Superionic Conductivity in Ceria-Based Heterostructure Composites for Low-Temperature Solid Oxide Fuel Cells
Corresponding Author: Bin Zhu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 178
Abstract
Ceria-based heterostructure composite (CHC) has become a new stream to develop advanced low-temperature (300–600 °C) solid oxide fuel cells (LTSOFCs) with excellent power outputs at 1000 mW cm−2 level. The state-of-the-art ceria–carbonate or ceria–semiconductor heterostructure composites have made the CHC systems significantly contribute to both fundamental and applied science researches of LTSOFCs; however, a deep scientific understanding to achieve excellent fuel cell performance and high superionic conduction is still missing, which may hinder its wide application and commercialization. This review aims to establish a new fundamental strategy for superionic conduction of the CHC materials and relevant LTSOFCs. This involves energy band and built-in-field assisting superionic conduction, highlighting coupling effect among the ionic transfer, band structure and alignment impact. Furthermore, theories of ceria–carbonate, e.g., space charge and multi-ion conduction, as well as new scientific understanding are discussed and presented for functional CHC materials.
HIGHLIGHTS
• Ceria-based heterostructure composite for novel semiconductor-ionic fuel cells.
• Superionic conduction at interfaces is associated with the crossover of band structure.
• Band alignment/bending resultant built-in field plays a significant role in superionic conduction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Anwar, S.A. Muhammed Ali, A. Muchtar, M.R. Somalu, Synthesis and characterization of M-doped ceria–ternary carbonate composite electrolytes (M = erbium, lanthanum and strontium) for low-temperature solid oxide fuel cells. J. Alloys Compd. 775, 571–580 (2019). https://doi.org/10.1016/j.jallcom.2018.10.076
- R.J. Gorte, Recent developments towards commercialization of solid oxide fuel cells. AIChE J. 51, 2377–2381 (2005). https://doi.org/10.1002/aic.10621
- Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016). https://doi.org/10.1039/c5ee03858h
- L. Fan, B. Zhu, P. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018). https://doi.org/10.1016/j.nanoen.2017.12.044
- V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135–149 (2004). https://doi.org/10.1016/j.ssi.2004.06.015
- S. Basu, M.N. Alam, S. Basu, H.S. Maiti, 8YSZ—carbonate composite electrolyte-conductivity enhancement. J. Alloys Compd. 816, 152561 (2020). https://doi.org/10.1016/j.jallcom.2019.152561
- L. Fan, C. He, B. Zhu, Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: a review. Int. J. Energy Res. 41, 465–481 (2017). https://doi.org/10.1002/er.3629
- Y. Kim, J. Yang, J. Lee, M. Saqib, J. Shin et al., Stable ceria-based electrolytes for intermediate temperature-solid oxide fuel cells via hafnium oxide blocking layer. J. Alloys Compd. 779, 121–128 (2019). https://doi.org/10.1016/j.jallcom.2018.11.069
- N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay et al., A brief review on ceria based solid electrolytes for solid oxide fuel cells. J. Alloys Compd. 781, 984–1005 (2019). https://doi.org/10.1016/j.jallcom.2018.12.015
- B. Zhu, B. Wang, Y. Wang, R. Raza, W. Tan et al., Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3−δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 37, 195–202 (2017). https://doi.org/10.1016/j.nanoen.2017.05.003
- B. Zhu, Y. Huang, L. Fan, Y. Ma, B. Wang et al., Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19, 156–164 (2016). https://doi.org/10.1016/j.nanoen.2015.11.015
- M. Benamira, A. Ringuedé, V. Albin, R.N. Vannier, L. Hildebrandt et al., Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. J. Power Sources 196, 5546–5554 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.004
- M. Benamira, A. Ringuedé, L. Hildebrandt, C. Lagergren, R.N. Vannier et al., Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications: II—an electrochemical insight. Int. J. Hydrogen Energy 37, 19371–19379 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.062
- C. Xia, Y. Li, Y. Tian, Q. Liu, Y. Zhao et al., A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J. Power Sources 188, 156–162 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.068
