/cben.201500014
S.-J. Choi, J.-S. Jang, H.J. Park, I.-D. Kim, Optically sintered 2D RuO2 nanosheets: temperature-controlled NO2 reaction. Adv. Funct. Mater. 27(13), 1606026 (2017). doi:10.1002/adfm.201606026
Y. Zhang, W. Wu, K. Zhang, C. Liu, A. Yu, M. Peng, J. Zhai, Raman study of 2D anatase TiO2 nanosheets. Phys. Chem. Chem. Phys. 18(47), 32178–32184 (2016). doi:10.1039/C6CP05496J
Z. Liu, K. Xu, P. She, S. Yin, X. Zhu, H. Sun, Self-assembly of 2D MnO2 nanosheets into high-purity aerogels with ultralow density. Chem. Sci. 7(3), 1926–1932 (2016). doi:10.1039/C5SC03217B
G. Yang, H. Song, M. Wu, C. Wang, SnO2 nanoparticles anchored on 2D V2O5 nanosheets with enhanced lithium-storage performances. Electrochim. Acta 205, 153–160 (2016). doi:10.1016/j.electacta.2016.04.077
X. Xu, K. Takada, K. Fukuda, T. Ohnishi, K. Akatsuka, M. Osada, B.T. Hang, K. Kumagai, T. Sekiguchi, T. Sasaki, Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte. Energy Environ. Sci. 4(9), 3509–3512 (2011). doi:10.1039/c1ee01389k
G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8), 7311–7317 (2012). doi:10.1021/nn302422x
H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, H. Zhang, Optical identification of single- and few-layer MoS2 sheets. Small 8(5), 682–686 (2012). doi:10.1002/smll.201101958
S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12(11), 5576–5580 (2012). doi:10.1021/nl302584w
K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10(4), 216–226 (2016). doi:10.1038/nphoton.2015.282
M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012). doi:10.1002/adma.201103241
R.A. Gordon, D. Yang, E.D. Crozier, D.T. Jiang, R.F. Frindt, Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65(12), 125407 (2002). doi:10.1103/PhysRevB.65.125407
F.R. Gamble, J.H. Osiecki, M. Cais, R. Pisharody, F.J. DiSalvo, T.H. Geballe, Intercalation complexes of lewis bases and layered sulfides: a large class of new superconductors. Science 174(4008), 493–497 (1971). doi:10.1126/Science174.4008.493
D.H. Keum, S. Cho, J.H. Kim, D.-H. Choe, H.-J. Sung et al., Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11(6), 482–486 (2015). doi:10.1038/nphys3314
T.A. Empante, Y. Zhou, V. Klee, A.E. Nguyen, I.H. Lu et al., Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: tunable properties of MoTe2 films. ACS Nano 11(1), 900–905 (2017). doi:10.1021/acsnano.6b07499
A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115(50), 24586–24591 (2011). doi:10.1021/jp2076325
D. Kong, W. Dang, J.J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, Y. Cui, Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10(6), 2245–2250 (2010). doi:10.1021/nl101260j
S. Yang, Y. Gong, Z. Liu, L. Zhan, D.P. Hashim, L. Ma, R. Vajtai, P.M. Ajayan, Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13(4), 1596–1601 (2013). doi:10.1021/nl400001u
J. Taha-Tijerina, T.N. Narayanan, G. Gao, M. Rohde, D.A. Tsentalovich, M. Pasquali, P.M. Ajayan, Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 6(2), 1214–1220 (2012). doi:10.1021/nn203862p
Y. Ebina, T. Sasaki, M. Harada, M. Watanabe, Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14(10), 4390–4395 (2002). doi:10.1021/cm020622e
T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem. Mater. 19(26), 6575–6580 (2007). doi:10.1021/cm702552p
W.-T. Hsu, Z.-A. Zhao, L.-J. Li, C.-H. Chen, M.-H. Chiu, P.-S. Chang, Y.-C. Chou, W.-H. Chang, Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8(3), 2951–2958 (2014). doi:10.1021/nn500228r
A. Acun, B. Poelsema, H.J.W. Zandvliet, R. van Gastel, The instability of silicene on Ag (111). Appl. Phys. Lett. 103(26), 263119 (2013). doi:10.1063/1.4860964
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10(3), 227–231 (2015). doi:10.1038/nnano.2014.325
H. Oughaddou, B. Aufray, J.P. Bibérian, J.Y. Hoarau, Growth mode and dissolution kinetics of germanium thin films on Ag(001) surface: an AES–LEED investigation. Surf. Sci. 429(1), 320–326 (1999). doi:10.1016/S0039-6028(99)00394-5
E. Golias, E. Xenogiannopoulou, D. Tsoutsou, P. Tsipas, S.A. Giamini, A. Dimoulas, Surface electronic bands of submonolayer Ge on Ag(111). Phys. Rev. B 88(7), 075403 (2013). doi:10.1103/PhysRevB.88.075403
