Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework
Corresponding Author: John Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 157
Abstract
Metal–organic framework (MOF) and covalent organic framework (COF) are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features, such as large surface area, tunable pore size, and functional surfaces, which have significant values in various application areas. The emerging 3D printing technology further provides MOF and COFs (M/COFs) with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths. However, the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’ microstructural features, both during and after 3D printing. It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications. In this overview, the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths. Their differences in the properties, applications, and current research states are discussed. The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF. Throughout the analysis of the current states of 3D-printed M/COFs, the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
Highlights:
1 A comprehensive investigation on the research states of 3D-printed metal/covalent organic frameworks (M/COFs) is conducted with the discussion on the M/COF-mixed monolith and M/COF-covered monolith separately.
2 Recent advances in design strategies regarding both the paste/scaffold formation and the 3D-printing/covering process for preserving the better structural features of M/COFs (surface area, porosity, and micromorphology) in their 3D printed monolith are overviewed and discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 (2023). https://doi.org/10.1007/s40820-023-01249-5
- J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15, 159 (2023). https://doi.org/10.1007/s40820-023-01111-8
- X. Qi, K. Liu, Z. Chang, Beyond powders: monoliths on the basis of metal-organic frameworks (MOFs). Chem. Eng. J. 441, 135953 (2022). https://doi.org/10.1016/j.cej.2022.135953
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- J. Li, M. Li, J.J. Koh, J. Wang, Z. Lyu, 3D-printed biomimetic structures for energy and environmental applications. DeCarbon 3, 100026 (2024). https://doi.org/10.1016/j.decarb.2023.100026
- W.Y. Lieu, D. Fang, K.J. Tay, X.L. Li, W.C. Chu et al., Progress on 3D-printed metal-organic frameworks with hierarchical structures. Adv. Mater. Technol. 7, 2200023 (2022). https://doi.org/10.1002/admt.202200023
- Y. Li, G. Wen, J. Li, Q. Li, H. Zhang et al., Synthesis and shaping of metal–organic frameworks: a review. Chem. Commun. 58, 11488–11506 (2022). https://doi.org/10.1039/d2cc04190a
- D. Pianca, M. Carboni, D. Meyer, 3D-printing of porous materials: application to metal-organic frameworks. Mater. Lett. X 13, 100121 (2022). https://doi.org/10.1016/j.mlblux.2022.100121
- J.B. Kim, H.Y. Lee, C. Chae, S.Y. Lee, S.H. Kim, Advanced additive manufacturing of structurally-colored architectures. Adv. Mater. (2023). https://doi.org/10.1002/adma.202307917
- L. Zeng, S. Ling, D. Du, H. He, X. Li et al., Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview. Adv. Sci. 10, e2303716 (2023). https://doi.org/10.1002/advs.202303716
- A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. Part B Eng. 225, 109249 (2021). https://doi.org/10.1016/j.compositesb.2021.109249
- M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022). https://doi.org/10.1002/adma.202108855
- J. Dhainaut, M. Bonneau, R. Ueoka, K. Kanamori, S. Furukawa, Formulation of metal–organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Appl. Mater. Interfaces 12, 10983–10992 (2020). https://doi.org/10.1021/acsami.9b22257
- R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
- E. Lahtinen, R.L.M. Precker, M. Lahtinen, E. Hey-Hawkins, M. Haukka, Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix. ChemPlusChem 84, 222–225 (2019). https://doi.org/10.1002/cplu.201900081
- G. Lipkowitz, T. Samuelsen, K. Hsiao, B. Lee, M.T. Dulay et al., Injection continuous liquid interface production of 3D objects. Sci. Adv. 8, eabq3917 (2022). https://doi.org/10.1126/sciadv.abq3917
- N.M. Larson, J. Mueller, A. Chortos, Z.S. Davidson, D.R. Clarke et al., Rotational multimaterial printing of filaments with subvoxel control. Nature 613, 682–688 (2023). https://doi.org/10.1038/s41586-022-05490-7
- M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019). https://doi.org/10.1038/s41586-019-1736-8
- Z. Ren, L. Gao, S.J. Clark, K. Fezzaa, P. Shevchenko et al., Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 379, 89–94 (2023). https://doi.org/10.1126/science.add4667
- Z. Lyu, J. Wang, Y. Chen, 4D printing: interdisciplinary integration of smart materials, structural design, and new functionality. Int. J. Extrem. Manuf. 5, 032011 (2023). https://doi.org/10.1088/2631-7990/ace090