- X. Wang, Y. Ma, B. Zhu, State of the art ceria–carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). Int. J. Hydrogen Energy 37, 19417–19425 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.096
- L. Fan, C. Wang, M. Chen, B. Zhu, Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 234, 154–174 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.138
- R. Raza, B. Zhu, A. Rafique, M.R. Naqvi, P. Lund, Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: a comprehensive review. Mater. Today Energy 15, 100373 (2020). https://doi.org/10.1016/j.mtener.2019.100373
- G. Zhang, W. Li, W. Huang, Z. Cao, K. Shao et al., Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction. J. Power Sources 386, 56–65 (2018). http://sci-hub.tw/10.1016/j.jpowsour.2018.03.035
- B. Zhu, R. Raza, G. Abbas, M. Singh, F.I.T.O. Skolan et al., An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21, 2465–2469 (2011). https://doi.org/10.1002/adfm.201002471
- K. Singh, J. Nowotny, V. Thangadurai, Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. Chem. Soc. Rev. 42, 1961–1972 (2013). https://doi.org/10.1039/c2cs35393h
- B. Zhu, P. Lund, R. Raza, J. Patakangas, Q. Huang et al., A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2, 1179–1185 (2013). https://doi.org/10.1016/j.nanoen.2013.05.001
- C. Ricca, A. Ringuedé, M. Cassir, C. Adamo, F. Labat, Conduction mechanisms in oxide–carbonate electrolytes for SOFC: highlighting the role of the interface from first-principles modeling. J. Phys. Chem. C 122, 10067–10077 (2018). https://doi.org/10.1021/acs.jpcc.8b02174
- Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi et al., Proton shuttles in CeO2/CeO2−δ core–shell structure. ACS Energy Lett. 4, 2601–2607 (2019). https://doi.org/10.1021/acsenergylett.9b01829
- B.W. Sheldon, V.B. Shenoy, Space charge induced surface stresses: implications in ceria and other ionic solids. Phys. Rev. Lett. 106, 216104 (2011). https://doi.org/10.1103/PhysRevLett.106.216104
- E. Fabbri, D. Pergolesi, E. Traversa, Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Technol. Adv. Mater. 11, 54503 (2010). https://doi.org/10.1088/1468-6996/11/5/054503
- S. Jiang, J.B. Wagner, A theoretical model for composite electrolytes—I. Space charge layer as a cause for charge-carrier enhancement. J. Phys. Chem. Solids 56, 1101–1111 (1995). https://doi.org/10.1016/0022-3697(95)00025-9
- N. Sata, N.Y. Jin-Phillipp, K. Eberl, J. Maier, Enhanced ionic conductivity and mesoscopic size effects in heterostructures of BaF2 and CaF2. Solid State Ionics 154–155, 497–502 (2002). https://doi.org/10.1016/S0167-2738(02)00488-5
- J. Maier, Nano-sized mixed conductors (Aspects of nano-ionics. Part III). Solid State Ionics 148, 367–374 (2002). https://doi.org/10.1016/S0167-2738(02)00075-9
- J. Maier, Ionic transport in nano-sized systems. Solid State Ionics 175, 7–12 (2004). https://doi.org/10.1016/j.ssi.2004.09.051
- X. Guo, R. Waser, Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog. Mater. Sci. 51, 151–210 (2006). https://doi.org/10.1016/j.pmatsci.2005.07.001
- H.L. Tuller, S.J. Litzelman, W. Jung, Micro-ionics: next generation power sources. Phys. Chem. Chem. Phys. 11, 3023–3034 (2009). https://doi.org/10.1039/b901906e
- J. Maier, Nano-ionics: more than just a fashionable slogan. J. Electroceram. 13, 593–598 (2004). https://doi.org/10.1007/s10832-004-5163-2
- I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Surface/interface-related conductivity in nanometer thick YSZ films. Electrochem. Solid State Lett. 7, A459 (2004). https://doi.org/10.1149/1.1809556
- J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005). https://doi.org/10.1038/nmat1513
- K. Wen, W. Lv, W. He, Interfacial lattice-strain effects on improving the overall performance of micro-solid oxide fuel cells. J. Mater. Chem. A 3, 20031–20050 (2015). https://doi.org/10.1039/c5ta03009a
- C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10, 4623–4635 (2008). https://doi.org/10.1039/B801675E
- H. Aydin, C. Korte, J. Janek, 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain. Sci. Technol. Adv. Mater. 14, 35007 (2013). https://doi.org/10.1088/1468-6996/14/3/035007