B. Hao, Y. Yan, X. Wang, G. Chen, Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast Lithium storage. ACS Appl. Mater. Interfaces. 5(13), 6285–6291 (2013). doi:10.1021/am4013215
M. Sterrer, T. Risse, U. Martinez Pozzoni, L. Giordano, M. Heyde, H.-P. Rust, G. Pacchioni, H.-J. Freund, Control of the charge state of metal atoms on thin MgO films. Phys. Rev. Lett. 98(9), 096107 (2007). doi:10.1103/PhysRevLett.98.096107
H. Jung, J. Park, I.-K. Oh, T. Choi, S. Lee, J. Hong, T. Lee, S.-H. Kim, H. Kim, Fabrication of transferable Al2O3 nanosheet by atomic layer deposition for graphene FET. ACS Appl. Mater. Interfaces 6(4), 2764–2769 (2014). doi:10.1021/am4052987
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/Science1102896
B.K. Miremadi, S.R. Morrison, High activity catalyst from exfoliated MoS2. J. Catalysis 103(2), 334–345 (1987). doi:10.1016/0021-9517(87)90125-4
D.J. Late, Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces. 6(2), 1158–1163 (2014). doi:10.1021/am404847d
P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori et al., 24 h stability of thick multilayer silicene in air. 2D Mater. 1(2), 1003 (2014). doi:10.1088/2053-1583/1/2/021003
J.N. Coleman, M. Lotya, A.O. Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). doi:10.1126/Science1194975
K.G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50(46), 10839–10842 (2011). doi:10.1002/anie.201105364
R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan et al., Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011). doi:10.1002/adma.201102584
B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. London 149, 249–259 (1859). doi:10.1098/rstl.1859.0013
V.H. Luan, H.N. Tien, L.T. Hoa, N.T.M. Hien, E.-S. Oh et al., Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J. Mater. Chem. A 1(2), 208–211 (2013). doi:10.1039/C2TA00444E
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958). doi:10.1021/ja01539a017
G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21(20), 4796–4802 (2009). doi:10.1021/cm901052s
F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, Li Intercalation in MoS2: in Situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15(10), 6777–6784 (2015). doi:10.1021/acs.nanolett.5b02619
M. Petrović, I. Šrut Rakić, S. Runte, C. Busse, J.T. Sadowski et al., The mechanism of caesium intercalation of graphene. Nat. Commun. 4, 1–10 (2013). doi:10.1038/ncomms3772
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013). doi:10.1126/Science1226419
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966–971 (2012). doi:10.1002/smll.201102654
Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). doi:10.1002/adma.201104798
K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). doi:10.1021/nl2043612
E.S. Peters, C.J. Carmalt, I.P. Parkin, Dual-source chemical vapour deposition of titanium sulfide thin films from tetrakisdimethylamidotitanium and sulfur precursors. J. Mater. Chem. 14(23), 3474–3477 (2004). doi:10.1039/B410390D
N.D. Boscher, C.S. Blackman, C.J. Carmalt, I.P. Parkin, A.G. Prieto, Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 253(14), 6041–6046 (2007). doi:10.1016/j.apsusc.2007.01.002
N.D. Boscher, C.J. Carmalt, I.P. Parkin, Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass-highly hydrophobic sticky surfaces. J. Mater. Chem. 16(1), 122–127 (2006). doi:10.1039/B514440J
C.J. Carmalt, I.P. Parkin, E.S. Peters, Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron 22(11), 1499–1505 (2003). doi:10.1016/S0277-5387(03)00194-3
N.D. Boscher, C.J. Carmalt, R.G. Palgrave, J.J. Gil-Tomas, I.P. Parkin, Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vapor Depos. 12(11), 692–698 (2006). doi:10.1002/cvde.200606502
F. Müller, K. Stöwe, H. Sachdev, Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt (111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 17(13), 3464–3467 (2005). doi:10.1021/cm048629e
W. Auwärter, H.U. Suter, H. Sachdev, T. Greber, Synthesis of one monolayer of hexagonal boron nitride on Ni (111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 16(2), 343–345 (2004). doi:10.1021/cm034805s
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Electronic states of monolayer hexagonal boron nitride formed on the metal surfaces. Surf. Sci. 357, 307–311 (1996). doi:10.1016/0039-6028(96)00134-3
Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee et al., Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12(6), 2784–2791 (2012). doi:10.1021/nl204562j
Y. Zheng, A. Koëbel, J.F. Pétroff, J.C. Boulliard, B. Capelle, M. Eddrief, GaSeSi (111) heteroepitaxy: the early stages of growth. J. Cryst. Growth 162(3), 135–141 (1996). doi:10.1016/0022-0248(95)00952-3
B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97(22), 223109 (2010). doi:10.1063/1.3524215
C. Léandri, H. Oughaddou, B. Aufray, J.M. Gay, G. Le Lay, A. Ranguis, Y. Garreau, Growth of Si nanostructures on Ag(001). Surf. Sci. 601(1), 262–267 (2007). doi:10.1016/j.susc.2006.09.030
B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96(18), 183–192 (2010). doi:10.1063/1.3419932
P. De Padova, O. Kubo, B. Olivieri, C. Quaresima, T. Nakayama, M. Aono, G. Le Lay, Multilayer silicene nanoribbons. Nano Lett. 12(11), 5500–5503 (2012). doi:10.1021/nl302598x
H. Oughaddou, J.M. Gay, B. Aufray, L. Lapena, G. Le Lay, O. Bunk, G. Falkenberg, J.H. Zeysing, R.L. Johnson, Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface x-ray diffraction and STM study. Phys. Rev. B 61(8), 5692–5697 (2000). doi:10.1103/PhysRevB.61.5692
Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, Y. Qian, Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 30(8), 772–773 (2001). doi:10.1246/cl.2001.772
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). doi:10.1021/ja201269b
S. Jeong, D. Yoo, J.-T. Jang, M. Kim, J. Cheon, Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134(44), 18233–18236 (2012). doi:10.1021/ja3089845
L. Qiliang, K. Sang-Mo, C.A. Richter, M.D. Edelstein, J.E. Bonevich, J.J. Kopanski, J.S. Suehle, E.M. Vogel, Precise alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures. IEEE Trans. Nanotechnol. 6(2), 256–262 (2007). doi:10.1109/TNANO.2007.891827
Y.-W. Jun, J.-W. Seo, S.J. Oh, J. Cheon, Recent advances in the shape control of inorganic nano-building blocks. Coordin. Chem. Rev. 249(17), 1766–1775 (2005). doi:10.1016/j.ccr.2004.12.008
Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen, A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21(12), 1275–1279 (2009). doi:10.1002/adma.200801617
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008). doi:10.1038/nnano.2008.215
D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). doi:10.1038/nature06016
Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). doi:10.1021/ja302846n
G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009). doi:10.1016/j.Carbon2009.03.053
G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014). doi:10.1039/C3EE43182G
M.D. Patel, E. Cha, N. Choudhary, C. Kang, W. Lee, J.Y. Hwang, W. Choi, Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries. Nanotechnology 27(49), 495401 (2016). doi:10.1088/0957-4484/27/49/495401
J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter et al., Ultrathin planar graphene supercapacitors. Nano Lett. 11(4), 1423–1427 (2011). doi:10.1021/nl200225j
A. Mhamdi, E.B. Salem, S. Jaziri, Electronic reflection for a single-layer graphene quantum well. Solid State Commun. 175, 106–113 (2013). doi:10.1016/j.ssc.2013.04.026
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/Science1158877
Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009). doi:10.1038/nature08105
T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by raman spectroscopy: G peak splitting, gruneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009). doi:10.1103/PhysRevB.79.205433
H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626–3630 (2013). doi:10.1021/nl4014748
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/Science1150878
R. Akis, D.K. Ferry, Using magnetic fields and band gap engineering to achieve robust spin filtering in finite quantum dot arrays. J. Phys: Conf. Ser. 109(1), 012005 (2008). doi:10.1088/1742-6596/109/1/012005
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). doi:10.1038/nature05545
X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008). doi:10.1038/nnano.2008.199
K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86(4), 463–467 (1982). doi:10.1021/j100393a010