- Z. Lyu, J.J. Koh, G.J.H. Lim, D. Zhang, T. Xiong et al., Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 1, 507–516 (2022). https://doi.org/10.1002/idm2.12027
- N. Maldonado, P. Amo-Ochoa, New promises and opportunities in 3D printable inks based on coordination compounds for the creation of objects with multiple applications. Chemistry 27, 2887–2907 (2021). https://doi.org/10.1002/chem.202002259
- S. Mallakpour, E. Azadi, C.M. Hussain, MOF/COF-based materials using 3D printing technology: applications in water treatment, gas removal, biomedical, and electronic industries. New J. Chem. 45, 13247–13257 (2021). https://doi.org/10.1039/D1NJ02152D
- E.R. Kearns, R. Gillespie, D.M. D’Alessandro, 3D printing of metal–organic framework composite materials for clean energy and environmental applications. J. Mater. Chem. A 9, 27252–27270 (2021). https://doi.org/10.1039/d1ta08777k
- C.T. Hsieh, K. Ariga, L.K. Shrestha, S.H. Hsu, Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks. Biomacromol 22, 1053–1064 (2021). https://doi.org/10.1021/acs.biomac.0c00920
- L. Zhang, G. Ng, N. Kapoor-Kaushik, X. Shi, N. Corrigan et al., 2D porphyrinic metal-organic framework nanosheets as multidimensional photocatalysts for functional materials. Angew. Chem. Int. Ed. 60, 22664–22671 (2021). https://doi.org/10.1002/anie.202107457
- C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous mof based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023). https://doi.org/10.1002/smll.202300066
- W. Zhu, Z. Zhou, Y. Huang, H. Liu, N. He et al., A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair. J. Mater. Sci. Technol. 136, 200–211 (2023). https://doi.org/10.1016/j.jmst.2022.07.010
- S. Pal, Y.-Z. Su, Y.-W. Chen, C.-H. Yu, C.-W. Kung et al., 3D printing of metal-organic framework-based ionogels: wearable sensors with colorimetric and mechanical responses. ACS Appl. Mater. Interfaces 14, 28247–28257 (2022). https://doi.org/10.1021/acsami.2c02690
- A.I. Cherevko, I.A. Nikovskiy, Y.V. Nelyubina, K.M. Skupov, N.N. Efimov et al., 3D-printed porous magnetic carbon materials derived from metal-organic frameworks. Polymers 13, 3881 (2021). https://doi.org/10.3390/polym13223881
- A.K. Mohammed, S. Usgaonkar, F. Kanheerampockil, S. Karak, A. Halder et al., Connecting microscopic structures, mesoscale assemblies, and macroscopic architectures in 3D-printed hierarchical porous covalent organic framework foams. J. Am. Chem. Soc. 142, 8252–8261 (2020). https://doi.org/10.1021/jacs.0c00555
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019). https://doi.org/10.1002/adfm.201806658
- B. Yeskendir, J.-P. Dacquin, Y. Lorgouilloux, C. Courtois, S. Royer et al., From metal–organic framework powders to shaped solids: recent developments and challenges. Mater. Adv. 2, 7139–7186 (2021). https://doi.org/10.1039/d1ma00630d
- S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks. Adv. Funct. Mater. 29, 1805372 (2019). https://doi.org/10.1002/adfm.201805372
- A.D. Salazar-Aguilar, A. Quintanilla, P. López, C. Martínez, S.M. Vega-Díaz et al., 3D-printed Fe/γ-Al2O3 monoliths from MOF-based boehmite inks for the catalytic hydroxylation of phenol. ACS Appl. Mater. Interfaces 14, 920–932 (2022). https://doi.org/10.1021/acsami.1c19755
- K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef et al., Chemically active, porous 3D-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10, 15112–15121 (2018). https://doi.org/10.1021/acsami.7b17565
- A. Pustovarenko, B. Seoane, E. Abou-Hamad, H.E. King, B.M. Weckhuysen et al., Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Mater. Adv. 2, 2739–2749 (2021). https://doi.org/10.1039/D1MA00023C
- H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
- S. Lawson, M. Snarzyk, D. Hanify, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-MOF monoliths for CO2 adsorption. Ind. Eng. Chem. Res. 59, 7151–7160 (2020). https://doi.org/10.1021/acs.iecr.9b05445
- H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy et al., Adsorption of ethane and ethylene over 3D-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6, 15228–15237 (2018). https://doi.org/10.1021/acssuschemeng.8b03685
- J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi et al., 3D-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2, 4991–4999 (2019). https://doi.org/10.1021/acsanm.9b00934
- B. Claessens, N. Dubois, J. Lefevere, S. Mullens, J. Cousin-Saint-Remi et al., 3D-printed ZIF-8 monoliths for biobutanol recovery. Ind. Eng. Chem. Res. 59, 8813–8824 (2020). https://doi.org/10.1021/acs.iecr.0c00453
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Pan, X. Zhang et al., 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 24, 336–342 (2020). https://doi.org/10.1016/j.ensm.2019.07.041
- M.N. Channell, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018). https://doi.org/10.1002/pat.4197