- K. Wen, K.H.L. Zhang, W. Wang, J. Lin, W. Lv et al., Physical justification for ionic conductivity enhancement at strained coherent interfaces. J. Power Sources 285, 37–42 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.089
- P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More et al., Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010). https://doi.org/10.1038/nchem.623
- C. Korte, N. Schichtel, D. Hesse, J. Janek, Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatsh. Chem. Chem. Mon. 140, 1069–1080 (2009). https://doi.org/10.1007/s00706-009-0125-7
- N. Schichtel, C. Korte, D. Hesse, J. Janek, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11, 3043–3048 (2009). https://doi.org/10.1039/B900148D
- J. Hinterberg, T. Zacherle, R.A. De Souza, Activation volume tensor for oxygen-vacancy migration in strained CeO2 electrolytes. Phys. Rev. Lett. 110, 205901 (2013). https://doi.org/10.1103/PhysRevLett.110.205901
- M.J.D. Rushton, A. Chroneos, Impact of uniaxial strain and doping on oxygen diffusion in CeO2. Sci. Rep. 4, 6068 (2014). https://doi.org/10.1038/srep06068
- K. Ahn, Y. Chung, K.J. Yoon, J. Son, B. Kim et al., Lattice-strain effect on oxygen vacancy formation in gadolinium-doped ceria. J. Electroceram. 32, 72–77 (2014). https://doi.org/10.1007/s10832-013-9844-6
- D. Shu, S. Ge, M. Wang, N. Ming, Interplay between external strain and oxygen vacancies on a rutile TiO2 (110) surface. Phys. Rev. Lett. 101, 116102 (2008). https://doi.org/10.1103/PhysRevLett.101.116102
- C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004). https://doi.org/10.1063/1.1682673
- D.S. Aidhy, B. Liu, Y. Zhang, W.J. Weber, Strain-induced phase and oxygen-vacancy stability in ionic interfaces from first-principles calculations. J. Phys. Chem. C 118, 30139–30144 (2014). https://doi.org/10.1021/jp507876m
- X. Wang, Y. Ma, S. Li, A. Kashyout, B. Zhu et al., Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. J. Power Sources 196, 2754–2758 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.033
- B. Zhu, I. Albinsson, C. Andersson, K. Borsand, M. Nilsson et al., Electrolysis studies based on ceria-based composites. Electrochem. Commun. 8, 495–498 (2006). https://doi.org/10.1016/j.elecom.2006.01.011
- W. Zhu, C. Xia, D. Ding, X. Shi, G. Meng, Electrical properties of ceria–carbonate composite electrolytes. Mater. Res. Bull. 41, 2057–2064 (2006). https://doi.org/10.1016/j.materresbull.2006.04.001
- J. Huang, Z. Gao, Z. Mao, Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int. J. Hydrogen Energy 35, 4270–4275 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.063
- S. Baral, W. Wilcox, Application of the Thomas Fermi quark model to multiquark mesons. Nucl. Phys. A 990, 259–293 (2019). https://doi.org/10.1016/j.nuclphysa.2019.07.010
- R. Carbo-Dorca, Variational principle, Hohenberg–Kohn theorem, and density function origin shifts. J. Math. Chem. 51, 1397–1409 (2013). https://doi.org/10.1007/s10910-013-0154-7
- S.F. Matar, Review on cerium intermetallic compounds: a bird's eye outlook through DFT. Prog. Solid State Chem. 41, 55–85 (2013). https://doi.org/10.1016/j.progsolidstchem.2013.03.001
- W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
- MathSciNet
- C. Ricca, A. Grishin, A. Ringuedé, M. Cassir, C. Adamo et al., Modeling composite electrolytes for low-temperature solid oxide fuel cell application: structural, vibrational and electronic features of carbonate–oxide interfaces. J. Mater. Chem. A 4, 17473–17482 (2016). https://doi.org/10.1039/C6TA06827H
- D. Gryamov, J. Fleig, J. Maier, Numerical study of grain boundary diffusion in nanocrystalline ionic materials including blocking space charges. Solid State Ionics 177, 1583–1586 (2006). https://doi.org/10.1016/j.ssi.2006.04.031
- M.C. Goebel, G. Gregori, J. Maier, Numerical calculations of space charge layer effects in nanocrystalline ceria. Part II: detailed analysis of the space charge layer properties. Phys. Chem. Chem. Phys. 16, 10175–10186 (2014). https://doi.org/10.1039/c3cp54616k
- H. Huang, Z. Mao, Z. Liu, C. Wang, Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem. Commun. 9, 2601–2605 (2007). https://doi.org/10.1016/j.elecom.2007.07.036
- R. Raza, X. Wang, Y. Ma, X. Liu, B. Zhu et al., Improved ceria–carbonate composite electrolytes. Int. J. Hydrogen Energy 35, 2684–2688 (2010). https://doi.org/10.1016/j.ijhydene.2009.04.038