K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata, S. Takagi, Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm. IEEE Int. Electron Devices Meeting (IEDM), pp. 47–50 (2002). doi:10.1109/IEDM.2002.1175776
D. Yin, Y. Yoon, Design strategy of two-dimensional material field-effect transistors: engineering the number of layers in phosphorene FETs. J. Appl. Phys. 119(21), 214312 (2016). doi:10.1063/1.4953256
T.F. Chung, T. Shen, H. Cao, A. Luis, W. Wu, Q. Yu, D. Newell, Y.P. Chen, Synthetic graphene grown by chemical vapor deposition on copper foils. Inter. J. Mod. Phys. B 27(10), 1341002 (2013). doi:10.1142/S0217979213410026
K. Kalantar-Zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1(1), 5–16 (2016). doi:10.1021/acssensors.5b00142
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
N. Mao, Y. Chen, D. Liu, J. Zhang, L. Xie, Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9(8), 1312–1315 (2013). doi:10.1002/smll.201202982
H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh, Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 95(14), 141103 (2009). doi:10.1063/1.3244206
S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang, Third order nonlinear optical property of Bi2Se3. Opt. Express 21(2), 2072–2082 (2013). doi:10.1364/OE.21.002072
H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22(6), 7249–7260 (2014). doi:10.1364/OE.22.007249
S.B. Lu, L.L. Miao, Z.N. Guo, X. Qi, C.J. Zhao, H. Zhang, S.C. Wen, D.Y. Tang, D.Y. Fan, Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express 23(9), 11183–11194 (2015). doi:10.1364/OE.23.011183
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi:10.1126/Science1156965
G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008). doi:10.1038/nature05545
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). doi:10.1126/Science1157996
C. Gómez-Navarro, M. Burghard, K. Kern, Elastic properties of chemically derived single graphene sheets. Nano Lett. 8(7), 2045–2049 (2008). doi:10.1021/nl801384y
An Introduction to FETs. Radio Commun. 76(7), 1–5 (2000). http://www.colorado.edu/physics/phys3330/phys3330_sp15/resources/AN101FETintro.pdf (accessed)
I. Ferain, C.A. Colinge, J.-P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373), 310–316 (2011). doi:10.1038/nature10676
G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001). doi:10.1063/1.1361065
A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010). doi:10.1109/JPROC.2010.2070470
A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). doi:10.1038/nature10679
R.K. Ghosh, S. Mahapatra, Monolayer transition metal dichalcogenide channel-based tunnel transistor. IEEE J. Electron Devices Soc. 1(10), 175–180 (2013). doi:10.1109/JEDS.2013.2292799
Q. Zhang, G. Iannaccone, G. Fiori, Two-dimensional tunnel transistors based on Bi2Se3 thin film. IEEE Electron Device Lett. 35(1), 129–131 (2014). doi:10.1109/LED.2013.2288036
W.G. Song, H.-J. Kwon, J. Park, J. Yeo, M. Kim et al., High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 26(15), 2426–2434 (2016). doi:10.1002/adfm.201505019
Y.K. Hong, G. Yoo, J. Kwon, S. Hong, W.G. Song et al., High performance and transparent multilayer MoS2 transistors: tuning Schottky barrier characteristics. AIP Adv. 6(5), 055026 (2016). doi:10.1063/1.4953062
L. Liu, Y. Lu, J. Guo, On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices 60(12), 4133–4139 (2013). doi:10.1109/TED.2013.2284591
L. Kai-Shin, W. Bo-Wei, L. Lain-Jong, L. Ming-Yang, C. Chia-Chin Kevin, et al., MoS2 U-shape MOSFET with 10 nm channel length and poly-Si source/drain serving as seed for full wafer CVD MoS2 availability. In Proc. IEEE Symp. VLSI Technol., pp. 1–2 (2016). doi:10.1109/VLSIT.2016.7573375
K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012). doi:10.1038/nature11458
L. Liu, S.B. Kumar, Y. Ouyang, J. Guo, Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans. Electron Devices 58(9), 3042–3047 (2011). doi:10.1109/TED.2011.2159221
Y. Naveh, K. Likharev, Modeling of 10-nm-scale ballistic MOSFET’s. IEEE Electron Device Lett. 21(5), 242–244 (2000). doi:10.1109/55.841309
A. Di Bartolomeo, Graphene schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016). doi:10.1016/j.physrep.2015.10.003