- L. Zhong, J. Chen, Z. Ma, H. Feng, S. Chen et al., 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale 12, 24437–24449 (2020). https://doi.org/10.1039/d0nr06297a
- P. Pei, Z. Tian, Y. Zhu, 3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 272, 24–30 (2018). https://doi.org/10.1016/j.micromeso.2018.06.012
- F. Zou, J. Jiang, F. Lv, X. Xia, X. Ma, Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. J. Nanobiotechnology 18, 39 (2020). https://doi.org/10.1186/s12951-020-00594-6
- R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard. Mater. 384, 121418 (2020). https://doi.org/10.1016/j.jhazmat.2019.121418
- C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros et al., Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chem. Eng. J. 402, 126166 (2020). https://doi.org/10.1016/j.cej.2020.126166
- L. Zhang, X. Shi, Z. Zhang, R.P. Kuchel, R. Namivandi-Zangeneh et al., Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angew. Chem. Int. Ed. 60, 5489–5496 (2021). https://doi.org/10.1002/anie.202014208
- T. Wu, Z. Ma, Y. He, X. Wu, B. Tang et al., A covalent black phosphorus/metal-organic framework hetero-nanostructure for high-performance flexible supercapacitors. Angew. Chem. Int. Ed. 60, 10366–10374 (2021). https://doi.org/10.1002/anie.202101648
- J. Zhao, Y. Zhang, H. Lu, Y. Wang, X.D. Liu et al., Additive manufacturing of two-dimensional conductive metal-organic framework with multidimensional hybrid architectures for high-performance energy storage. Nano Lett. 22, 1198–1206 (2022). https://doi.org/10.1021/acs.nanolett.1c04367
- A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190–2193 (2019). https://doi.org/10.1039/C8CC10018G
- G.J.H. Lim, Y. Wu, B.B. Shah, J.J. Koh, C.K. Liu et al., 3D-printing of pure metal–organic framework monoliths. ACS Mater. Lett. 1, 147–153 (2019). https://doi.org/10.1021/acsmaterialslett.9b00069
- Y. Liu, J. Yang, C. Tao, H. Lee, M. Chen et al., Meniscus-guided 3D microprinting of pure metal–organic frameworks with high gas-uptake performance. ACS Appl. Mater. Interfaces 14, 7184–7191 (2022). https://doi.org/10.1021/acsami.1c22582
- M. Zhang, L. Li, Q. Lin, M. Tang, Y. Wu et al., Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154–5158 (2019). https://doi.org/10.1021/jacs.9b01561
- H.N. Abdelhamid, S. Sultan, A.P. Mathew, 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions. Dalton Trans. 52, 2988–2998 (2023). https://doi.org/10.1039/d2dt04168e
- P. Scholz, A. Ulbricht, Y. Joshi, C. Gollwitzer, S.M. Weidner, Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography. Int. J. Mater. Res. 111, 55–64 (2020). https://doi.org/10.3139/146.111817
- B. Chen, R. Davies, H. Chang, Y. Xia, Y. Zhu et al., In-situ synthesis of metal organic frameworks (MOFs)-PA12 powders and their laser sintering into hierarchical porous lattice structures. Addit. Manuf. 38, 101774 (2021). https://doi.org/10.1016/j.addma.2020.101774
- S. Lawson, A.-A. Alwakwak, A.A. Rownaghi, F. Rezaei, Gel–print–grow: a new way of 3D printing metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 56108–56117 (2020). https://doi.org/10.1021/acsami.0c18720
- C. Xu, Y. Ai, T. Zheng, C. Wang, Acoustic manipulation of breathing MOFs ps for self-folding composite films preparation. Sens. Actuat. A Phys. 315, 112288 (2020). https://doi.org/10.1016/j.sna.2020.112288
- R. Li, S. Yuan, W. Zhang, H. Zheng, W. Zhu et al., 3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Appl. Mater. Interfaces 11, 40564–40574 (2019). https://doi.org/10.1021/acsami.9b11840
- X. Liu, G.J.H. Lim, Y. Wang, L. Zhang, D. Mullangi et al., Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chem. Eng. J. 403, 126333 (2021). https://doi.org/10.1016/j.cej.2020.126333
- S. Lawson, C. Griffin, K. Rapp, A.A. Rownaghi, F. Rezaei, Amine-functionalized MIL-101 monoliths for CO2 removal from enclosed environments. Energy Fuels 33, 2399–2407 (2019). https://doi.org/10.1021/acs.energyfuels.8b04508
- T. Ni, Y. Zhu, L. Hao, Y. Chen, T. Cheng, Preparation of photothermal-sensitive PDGF@ZIF-8-PDA@COL/PLGA-TCP composite scaffolds for bone defect repair. Mater. Des. 217, 110643 (2022). https://doi.org/10.1016/j.matdes.2022.110643
- R. Yang, C. Fan, Y. Dou, X. Zhang, Z. Xu et al., 3D printing stiff antibacterial hydrogels for meniscus replacement. Appl. Mater. Today 24, 101089 (2021). https://doi.org/10.1016/j.apmt.2021.101089
- Z. Liu, X. Xia, W. Li, L. Xiao, X. Sun et al., In situ growth of Ca2+-based metal-organic framework on CaSiO3/ABS/TPU 3D skeleton for methylene blue removal. Materials 13, 4403 (2020). https://doi.org/10.3390/ma13194403
- J. Yao, F. Dong, X. Xu, M. Wen, Z. Ji et al., Rational design and construction of monolithic ordered mesoporous Co3O4@SiO2 catalyst by a novel 3D printed technology for catalytic oxidation of toluene. ACS Appl. Mater. Interfaces 14, 22170–22185 (2022). https://doi.org/10.1021/acsami.2c03850