- Y. Gao, X. Wang, J. Liu, C. Huang, K. Zhao et al., A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane. Sci. Adv. 6, z9339 (2020). https://doi.org/10.1126/sciadv.aaz9339
- B. Zhu, B.E. Mellander, Ionic conduction in composite materials containing one molten phase. Solid State Phenom. 39–40, 19–22 (1994). https://doi.org/10.4028/www.scientific.net/SSP.39-40.19
- X. Lei, C. Qin, K. Huang, Energetics of proton transfer in alkali carbonates: a first principles calculation. RSC Adv. 5, 56205–56209 (2015). https://doi.org/10.1039/c5ra07975f
- B. Zhu, M.D. Mat, Studies on dual phase ceria-based composites in electrochemistry. Int. J. Electrochem. Sci. 1, 383–402 (2006). https://doi.org/10.1002/fuce.200600018
- N. Mushtaq, C. Xia, W. Dong, B. Wang, R. Raza et al., Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3−δ–Sm0.25Ce0.75O2−δ heterostructure for fast ionic transport. ACS Appl. Mater. Interfaces 11, 38737–38745 (2019). https://doi.org/10.1021/acsami.9b13044
- S. Nho, G. Baek, S. Park, B.R. Lee, M.J. Cha et al., Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy Environ. Sci. 9, 240–246 (2016). https://doi.org/10.1039/C5EE03045E
- J. Jeong, H. Kim, Y.J. Yoon, B. Walker, S. Song et al., Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Adv. 8, 24110–24115 (2018). https://doi.org/10.1039/C8RA02637H
- C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen et al., Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3−delta into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019). https://doi.org/10.1038/s41467-019-09532-z
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017). https://doi.org/10.1002/adma.201601694
- C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang et al., Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 11, 3201–3211 (2018). https://doi.org/10.1039/c8ee01046c
- A.V. Semichaevsky, H.T. Johnson, Carrier transport in a quantum dot solar cell using semiclassical and quantum mechanical models. Sol. Energy Mater. Sol. Cells 108, 189–199 (2013). https://doi.org/10.1016/j.solmat.2012.09.030
- X. Huang, B. Liu, J. Guan, G. Miao, Z. Lin et al., Realization of in-plane p–n junctions with continuous lattice of a homogeneous material. Adv. Mater. 30, 1802065 (2018). https://doi.org/10.1002/adma.201802065
- X. Wang, Y. Ma, R. Raza, M. Muhammed, B. Zhu, Novel core–shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Electrochem. Commun. 10, 1617–1620 (2008). https://doi.org/10.1016/j.elecom.2008.08.023
- B. Zhu, S. Li, B.E. Mellander, Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600 °C) solid oxide fuel cells. Electrochem. Commun. 10, 302–305 (2008). https://doi.org/10.1016/j.elecom.2007.11.037
- T. Xia, W. Zhang, J. Murowchick, G. Liu, X. Chen, Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 13, 5289–5296 (2013). https://doi.org/10.1021/nl402810d
- P. Yan, X. Wang, X. Zheng, R. Li, J. Han et al., Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays. Nano Energy 15, 406–412 (2015). https://doi.org/10.1016/j.nanoen.2015.05.005
- J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136, 8839–8842 (2014). https://doi.org/10.1021/ja5044787
- X. Wang, C. Li, Roles of phase junction in photocatalysis and photoelectrocatalysis. J. Phys. Chem. C 122, 21083–21096 (2018). https://doi.org/10.1021/acs.jpcc.8b06039
- A. Ali, A. Rafique, M. Kaleemullah, G. Abbas, M. Ajmal Khan et al., Effect of alkali carbonates (single, binary, and ternary) on doped ceria: a composite electrolyte for low-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 10, 806–818 (2017). https://doi.org/10.1021/acsami.7b17010
- Y. Wu, B. Zhu, M. Huang, L. Liu, Q. Shi et al., Proton transport enabled by a field-induced metallic state in a semiconductor heterostructure. Science (Am. Assoc. Adv. Sci.) 369, 184–188 (2020). https://doi.org/10.1126/science.aaz9139
- E. Schrodinger, Quantification of the eigen value problem. Ann. Phys. 80(13), 437–490 (1926)
- M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1985, c1954)
- D.R. Hamann, M. Schluter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43(20), 1494–1497 (1979). https://doi.org/10.1103/PhysRevLett.43.1494