MathSciNet
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.1021/nl0731872
I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13(2), 550–554 (2013). doi:10.1021/nl304060g
S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92(15), 151911 (2008). doi:10.1063/1.2907977
J. Lan, J.-S. Wang, C.K. Gan, S.K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys. Rev. B 79(11), 115401 (2009). doi:10.1103/PhysRevB.79.115401
D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009). doi:10.1103/PhysRevB.79.155413
Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89(3), 035438 (2014). doi:10.1103/PhysRevB.89.035438
X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013). doi:10.1063/1.4823509
J.-W. Jiang, H.S. Park, T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): stillinger-weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013). doi:10.1063/1.4818414
J.-Y. Kim, S.-M. Choi, W.-S. Seo, W.-S. Cho, Thermal and electronic properties of exfoliated metal chalcogenides. Bull. Korean Chem. Soc. 31(11), 3225–3227 (2010). doi:10.5012/bkcs.2010.31.11.3225
S. Sahoo, A.P. Gaur, M. Ahmadi, M.J.-F. Guinel, R.S. Katiyar, Temperature-dependent raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117(17), 9042–9047 (2013). doi:10.1021/jp402509w
Z. Zong, L. Li, J. Jang, N. Lu, M. Liu, Analytical surface-potential compact model for amorphous-IGZO thin-film transistors. J. Appl. Phys. 117(21), 215705 (2015). doi:10.1063/1.4922181
S. Krishnamoorthy, M.H. Chowdhury, Investigation and a practical compact network model of thermal stress in integrated circuits. Integr. Comput.-Aided Eng. 16(2), 131–140 (2009). doi:10.3233/ICA-2009-0310
X. Qian, Y. Wang, W. Li, J. Lu, J. Li, Modelling of stacked 2D materials and devices. 2D Mater. 2(3), 032003 (2015). doi:10.1088/2053-1583/2/3/032003/meta
N. Lu, P. Sun, L. Li, Q. Liu, S. Long, L. Hangbing, M. Liu, Thermal effect on endurance performance of 3-dimensional RRAM crossbar array. Chin. Phys. B 25(5), 056501 (2016). doi:10.1088/1674-1056/25/5/056501
P. Buccella, C. Stefanucci, H. Zou, Y. Moursy, R. Iskander, J.-M. Sallese, M. Kayal, Methodology for 3-D substrate network extraction for spice simulation of parasitic currents in smart power ICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(9), 1489–1502 (2016). doi:10.1109/TCAD.2015.2513008
L. Nianduan, W. Lingfei, L. Ling, L. Ming, A review for compact model of graphene field-effect transistors. Chin. Phys. B 26(3), 036804 (2017). doi:10.1088/1674-1056/26/3/036804/meta
Y. Yoon, K. Ganapathi, S. Salahuddin, How good can monolayer MoS2 transistors Be. Nano Lett. 11(9), 3768–3773 (2011). doi:10.1021/nl2018178
N. Ma, D. Jena, Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater. 2(1), 015003 (2015). doi:10.1088/2053-1583/2/1/015003/meta
Y. Taur, J. Wu, J. Min, A Short-Channel I-V Model for 2-D MOSFETs. IEEE Trans. Electron Devices 63(6), 2550–2555 (2016). doi:10.1109/TED.2016.2547949
D. Jiménez, Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors. Appl. Phys. Lett. 101(24), 243501 (2012). doi:10.1063/1.4770313
C. Kshirsagar, W. Xu, C. Kim, S. Koester, Design and analysis of MoS2-based MOSFETs for ultra-low-leakage dynamic memory applications. In 72nd Annu. Device Res. Conf., pp.187–188 (2014). doi:10.1109/DRC.2014.6872360
W. Cao, J. Kang, W. Liu, K. Banerjee, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Devices 61(12), 4282–4290 (2014). doi:10.1109/TED.2014.2365028
C. Yadav, A. Agarwal, Y.S. Chauhan, Compact modeling of transition metal dichalcogenide based thin body transistors and circuit validation. IEEE Trans. Electron Devices 64(3), 1261–1268 (2017). doi:10.1109/TED.2016.2643698
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). doi:10.1038/nnano.2010.89
A. Ayari, E. Cobas, O. Ogundadegbe, M.S. Fuhrer, Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101(1), 14507 (2007). doi:10.1063/1.2407388
B. Radisavljevic, M.B. Whitwick, A. Kis, Correction to integrated circuits and logic operations based on single-layer MoS2. ACS Nano 7(4), 3729 (2013). doi:10.1021/nn400553g
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). doi:10.1038/nnano.2013.100