- J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
- W. Liu, O. Erol, D.H. Gracias, 3D printing of an In situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12, 33267–33275 (2020). https://doi.org/10.1021/acsami.0c08880
- I. Pellejero, F. Almazán, M. Lafuente, M.A. Urbiztondo, M. Drobek et al., Functionalization of 3D printed ABS filters with MOF for toxic gas removal. J. Ind. Eng. Chem. 89, 194–203 (2020). https://doi.org/10.1016/j.jiec.2020.05.013
- S. Waheed, M. Rodas, H. Kaur, N.L. Kilah, B. Paull et al., In-situ growth of metal-organic frameworks in a reactive 3D printable material. Appl. Mater. Today 22, 100930 (2021). https://doi.org/10.1016/j.apmt.2020.100930
- Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li et al., Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017). https://doi.org/10.1039/C7RA10912A
- J. Du, W. Liu, Z. Kang, B. Yu, D. Li et al., Hydrothermal deposition of PCN-224 on 3D-printed porous β-Ca2SiO4 scaffolds for bone regeneration. Adv. Eng. Mater. 24, 2101550 (2022). https://doi.org/10.1002/adem.202101550
- C. Shu, C. Qin, L. Chen, Y. Wang, Z. Shi et al., Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration. Adv. Sci. 10, e2206875 (2023). https://doi.org/10.1002/advs.202206875
- Y. Ying, M.P. Browne, M. Pumera, Metal–organic-frameworks on 3D-printed electrodes: in situ electrochemical transformation towards the oxygen evolution reaction. Sustain. Energy Fuels 4, 3732–3738 (2020). https://doi.org/10.1039/d0se00503g
- J. Dong, P. Li, H. Guan, C. Ge, Y. Bai et al., The synthesis of HKUST-1/SiO2 composite material based on 3D printing. Inorg. Chem. Commun. 117, 107975 (2020). https://doi.org/10.1016/j.inoche.2020.107975
- S. Lawson, Q. Al-Naddaf, A. Krishnamurthy, M.S. Amour, C. Griffin et al., UTSA-16 growth within 3D-printed co-Kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces 10, 19076–19086 (2018). https://doi.org/10.1021/acsami.8b05192
- D. Liu, P. Jiang, X. Li, J. Liu, L. Zhou et al., 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 397, 125392 (2020). https://doi.org/10.1016/j.cej.2020.125392
- L. Wang, W. Gao, S. Ng, M. Pumera, Chiral protein-covalent organic framework 3D-printed structures as chiral biosensors. Anal. Chem. 93, 5277–5283 (2021). https://doi.org/10.1021/acs.analchem.1c00322
- K. Li, Y. de Rancourt, X. de Mimérand, J. Jin, J.G. Yi, Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanops on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3, 2830–2845 (2020). https://doi.org/10.1021/acsanm.0c00096
- M. del Rio, M. Villar, S. Quesada, G.T. Palomino, L. Ferrer et al., Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Appl. Mater. Today 24, 101130 (2021). https://doi.org/10.1016/j.apmt.2021.101130
- A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà et al., Metal–organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011
- H.S. Far, M. Najafi, M. Hasanzadeh, M. Rabbani, Self-supported 3D-printed lattices containing MXene/metal–organic framework (MXOF) composite as an efficient adsorbent for wastewater treatment. ACS Appl. Mater. Interfaces 14, 44488–44497 (2022). https://doi.org/10.1021/acsami.2c13830
- W. Wang, Y. Xiong, R. Zhao, X. Li, W. Jia, A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J. Nanobiotechnology 20, 68 (2022). https://doi.org/10.1186/s12951-022-01277-0
- H.S. Far, M. Najafi, M. Hasanzadeh, R. Rahimi, A 3D-printed hierarchical porous architecture of MOF@clay composite for rapid and highly efficient dye scavenging. New J. Chem. 46, 23351–23360 (2022). https://doi.org/10.1039/D2NJ05188E
- Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/J.NANTOD.2021.101182
- Q. Xu, Z. Chen, Y. Zhang, X. Hu, F. Chen et al., Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment of its potential as cranioplasty implants. J. Mater. Chem. B 10, 3747–3758 (2022). https://doi.org/10.1039/d2tb00419d
- S. Yuan, J. Zhu, Y. Li, Y. Zhao, J. Li et al., Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface. J. Mater. Chem. A 7, 2723–2729 (2019). https://doi.org/10.1039/C8TA10249J
- Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2014). https://doi.org/10.1038/srep05939
- W. Dang, B. Ma, B. Li, Z. Huan, N. Ma et al., 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication 12, 025005 (2020). https://doi.org/10.1088/1758-5090/ab5ae3
- R. Singh, G. Souillard, L. Chassat, Y. Gao, X. Mulet et al., Fabricating bioactive 3D metal–organic framework devices. Adv. Sustain. Syst. 4, 2000059 (2020). https://doi.org/10.1002/adsu.202000059
- L. Wang, S. Ng, Jyoti, M. Pumera, Al2O3/covalent organic framework on 3D-printed nanocarbon electrodes for enhanced biomarker detection. ACS Appl. Nano Mater. 5, 9719–9727 (2022). https://doi.org/10.1021/acsanm.2c01937