- L.H. Thomas, The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927). https://doi.org/10.1017/S0305004100011683
- E. Fermi, A statistical method for determining some properties of the atoms and its application to the theory of the periodic table of elements. Z. Phys. 48(1–2), 73–79 (1928). https://doi.org/10.1007/BF01351576
- P. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Camb. Philos. Soc. 26, 376–385 (1930)
- P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136(3B), B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
- C. Ricca, A. Grishin, A. Ringuedé, M. Cassir, C. Adamoab, F. Labat, Modeling composite electrolytes for low-temperature solid oxide fuel cell application: structural, vibrational and electronic features of carbonate–oxide interfaces. J. Mater. Chem. A 44, 17473–17482 (2016). https://doi.org/10.1039/C6TA06827H
References
M. Anwar, S.A. Muhammed Ali, A. Muchtar, M.R. Somalu, Synthesis and characterization of M-doped ceria–ternary carbonate composite electrolytes (M = erbium, lanthanum and strontium) for low-temperature solid oxide fuel cells. J. Alloys Compd. 775, 571–580 (2019). https://doi.org/10.1016/j.jallcom.2018.10.076
R.J. Gorte, Recent developments towards commercialization of solid oxide fuel cells. AIChE J. 51, 2377–2381 (2005). https://doi.org/10.1002/aic.10621
Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016). https://doi.org/10.1039/c5ee03858h
L. Fan, B. Zhu, P. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018). https://doi.org/10.1016/j.nanoen.2017.12.044
V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135–149 (2004). https://doi.org/10.1016/j.ssi.2004.06.015
S. Basu, M.N. Alam, S. Basu, H.S. Maiti, 8YSZ—carbonate composite electrolyte-conductivity enhancement. J. Alloys Compd. 816, 152561 (2020). https://doi.org/10.1016/j.jallcom.2019.152561
L. Fan, C. He, B. Zhu, Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: a review. Int. J. Energy Res. 41, 465–481 (2017). https://doi.org/10.1002/er.3629
Y. Kim, J. Yang, J. Lee, M. Saqib, J. Shin et al., Stable ceria-based electrolytes for intermediate temperature-solid oxide fuel cells via hafnium oxide blocking layer. J. Alloys Compd. 779, 121–128 (2019). https://doi.org/10.1016/j.jallcom.2018.11.069
N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay et al., A brief review on ceria based solid electrolytes for solid oxide fuel cells. J. Alloys Compd. 781, 984–1005 (2019). https://doi.org/10.1016/j.jallcom.2018.12.015
B. Zhu, B. Wang, Y. Wang, R. Raza, W. Tan et al., Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3−δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 37, 195–202 (2017). https://doi.org/10.1016/j.nanoen.2017.05.003
B. Zhu, Y. Huang, L. Fan, Y. Ma, B. Wang et al., Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19, 156–164 (2016). https://doi.org/10.1016/j.nanoen.2015.11.015
M. Benamira, A. Ringuedé, V. Albin, R.N. Vannier, L. Hildebrandt et al., Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. J. Power Sources 196, 5546–5554 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.004
M. Benamira, A. Ringuedé, L. Hildebrandt, C. Lagergren, R.N. Vannier et al., Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications: II—an electrochemical insight. Int. J. Hydrogen Energy 37, 19371–19379 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.062
C. Xia, Y. Li, Y. Tian, Q. Liu, Y. Zhao et al., A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J. Power Sources 188, 156–162 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.068
X. Wang, Y. Ma, B. Zhu, State of the art ceria–carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). Int. J. Hydrogen Energy 37, 19417–19425 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.096
L. Fan, C. Wang, M. Chen, B. Zhu, Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 234, 154–174 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.138
R. Raza, B. Zhu, A. Rafique, M.R. Naqvi, P. Lund, Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: a comprehensive review. Mater. Today Energy 15, 100373 (2020). https://doi.org/10.1016/j.mtener.2019.100373
G. Zhang, W. Li, W. Huang, Z. Cao, K. Shao et al., Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction. J. Power Sources 386, 56–65 (2018). http://sci-hub.tw/10.1016/j.jpowsour.2018.03.035