W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8(12), 952–958 (2013). doi:10.1038/nnano.2013.219
M.R. Esmaeili-Rad, S. Salahuddin, High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 3, 1–6 (2013). doi:10.1038/srep02345
B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, C. Zhou, Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9(6), 6119–6127 (2015). doi:10.1021/acsnano.5b01301
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012). doi:10.1021/nl301702r
V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, E. Bucher, High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84(17), 3301–3303 (2004). doi:10.1063/1.1723695
J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014). doi:10.1021/nn405719x
J.C. Bernède, M. Kettaf, A. Khelil, M. Spiesser, p-n junctions in molybdenum ditelluride. Phys. Status Solidi A 157(1), 205–209 (1996). doi:10.1002/pssa.2211570126
A. Conan, A. Bonnet, M. Zoaeter, D. Ramoul, Dependence of the total mobility in a one-band model applicationto n-type MoTe2. Phys. Status Solidi B 124(1), 403–410 (1984). doi:10.1002/pssb.2221240144
Y.-F. Lin, Y. Xu, C.-Y. Lin, Y.-W. Suen, M. Yamamoto, S. Nakaharai, K. Ueno, K. Tsukagoshi, Origin of noise in layered MoTe2 transistors and its possible use for environmental sensors. Adv. Mater. 27(42), 6612–6619 (2015). doi:10.1002/adma.201502677
Y.-F. Lin, Y. Xu, S.-T. Wang, S.-L. Li, M. Yamamoto et al., Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26(20), 3263–3269 (2014). doi:10.1002/adma.201305845
H. Liu, A.T. Neal, P.D. Ye, Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012). doi:10.1021/nn303513c
S. Ghatak, A.N. Pal, A. Ghosh, Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011). doi:10.1021/nn202852j
H. Liu, P.D. Ye, MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 33(4), 546–548 (2012). doi:10.1109/LED.2012.2184520
K. Lee, H.-Y. Kim, M. Lotya, J.N. Coleman, G.-T. Kim, G.S. Duesberg, Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23(36), 4178–4182 (2011). doi:10.1002/adma.201101013
M.M. Perera, M.-W. Lin, H.-J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.-C. Cheng, D. Tománek, Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449–4458 (2013). doi:10.1021/nn401053g
G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). doi:10.1021/nn402954e
S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.-W. Li, Y.-F. Lin, A. Aparecido-Ferreira, K. Tsukagoshi, Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 13(8), 3546–3552 (2013). doi:10.1021/nl4010783
S.-L. Li, K. Tsukagoshi, Carrier injection and scattering in atomically thin chalcogenides. J. Phys. Soc. Jpn. 84(12), 121011 (2015). doi:10.7566/JPSJ.84.121011
X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10(6), 534–540 (2015). doi:10.1038/nnano.2015.70
K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85(11), 115317 (2012). doi:10.1103/PhysRevB.85.115317
B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13(9), 4212–4216 (2013). doi:10.1021/nl401916s
S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101(22), 223104 (2012). doi:10.1063/1.4768218
J.T. Ye, Y.J. Zhang, R. Akashi, M.S. Bahramy, R. Arita, Y. Iwasa, Superconducting dome in a gate-tuned band insulator. Science 338(6111), 1193–1196 (2012). doi:10.1126/Science1228006
B. Radisavljevic, A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12(9), 815–820 (2013). doi:10.1038/nmat3687
S.-L. Li, K. Komatsu, S. Nakaharai, Y.-F. Lin, M. Yamamoto, X. Duan, K. Tsukagoshi, Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. ACS Nano 8(12), 12836–12842 (2014). doi:10.1021/nn506138y
S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)
S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris, Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89(10), 106801 (2002). doi:10.1103/PhysRevLett.89.106801
Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, Q. Chen, Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano 8(8), 7771–7779 (2014). doi:10.1021/nn503152r
A. Dankert, L. Langouche, M.V. Kamalakar, S.P. Dash, High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8(1), 476–482 (2014). doi:10.1021/nn404961e
J.-R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Control of schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 13(7), 3106–3110 (2013). doi:10.1021/nl4010157