- M. Li, Y. Wei, B. Ma, Y. Hu, D. Li et al., Synthesis and antibacterial properties of ZIF-8/Ag-modified titanium alloy. J. Bionic Eng. 19, 507–515 (2022). https://doi.org/10.1007/s42235-021-00135-3
References
Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 (2023). https://doi.org/10.1007/s40820-023-01249-5
J. Chang, C. Li, X. Wang, D. Li, J. Zhang et al., Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nano-Micro Lett. 15, 159 (2023). https://doi.org/10.1007/s40820-023-01111-8
X. Qi, K. Liu, Z. Chang, Beyond powders: monoliths on the basis of metal-organic frameworks (MOFs). Chem. Eng. J. 441, 135953 (2022). https://doi.org/10.1016/j.cej.2022.135953
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
J. Li, M. Li, J.J. Koh, J. Wang, Z. Lyu, 3D-printed biomimetic structures for energy and environmental applications. DeCarbon 3, 100026 (2024). https://doi.org/10.1016/j.decarb.2023.100026
W.Y. Lieu, D. Fang, K.J. Tay, X.L. Li, W.C. Chu et al., Progress on 3D-printed metal-organic frameworks with hierarchical structures. Adv. Mater. Technol. 7, 2200023 (2022). https://doi.org/10.1002/admt.202200023
Y. Li, G. Wen, J. Li, Q. Li, H. Zhang et al., Synthesis and shaping of metal–organic frameworks: a review. Chem. Commun. 58, 11488–11506 (2022). https://doi.org/10.1039/d2cc04190a
D. Pianca, M. Carboni, D. Meyer, 3D-printing of porous materials: application to metal-organic frameworks. Mater. Lett. X 13, 100121 (2022). https://doi.org/10.1016/j.mlblux.2022.100121
J.B. Kim, H.Y. Lee, C. Chae, S.Y. Lee, S.H. Kim, Advanced additive manufacturing of structurally-colored architectures. Adv. Mater. (2023). https://doi.org/10.1002/adma.202307917
L. Zeng, S. Ling, D. Du, H. He, X. Li et al., Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview. Adv. Sci. 10, e2303716 (2023). https://doi.org/10.1002/advs.202303716
A. Shahzad, I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. Part B Eng. 225, 109249 (2021). https://doi.org/10.1016/j.compositesb.2021.109249
M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram et al., Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022). https://doi.org/10.1002/adma.202108855
J. Dhainaut, M. Bonneau, R. Ueoka, K. Kanamori, S. Furukawa, Formulation of metal–organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation. ACS Appl. Mater. Interfaces 12, 10983–10992 (2020). https://doi.org/10.1021/acsami.9b22257
R. Zhou, Y. Wang, Z. Liu, Y. Pang, J. Chen et al., Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 14, 122 (2022). https://doi.org/10.1007/s40820-022-00865-x
E. Lahtinen, R.L.M. Precker, M. Lahtinen, E. Hey-Hawkins, M. Haukka, Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix. ChemPlusChem 84, 222–225 (2019). https://doi.org/10.1002/cplu.201900081
G. Lipkowitz, T. Samuelsen, K. Hsiao, B. Lee, M.T. Dulay et al., Injection continuous liquid interface production of 3D objects. Sci. Adv. 8, eabq3917 (2022). https://doi.org/10.1126/sciadv.abq3917
N.M. Larson, J. Mueller, A. Chortos, Z.S. Davidson, D.R. Clarke et al., Rotational multimaterial printing of filaments with subvoxel control. Nature 613, 682–688 (2023). https://doi.org/10.1038/s41586-022-05490-7
M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019). https://doi.org/10.1038/s41586-019-1736-8
Z. Ren, L. Gao, S.J. Clark, K. Fezzaa, P. Shevchenko et al., Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 379, 89–94 (2023). https://doi.org/10.1126/science.add4667
Z. Lyu, J. Wang, Y. Chen, 4D printing: interdisciplinary integration of smart materials, structural design, and new functionality. Int. J. Extrem. Manuf. 5, 032011 (2023). https://doi.org/10.1088/2631-7990/ace090
Z. Lyu, J.J. Koh, G.J.H. Lim, D. Zhang, T. Xiong et al., Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 1, 507–516 (2022). https://doi.org/10.1002/idm2.12027
N. Maldonado, P. Amo-Ochoa, New promises and opportunities in 3D printable inks based on coordination compounds for the creation of objects with multiple applications. Chemistry 27, 2887–2907 (2021). https://doi.org/10.1002/chem.202002259
S. Mallakpour, E. Azadi, C.M. Hussain, MOF/COF-based materials using 3D printing technology: applications in water treatment, gas removal, biomedical, and electronic industries. New J. Chem. 45, 13247–13257 (2021). https://doi.org/10.1039/D1NJ02152D
E.R. Kearns, R. Gillespie, D.M. D’Alessandro, 3D printing of metal–organic framework composite materials for clean energy and environmental applications. J. Mater. Chem. A 9, 27252–27270 (2021). https://doi.org/10.1039/d1ta08777k
C.T. Hsieh, K. Ariga, L.K. Shrestha, S.H. Hsu, Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks. Biomacromol 22, 1053–1064 (2021). https://doi.org/10.1021/acs.biomac.0c00920
L. Zhang, G. Ng, N. Kapoor-Kaushik, X. Shi, N. Corrigan et al., 2D porphyrinic metal-organic framework nanosheets as multidimensional photocatalysts for functional materials. Angew. Chem. Int. Ed. 60, 22664–22671 (2021). https://doi.org/10.1002/anie.202107457