B. Zhu, R. Raza, G. Abbas, M. Singh, F.I.T.O. Skolan et al., An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21, 2465–2469 (2011). https://doi.org/10.1002/adfm.201002471
K. Singh, J. Nowotny, V. Thangadurai, Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. Chem. Soc. Rev. 42, 1961–1972 (2013). https://doi.org/10.1039/c2cs35393h
B. Zhu, P. Lund, R. Raza, J. Patakangas, Q. Huang et al., A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2, 1179–1185 (2013). https://doi.org/10.1016/j.nanoen.2013.05.001
C. Ricca, A. Ringuedé, M. Cassir, C. Adamo, F. Labat, Conduction mechanisms in oxide–carbonate electrolytes for SOFC: highlighting the role of the interface from first-principles modeling. J. Phys. Chem. C 122, 10067–10077 (2018). https://doi.org/10.1021/acs.jpcc.8b02174
Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi et al., Proton shuttles in CeO2/CeO2−δ core–shell structure. ACS Energy Lett. 4, 2601–2607 (2019). https://doi.org/10.1021/acsenergylett.9b01829
B.W. Sheldon, V.B. Shenoy, Space charge induced surface stresses: implications in ceria and other ionic solids. Phys. Rev. Lett. 106, 216104 (2011). https://doi.org/10.1103/PhysRevLett.106.216104
E. Fabbri, D. Pergolesi, E. Traversa, Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Technol. Adv. Mater. 11, 54503 (2010). https://doi.org/10.1088/1468-6996/11/5/054503
S. Jiang, J.B. Wagner, A theoretical model for composite electrolytes—I. Space charge layer as a cause for charge-carrier enhancement. J. Phys. Chem. Solids 56, 1101–1111 (1995). https://doi.org/10.1016/0022-3697(95)00025-9
N. Sata, N.Y. Jin-Phillipp, K. Eberl, J. Maier, Enhanced ionic conductivity and mesoscopic size effects in heterostructures of BaF2 and CaF2. Solid State Ionics 154–155, 497–502 (2002). https://doi.org/10.1016/S0167-2738(02)00488-5
J. Maier, Nano-sized mixed conductors (Aspects of nano-ionics. Part III). Solid State Ionics 148, 367–374 (2002). https://doi.org/10.1016/S0167-2738(02)00075-9
J. Maier, Ionic transport in nano-sized systems. Solid State Ionics 175, 7–12 (2004). https://doi.org/10.1016/j.ssi.2004.09.051
X. Guo, R. Waser, Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog. Mater. Sci. 51, 151–210 (2006). https://doi.org/10.1016/j.pmatsci.2005.07.001
H.L. Tuller, S.J. Litzelman, W. Jung, Micro-ionics: next generation power sources. Phys. Chem. Chem. Phys. 11, 3023–3034 (2009). https://doi.org/10.1039/b901906e
J. Maier, Nano-ionics: more than just a fashionable slogan. J. Electroceram. 13, 593–598 (2004). https://doi.org/10.1007/s10832-004-5163-2
I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Surface/interface-related conductivity in nanometer thick YSZ films. Electrochem. Solid State Lett. 7, A459 (2004). https://doi.org/10.1149/1.1809556
J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005). https://doi.org/10.1038/nmat1513
K. Wen, W. Lv, W. He, Interfacial lattice-strain effects on improving the overall performance of micro-solid oxide fuel cells. J. Mater. Chem. A 3, 20031–20050 (2015). https://doi.org/10.1039/c5ta03009a
C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10, 4623–4635 (2008). https://doi.org/10.1039/B801675E
H. Aydin, C. Korte, J. Janek, 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain. Sci. Technol. Adv. Mater. 14, 35007 (2013). https://doi.org/10.1088/1468-6996/14/3/035007
K. Wen, K.H.L. Zhang, W. Wang, J. Lin, W. Lv et al., Physical justification for ionic conductivity enhancement at strained coherent interfaces. J. Power Sources 285, 37–42 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.089
P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More et al., Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010). https://doi.org/10.1038/nchem.623
C. Korte, N. Schichtel, D. Hesse, J. Janek, Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatsh. Chem. Chem. Mon. 140, 1069–1080 (2009). https://doi.org/10.1007/s00706-009-0125-7
N. Schichtel, C. Korte, D. Hesse, J. Janek, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11, 3043–3048 (2009). https://doi.org/10.1039/B900148D
J. Hinterberg, T. Zacherle, R.A. De Souza, Activation volume tensor for oxygen-vacancy migration in strained CeO2 electrolytes. Phys. Rev. Lett. 110, 205901 (2013). https://doi.org/10.1103/PhysRevLett.110.205901