A. Gold, Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. Phys. Rev. B 35(2), 723–733 (1987). doi:10.1103/PhysRevB.35.723
T. Ando, A.B. Fowler, F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982). doi:10.1103/RevModPhys.54.437
S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407–470 (2011). doi:10.1103/RevModPhys.83.407
K. Kaasbjerg, K.S. Thygesen, A.-P. Jauho, Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87(23), 235312 (2013). doi:10.1103/PhysRevB.87.235312
N. Ma, D. Jena, Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4(1), 011043 (2014). doi:10.1103/PhysRevX.4.011043
A.M. DaSilva, K. Zou, J.K. Jain, J. Zhu, Mechanism for current saturation and energy dissipation in graphene transistors. Phys. Rev. Lett. 104(23), 236601 (2010). doi:10.1103/PhysRevLett.104.236601
B.T. Moore, D.K. Ferry, Remote polar phonon scattering in Si inversion layers. J. Appl. Phys. 51(5), 2603–2605 (1980). doi:10.1063/1.327988
J. Hong, Z. Hu, M. Probert, K. Li, D. Lv et al., Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 1–8 (2015). doi:10.1038/ncomms7293
H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar et al., Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14(4), 1909–1913 (2014). doi:10.1021/nl4046922
E.H. Hwang, S. Adam, S.D. Sarma, Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98(18), 186806 (2007). doi:10.1103/PhysRevLett.98.186806
X. Zou, Y. Liu, B.I. Yakobson, Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13(1), 253–258 (2013). doi:10.1021/nl3040042
Y. Shi, H. Li, L.-J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44(9), 2744–2756 (2015). doi:10.1039/C4CS00256C
J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015). doi:10.1039/C5SC01941A
W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). doi:10.1021/jacs.5b10519
I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822–8832 (2015). doi:10.1021/acsnano.5b02019
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1–6 (2013). doi:10.1038/srep01866
D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zólyomi, S.V. Morozov et al., High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12(3), 223–227 (2017). doi:10.1038/nnano.2016.242
H.C. Diaz, R. Addou, M. Batzill, Interface properties of CVD grown graphene transferred onto MoS2 (0001). Nanoscale 6(2), 1071–1078 (2014). doi:10.1039/c3nr03692h
N. Choudhary, J. Park, J.Y. Hwang, H.-S. Chung, K.H. Dumas, S.I. Khondaker, W. Choi, Y. Jung, Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure. Sci. Rep. 6, 1–7 (2016). doi:10.1038/srep25456
T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 8(6), 6259–6264 (2014). doi:10.1021/nn501723y
R. Späh, M. Lux-Steiner, M. Obergfell, E. Bucher, S. Wagner, n-MoSe2/p-WSe2 heterojunctions. Appl. Phys. Lett. 47(8), 871–873 (1985). doi:10.1063/1.95960
J.H. Yu, H.R. Lee, S.S. Hong, D. Kong, H.-W. Lee, H. Wang, F. Xiong, S. Wang, Y. Cui, Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15(2), 1031–1035 (2015). doi:10.1021/nl503897h
M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin et al., Epitaxial growth of a monolayer WSe2/MoS2 lateral p-n junction with an atomically sharp interface. Science 349(6247), 524–528 (2015). doi:10.1126/Scienceaab4097
C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). doi:10.1038/nnano.2014.150
A. Nourbakhsh, A. Zubair, M.S. Dresselhaus, T. Palacios, Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16(2), 1359–1366 (2016). doi:10.1021/acs.nanolett.5b04791
R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin et al., Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14(10), 5590–5597 (2014). doi:10.1021/nl502075n
D. Jariwala, V.K. Sangwan, C.-C. Wu, P.L. Prabhumirashi, M.L. Geier, T.J. Marks, L.J. Lauhon, M.C. Hersam, Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. 110(45), 18076–18080 (2013). doi:10.1073/pnas.1317226110
S. Chuang, R. Kapadia, H. Fang, T. Chia Chang, W.-C. Yen, Y.-L. Chueh, A. Javey, Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Appl. Phys. Lett. 102(24), 242101 (2013). doi:10.1063/1.4809815
W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7(12), 1731–1737 (2014). doi:10.1007/s12274-014-0532-x