C. Li, S. Deng, W. Feng, Y. Cao, J. Bai et al., A universal room-temperature 3D printing approach towards porous mof based dendrites inhibition hybrid solid-state electrolytes. Small 19, e2300066 (2023). https://doi.org/10.1002/smll.202300066
W. Zhu, Z. Zhou, Y. Huang, H. Liu, N. He et al., A versatile 3D-printable hydrogel for antichondrosarcoma, antibacterial, and tissue repair. J. Mater. Sci. Technol. 136, 200–211 (2023). https://doi.org/10.1016/j.jmst.2022.07.010
S. Pal, Y.-Z. Su, Y.-W. Chen, C.-H. Yu, C.-W. Kung et al., 3D printing of metal-organic framework-based ionogels: wearable sensors with colorimetric and mechanical responses. ACS Appl. Mater. Interfaces 14, 28247–28257 (2022). https://doi.org/10.1021/acsami.2c02690
A.I. Cherevko, I.A. Nikovskiy, Y.V. Nelyubina, K.M. Skupov, N.N. Efimov et al., 3D-printed porous magnetic carbon materials derived from metal-organic frameworks. Polymers 13, 3881 (2021). https://doi.org/10.3390/polym13223881
A.K. Mohammed, S. Usgaonkar, F. Kanheerampockil, S. Karak, A. Halder et al., Connecting microscopic structures, mesoscale assemblies, and macroscopic architectures in 3D-printed hierarchical porous covalent organic framework foams. J. Am. Chem. Soc. 142, 8252–8261 (2020). https://doi.org/10.1021/jacs.0c00555
Z. Lyu, G.J.H. Lim, R. Guo, Z. Kou, T. Wang et al., 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li–O2 batteries. Adv. Funct. Mater. 29, 1806658 (2019). https://doi.org/10.1002/adfm.201806658
B. Yeskendir, J.-P. Dacquin, Y. Lorgouilloux, C. Courtois, S. Royer et al., From metal–organic framework powders to shaped solids: recent developments and challenges. Mater. Adv. 2, 7139–7186 (2021). https://doi.org/10.1039/d1ma00630d
S. Sultan, H.N. Abdelhamid, X. Zou, A.P. Mathew, CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks. Adv. Funct. Mater. 29, 1805372 (2019). https://doi.org/10.1002/adfm.201805372
A.D. Salazar-Aguilar, A. Quintanilla, P. López, C. Martínez, S.M. Vega-Díaz et al., 3D-printed Fe/γ-Al2O3 monoliths from MOF-based boehmite inks for the catalytic hydroxylation of phenol. ACS Appl. Mater. Interfaces 14, 920–932 (2022). https://doi.org/10.1021/acsami.1c19755
K.A. Evans, Z.C. Kennedy, B.W. Arey, J.F. Christ, H.T. Schaef et al., Chemically active, porous 3D-printed thermoplastic composites. ACS Appl. Mater. Interfaces 10, 15112–15121 (2018). https://doi.org/10.1021/acsami.7b17565
A. Pustovarenko, B. Seoane, E. Abou-Hamad, H.E. King, B.M. Weckhuysen et al., Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Mater. Adv. 2, 2739–2749 (2021). https://doi.org/10.1039/D1MA00023C
H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal–organic framework monoliths for gas adsorption processes. ACS Appl. Mater. Interfaces 9, 35908–35916 (2017). https://doi.org/10.1021/acsami.7b11626
S. Lawson, M. Snarzyk, D. Hanify, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-MOF monoliths for CO2 adsorption. Ind. Eng. Chem. Res. 59, 7151–7160 (2020). https://doi.org/10.1021/acs.iecr.9b05445
H. Thakkar, Q. Al-Naddaf, N. Legion, M. Hovis, A. Krishnamurthy et al., Adsorption of ethane and ethylene over 3D-printed ethane-selective monoliths. ACS Sustain. Chem. Eng. 6, 15228–15237 (2018). https://doi.org/10.1021/acssuschemeng.8b03685
J. Lefevere, B. Claessens, S. Mullens, G. Baron, J. Cousin-Saint-Remi et al., 3D-printed zeolitic imidazolate framework structures for adsorptive separations. ACS Appl. Nano Mater. 2, 4991–4999 (2019). https://doi.org/10.1021/acsanm.9b00934
B. Claessens, N. Dubois, J. Lefevere, S. Mullens, J. Cousin-Saint-Remi et al., 3D-printed ZIF-8 monoliths for biobutanol recovery. Ind. Eng. Chem. Res. 59, 8813–8824 (2020). https://doi.org/10.1021/acs.iecr.0c00453
Z. Lyu, G.J.H. Lim, R. Guo, Z. Pan, X. Zhang et al., 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 24, 336–342 (2020). https://doi.org/10.1016/j.ensm.2019.07.041
M.N. Channell, M. Sefa, J.A. Fedchak, J. Scherschligt, M. Bible et al., Toward 3D printed hydrogen storage materials made with ABS-MOF composites. Polym. Adv. Technol. 29, 867–873 (2018). https://doi.org/10.1002/pat.4197
L. Zhong, J. Chen, Z. Ma, H. Feng, S. Chen et al., 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale 12, 24437–24449 (2020). https://doi.org/10.1039/d0nr06297a
P. Pei, Z. Tian, Y. Zhu, 3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery. Microporous Mesoporous Mater. 272, 24–30 (2018). https://doi.org/10.1016/j.micromeso.2018.06.012
F. Zou, J. Jiang, F. Lv, X. Xia, X. Ma, Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. J. Nanobiotechnology 18, 39 (2020). https://doi.org/10.1186/s12951-020-00594-6
R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang et al., 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard. Mater. 384, 121418 (2020). https://doi.org/10.1016/j.jhazmat.2019.121418