M.J.D. Rushton, A. Chroneos, Impact of uniaxial strain and doping on oxygen diffusion in CeO2. Sci. Rep. 4, 6068 (2014). https://doi.org/10.1038/srep06068
K. Ahn, Y. Chung, K.J. Yoon, J. Son, B. Kim et al., Lattice-strain effect on oxygen vacancy formation in gadolinium-doped ceria. J. Electroceram. 32, 72–77 (2014). https://doi.org/10.1007/s10832-013-9844-6
D. Shu, S. Ge, M. Wang, N. Ming, Interplay between external strain and oxygen vacancies on a rutile TiO2 (110) surface. Phys. Rev. Lett. 101, 116102 (2008). https://doi.org/10.1103/PhysRevLett.101.116102
C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004). https://doi.org/10.1063/1.1682673
D.S. Aidhy, B. Liu, Y. Zhang, W.J. Weber, Strain-induced phase and oxygen-vacancy stability in ionic interfaces from first-principles calculations. J. Phys. Chem. C 118, 30139–30144 (2014). https://doi.org/10.1021/jp507876m
X. Wang, Y. Ma, S. Li, A. Kashyout, B. Zhu et al., Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. J. Power Sources 196, 2754–2758 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.033
B. Zhu, I. Albinsson, C. Andersson, K. Borsand, M. Nilsson et al., Electrolysis studies based on ceria-based composites. Electrochem. Commun. 8, 495–498 (2006). https://doi.org/10.1016/j.elecom.2006.01.011
W. Zhu, C. Xia, D. Ding, X. Shi, G. Meng, Electrical properties of ceria–carbonate composite electrolytes. Mater. Res. Bull. 41, 2057–2064 (2006). https://doi.org/10.1016/j.materresbull.2006.04.001
J. Huang, Z. Gao, Z. Mao, Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int. J. Hydrogen Energy 35, 4270–4275 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.063
S. Baral, W. Wilcox, Application of the Thomas Fermi quark model to multiquark mesons. Nucl. Phys. A 990, 259–293 (2019). https://doi.org/10.1016/j.nuclphysa.2019.07.010
R. Carbo-Dorca, Variational principle, Hohenberg–Kohn theorem, and density function origin shifts. J. Math. Chem. 51, 1397–1409 (2013). https://doi.org/10.1007/s10910-013-0154-7
S.F. Matar, Review on cerium intermetallic compounds: a bird's eye outlook through DFT. Prog. Solid State Chem. 41, 55–85 (2013). https://doi.org/10.1016/j.progsolidstchem.2013.03.001
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
MathSciNet
C. Ricca, A. Grishin, A. Ringuedé, M. Cassir, C. Adamo et al., Modeling composite electrolytes for low-temperature solid oxide fuel cell application: structural, vibrational and electronic features of carbonate–oxide interfaces. J. Mater. Chem. A 4, 17473–17482 (2016). https://doi.org/10.1039/C6TA06827H
D. Gryamov, J. Fleig, J. Maier, Numerical study of grain boundary diffusion in nanocrystalline ionic materials including blocking space charges. Solid State Ionics 177, 1583–1586 (2006). https://doi.org/10.1016/j.ssi.2006.04.031
M.C. Goebel, G. Gregori, J. Maier, Numerical calculations of space charge layer effects in nanocrystalline ceria. Part II: detailed analysis of the space charge layer properties. Phys. Chem. Chem. Phys. 16, 10175–10186 (2014). https://doi.org/10.1039/c3cp54616k
H. Huang, Z. Mao, Z. Liu, C. Wang, Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem. Commun. 9, 2601–2605 (2007). https://doi.org/10.1016/j.elecom.2007.07.036
R. Raza, X. Wang, Y. Ma, X. Liu, B. Zhu et al., Improved ceria–carbonate composite electrolytes. Int. J. Hydrogen Energy 35, 2684–2688 (2010). https://doi.org/10.1016/j.ijhydene.2009.04.038
Y. Gao, X. Wang, J. Liu, C. Huang, K. Zhao et al., A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane. Sci. Adv. 6, z9339 (2020). https://doi.org/10.1126/sciadv.aaz9339
B. Zhu, B.E. Mellander, Ionic conduction in composite materials containing one molten phase. Solid State Phenom. 39–40, 19–22 (1994). https://doi.org/10.4028/www.scientific.net/SSP.39-40.19
X. Lei, C. Qin, K. Huang, Energetics of proton transfer in alkali carbonates: a first principles calculation. RSC Adv. 5, 56205–56209 (2015). https://doi.org/10.1039/c5ra07975f
B. Zhu, M.D. Mat, Studies on dual phase ceria-based composites in electrochemistry. Int. J. Electrochem. Sci. 1, 383–402 (2006). https://doi.org/10.1002/fuce.200600018