C.A. Grande, R. Blom, V. Middelkoop, D. Matras, A. Vamvakeros et al., Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures. Chem. Eng. J. 402, 126166 (2020). https://doi.org/10.1016/j.cej.2020.126166
L. Zhang, X. Shi, Z. Zhang, R.P. Kuchel, R. Namivandi-Zangeneh et al., Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angew. Chem. Int. Ed. 60, 5489–5496 (2021). https://doi.org/10.1002/anie.202014208
T. Wu, Z. Ma, Y. He, X. Wu, B. Tang et al., A covalent black phosphorus/metal-organic framework hetero-nanostructure for high-performance flexible supercapacitors. Angew. Chem. Int. Ed. 60, 10366–10374 (2021). https://doi.org/10.1002/anie.202101648
J. Zhao, Y. Zhang, H. Lu, Y. Wang, X.D. Liu et al., Additive manufacturing of two-dimensional conductive metal-organic framework with multidimensional hybrid architectures for high-performance energy storage. Nano Lett. 22, 1198–1206 (2022). https://doi.org/10.1021/acs.nanolett.1c04367
A.J. Young, R. Guillet-Nicolas, E.S. Marshall, F. Kleitz, A.J. Goodhand et al., Direct ink writing of catalytically active UiO-66 polymer composites. Chem. Commun. 55, 2190–2193 (2019). https://doi.org/10.1039/C8CC10018G
G.J.H. Lim, Y. Wu, B.B. Shah, J.J. Koh, C.K. Liu et al., 3D-printing of pure metal–organic framework monoliths. ACS Mater. Lett. 1, 147–153 (2019). https://doi.org/10.1021/acsmaterialslett.9b00069
Y. Liu, J. Yang, C. Tao, H. Lee, M. Chen et al., Meniscus-guided 3D microprinting of pure metal–organic frameworks with high gas-uptake performance. ACS Appl. Mater. Interfaces 14, 7184–7191 (2022). https://doi.org/10.1021/acsami.1c22582
M. Zhang, L. Li, Q. Lin, M. Tang, Y. Wu et al., Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154–5158 (2019). https://doi.org/10.1021/jacs.9b01561
H.N. Abdelhamid, S. Sultan, A.P. Mathew, 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO2) and heavy metal ions. Dalton Trans. 52, 2988–2998 (2023). https://doi.org/10.1039/d2dt04168e
P. Scholz, A. Ulbricht, Y. Joshi, C. Gollwitzer, S.M. Weidner, Microstructure of polymer-imprinted metal–organic frameworks determined by absorption edge tomography. Int. J. Mater. Res. 111, 55–64 (2020). https://doi.org/10.3139/146.111817
B. Chen, R. Davies, H. Chang, Y. Xia, Y. Zhu et al., In-situ synthesis of metal organic frameworks (MOFs)-PA12 powders and their laser sintering into hierarchical porous lattice structures. Addit. Manuf. 38, 101774 (2021). https://doi.org/10.1016/j.addma.2020.101774
S. Lawson, A.-A. Alwakwak, A.A. Rownaghi, F. Rezaei, Gel–print–grow: a new way of 3D printing metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 56108–56117 (2020). https://doi.org/10.1021/acsami.0c18720
C. Xu, Y. Ai, T. Zheng, C. Wang, Acoustic manipulation of breathing MOFs ps for self-folding composite films preparation. Sens. Actuat. A Phys. 315, 112288 (2020). https://doi.org/10.1016/j.sna.2020.112288
R. Li, S. Yuan, W. Zhang, H. Zheng, W. Zhu et al., 3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications. ACS Appl. Mater. Interfaces 11, 40564–40574 (2019). https://doi.org/10.1021/acsami.9b11840
X. Liu, G.J.H. Lim, Y. Wang, L. Zhang, D. Mullangi et al., Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption. Chem. Eng. J. 403, 126333 (2021). https://doi.org/10.1016/j.cej.2020.126333
S. Lawson, C. Griffin, K. Rapp, A.A. Rownaghi, F. Rezaei, Amine-functionalized MIL-101 monoliths for CO2 removal from enclosed environments. Energy Fuels 33, 2399–2407 (2019). https://doi.org/10.1021/acs.energyfuels.8b04508
T. Ni, Y. Zhu, L. Hao, Y. Chen, T. Cheng, Preparation of photothermal-sensitive PDGF@ZIF-8-PDA@COL/PLGA-TCP composite scaffolds for bone defect repair. Mater. Des. 217, 110643 (2022). https://doi.org/10.1016/j.matdes.2022.110643
R. Yang, C. Fan, Y. Dou, X. Zhang, Z. Xu et al., 3D printing stiff antibacterial hydrogels for meniscus replacement. Appl. Mater. Today 24, 101089 (2021). https://doi.org/10.1016/j.apmt.2021.101089
Z. Liu, X. Xia, W. Li, L. Xiao, X. Sun et al., In situ growth of Ca2+-based metal-organic framework on CaSiO3/ABS/TPU 3D skeleton for methylene blue removal. Materials 13, 4403 (2020). https://doi.org/10.3390/ma13194403
J. Yao, F. Dong, X. Xu, M. Wen, Z. Ji et al., Rational design and construction of monolithic ordered mesoporous Co3O4@SiO2 catalyst by a novel 3D printed technology for catalytic oxidation of toluene. ACS Appl. Mater. Interfaces 14, 22170–22185 (2022). https://doi.org/10.1021/acsami.2c03850
J. Huang, P. Wu, Controlled assembly of luminescent lanthanide-organic frameworks via post-treatment of 3D-printed objects. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00543-w
W. Liu, O. Erol, D.H. Gracias, 3D printing of an In situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12, 33267–33275 (2020). https://doi.org/10.1021/acsami.0c08880