N. Mushtaq, C. Xia, W. Dong, B. Wang, R. Raza et al., Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3−δ–Sm0.25Ce0.75O2−δ heterostructure for fast ionic transport. ACS Appl. Mater. Interfaces 11, 38737–38745 (2019). https://doi.org/10.1021/acsami.9b13044
S. Nho, G. Baek, S. Park, B.R. Lee, M.J. Cha et al., Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy Environ. Sci. 9, 240–246 (2016). https://doi.org/10.1039/C5EE03045E
J. Jeong, H. Kim, Y.J. Yoon, B. Walker, S. Song et al., Formamidinium-based planar heterojunction perovskite solar cells with alkali carbonate-doped zinc oxide layer. RSC Adv. 8, 24110–24115 (2018). https://doi.org/10.1039/C8RA02637H
C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen et al., Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3−delta into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019). https://doi.org/10.1038/s41467-019-09532-z
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017). https://doi.org/10.1002/adma.201601694
C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang et al., Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 11, 3201–3211 (2018). https://doi.org/10.1039/c8ee01046c
A.V. Semichaevsky, H.T. Johnson, Carrier transport in a quantum dot solar cell using semiclassical and quantum mechanical models. Sol. Energy Mater. Sol. Cells 108, 189–199 (2013). https://doi.org/10.1016/j.solmat.2012.09.030
X. Huang, B. Liu, J. Guan, G. Miao, Z. Lin et al., Realization of in-plane p–n junctions with continuous lattice of a homogeneous material. Adv. Mater. 30, 1802065 (2018). https://doi.org/10.1002/adma.201802065
X. Wang, Y. Ma, R. Raza, M. Muhammed, B. Zhu, Novel core–shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Electrochem. Commun. 10, 1617–1620 (2008). https://doi.org/10.1016/j.elecom.2008.08.023
B. Zhu, S. Li, B.E. Mellander, Theoretical approach on ceria-based two-phase electrolytes for low temperature (300–600 °C) solid oxide fuel cells. Electrochem. Commun. 10, 302–305 (2008). https://doi.org/10.1016/j.elecom.2007.11.037
T. Xia, W. Zhang, J. Murowchick, G. Liu, X. Chen, Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 13, 5289–5296 (2013). https://doi.org/10.1021/nl402810d
P. Yan, X. Wang, X. Zheng, R. Li, J. Han et al., Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays. Nano Energy 15, 406–412 (2015). https://doi.org/10.1016/j.nanoen.2015.05.005
J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136, 8839–8842 (2014). https://doi.org/10.1021/ja5044787
X. Wang, C. Li, Roles of phase junction in photocatalysis and photoelectrocatalysis. J. Phys. Chem. C 122, 21083–21096 (2018). https://doi.org/10.1021/acs.jpcc.8b06039
A. Ali, A. Rafique, M. Kaleemullah, G. Abbas, M. Ajmal Khan et al., Effect of alkali carbonates (single, binary, and ternary) on doped ceria: a composite electrolyte for low-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 10, 806–818 (2017). https://doi.org/10.1021/acsami.7b17010
Y. Wu, B. Zhu, M. Huang, L. Liu, Q. Shi et al., Proton transport enabled by a field-induced metallic state in a semiconductor heterostructure. Science (Am. Assoc. Adv. Sci.) 369, 184–188 (2020). https://doi.org/10.1126/science.aaz9139
E. Schrodinger, Quantification of the eigen value problem. Ann. Phys. 80(13), 437–490 (1926)
M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1985, c1954)
D.R. Hamann, M. Schluter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43(20), 1494–1497 (1979). https://doi.org/10.1103/PhysRevLett.43.1494
L.H. Thomas, The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927). https://doi.org/10.1017/S0305004100011683
E. Fermi, A statistical method for determining some properties of the atoms and its application to the theory of the periodic table of elements. Z. Phys. 48(1–2), 73–79 (1928). https://doi.org/10.1007/BF01351576
P. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Camb. Philos. Soc. 26, 376–385 (1930)
P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136(3B), B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
C. Ricca, A. Grishin, A. Ringuedé, M. Cassir, C. Adamoab, F. Labat, Modeling composite electrolytes for low-temperature solid oxide fuel cell application: structural, vibrational and electronic features of carbonate–oxide interfaces. J. Mater. Chem. A 44, 17473–17482 (2016). https://doi.org/10.1039/C6TA06827H