I. Pellejero, F. Almazán, M. Lafuente, M.A. Urbiztondo, M. Drobek et al., Functionalization of 3D printed ABS filters with MOF for toxic gas removal. J. Ind. Eng. Chem. 89, 194–203 (2020). https://doi.org/10.1016/j.jiec.2020.05.013
S. Waheed, M. Rodas, H. Kaur, N.L. Kilah, B. Paull et al., In-situ growth of metal-organic frameworks in a reactive 3D printable material. Appl. Mater. Today 22, 100930 (2021). https://doi.org/10.1016/j.apmt.2020.100930
Z. Shi, C. Xu, F. Chen, Y. Wang, L. Li et al., Renewable metal–organic-frameworks-coated 3D printing film for removal of malachite green. RSC Adv. 7, 49947–49952 (2017). https://doi.org/10.1039/C7RA10912A
J. Du, W. Liu, Z. Kang, B. Yu, D. Li et al., Hydrothermal deposition of PCN-224 on 3D-printed porous β-Ca2SiO4 scaffolds for bone regeneration. Adv. Eng. Mater. 24, 2101550 (2022). https://doi.org/10.1002/adem.202101550
C. Shu, C. Qin, L. Chen, Y. Wang, Z. Shi et al., Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration. Adv. Sci. 10, e2206875 (2023). https://doi.org/10.1002/advs.202206875
Y. Ying, M.P. Browne, M. Pumera, Metal–organic-frameworks on 3D-printed electrodes: in situ electrochemical transformation towards the oxygen evolution reaction. Sustain. Energy Fuels 4, 3732–3738 (2020). https://doi.org/10.1039/d0se00503g
J. Dong, P. Li, H. Guan, C. Ge, Y. Bai et al., The synthesis of HKUST-1/SiO2 composite material based on 3D printing. Inorg. Chem. Commun. 117, 107975 (2020). https://doi.org/10.1016/j.inoche.2020.107975
S. Lawson, Q. Al-Naddaf, A. Krishnamurthy, M.S. Amour, C. Griffin et al., UTSA-16 growth within 3D-printed co-Kaolin monoliths with high selectivity for CO2/CH4, CO2/N2, and CO2/H2 separation. ACS Appl. Mater. Interfaces 10, 19076–19086 (2018). https://doi.org/10.1021/acsami.8b05192
D. Liu, P. Jiang, X. Li, J. Liu, L. Zhou et al., 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 397, 125392 (2020). https://doi.org/10.1016/j.cej.2020.125392
L. Wang, W. Gao, S. Ng, M. Pumera, Chiral protein-covalent organic framework 3D-printed structures as chiral biosensors. Anal. Chem. 93, 5277–5283 (2021). https://doi.org/10.1021/acs.analchem.1c00322
K. Li, Y. de Rancourt, X. de Mimérand, J. Jin, J.G. Yi, Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanops on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3, 2830–2845 (2020). https://doi.org/10.1021/acsanm.0c00096
M. del Rio, M. Villar, S. Quesada, G.T. Palomino, L. Ferrer et al., Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Appl. Mater. Today 24, 101130 (2021). https://doi.org/10.1016/j.apmt.2021.101130
A. Figuerola, D.A.V. Medina, A.J. Santos-Neto, C.P. Cabello, V. Cerdà et al., Metal–organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011
H.S. Far, M. Najafi, M. Hasanzadeh, M. Rabbani, Self-supported 3D-printed lattices containing MXene/metal–organic framework (MXOF) composite as an efficient adsorbent for wastewater treatment. ACS Appl. Mater. Interfaces 14, 44488–44497 (2022). https://doi.org/10.1021/acsami.2c13830
W. Wang, Y. Xiong, R. Zhao, X. Li, W. Jia, A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J. Nanobiotechnology 20, 68 (2022). https://doi.org/10.1186/s12951-022-01277-0
H.S. Far, M. Najafi, M. Hasanzadeh, R. Rahimi, A 3D-printed hierarchical porous architecture of MOF@clay composite for rapid and highly efficient dye scavenging. New J. Chem. 46, 23351–23360 (2022). https://doi.org/10.1039/D2NJ05188E
Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/J.NANTOD.2021.101182
Q. Xu, Z. Chen, Y. Zhang, X. Hu, F. Chen et al., Mussel-inspired bioactive 3D-printable poly(styrene-butadiene-styrene) and the in vitro assessment of its potential as cranioplasty implants. J. Mater. Chem. B 10, 3747–3758 (2022). https://doi.org/10.1039/d2tb00419d
S. Yuan, J. Zhu, Y. Li, Y. Zhao, J. Li et al., Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface. J. Mater. Chem. A 7, 2723–2729 (2019). https://doi.org/10.1039/C8TA10249J
Z. Wang, J. Wang, M. Li, K. Sun, C.-J. Liu, Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 5939 (2014). https://doi.org/10.1038/srep05939
W. Dang, B. Ma, B. Li, Z. Huan, N. Ma et al., 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication 12, 025005 (2020). https://doi.org/10.1088/1758-5090/ab5ae3
R. Singh, G. Souillard, L. Chassat, Y. Gao, X. Mulet et al., Fabricating bioactive 3D metal–organic framework devices. Adv. Sustain. Syst. 4, 2000059 (2020). https://doi.org/10.1002/adsu.202000059
L. Wang, S. Ng, Jyoti, M. Pumera, Al2O3/covalent organic framework on 3D-printed nanocarbon electrodes for enhanced biomarker detection. ACS Appl. Nano Mater. 5, 9719–9727 (2022). https://doi.org/10.1021/acsanm.2c01937
M. Li, Y. Wei, B. Ma, Y. Hu, D. Li et al., Synthesis and antibacterial properties of ZIF-8/Ag-modified titanium alloy. J. Bionic Eng. 19, 507–515 (2022). https://doi.org/10.1007/s42235-021-00135-3