Integration of Bio-Enzyme-Treated Super-Wood and AIE-Based Nonwoven Fabric for Efficient Evaporating the Wastewater with High Concentration of Ammonia Nitrogen
Corresponding Author: Ben Zhong Tang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 176
Abstract
The treatment of ammonia nitrogen wastewater (ANW) has garnered significant attention due to the ecology, and even biology is under increasing threat from over discharge ANW. Conventional ANW treatment methods often encounter challenges such as complex processes, high costs and secondary pollution. Considerable progress has been made in employing solar-induced evaporators for wastewater treatment. However, there remain notable barriers to transitioning from fundamental research to practical applications, including insufficient evaporation rates and inadequate resistance to biofouling. Herein, we propose a novel evaporator, which comprises a bio-enzyme-treated wood aerogel that serves as water pumping and storage layer, a cost-effective multi-walled carbon nanotubes coated hydrophobic/hydrophilic fibrous nonwoven mat functioning as photothermal evaporation layer, and aggregation-induced emission (AIE) molecules incorporated as anti-biofouling agent. The resultant bioinspired evaporator demonstrates a high evaporation rate of 12.83 kg m−2 h−1 when treating simulated ANW containing 30 wt% NH4Cl under 1.0 sun of illumination. AIE-doped evaporator exhibits remarkable photodynamic antibacterial activity against mildew and bacteria, ensuring outstanding resistance to biofouling over extended periods of wastewater treatment. When enhanced by natural wind under 1.0 sun irradiation, the evaporator achieves an impressive evaporation rate exceeding 20 kg m−2 h−1. This advancement represents a promising and viable approach for the effective removal of ammonia nitrogen wastewater.
Highlights:
1 Bio-enzyme-treated super-wood and aggregation-induced emission (AIE)-based nonwoven fabric is integrated into a solar evaporator.
2 The evaporator demonstrates a high evaporation rate of 12.83 kg m−2 h−1 when treating simulated wastewater containing 30 wt% NH4Cl under 1.0 sun of illumination.
3 AIE-doped evaporator exhibits remarkable photodynamic antibacterial activity against mildew and bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Krakat, B. Demirel, R. Anjum, D. Dietz, Methods of ammonia removal in anaerobic digestion: a review. Water Sci. Technol. 76, 1925–1938 (2017). https://doi.org/10.2166/wst.2017.406
- L. Zhang, E.G. Xu, Y. Li, H. Liu, D.E. Vidal-Dorsch et al., Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China. Chemosphere 202, 136–144 (2018). https://doi.org/10.1016/j.chemosphere.2018.03.098
- A. Temkin, S. Evans, T. Manidis, C. Campbell, O.V. Naidenko, Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ. Res. 176, 108442 (2019). https://doi.org/10.1016/j.envres.2019.04.009
- S. Yin, K. Chen, C. Srinivasakannan, S. Guo, S. Li et al., Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology. Chem. Eng. J. 337, 515–521 (2018). https://doi.org/10.1016/j.cej.2017.12.147
- W. Li, X. Shi, S. Zhang, G. Qi, Modelling of ammonia recovery from wastewater by air stripping in rotating packed beds. Sci. Total. Environ. 702, 134971 (2020). https://doi.org/10.1016/j.scitotenv.2019.134971
- D. Kim, H.-D. Ryu, M.-S. Kim, J. Kim, S.-I. Lee, Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 146, 81–85 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.054
- H. Huang, J. Liu, P. Zhang, D. Zhang, F. Gao, Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 307, 696–706 (2017). https://doi.org/10.1016/j.cej.2016.08.134
- N. Liu, Z. Sun, H. Zhang, L.H. Klausen, R. Moonhee et al., Emerging high-ammonia-nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Sci. Total. Environ. 875, 162603 (2023). https://doi.org/10.1016/j.scitotenv.2023.162603
- L. Feng, T. Qiu, H. Yan, C. Liu, Y. Chen et al., Removal of ammonia nitrogen from aqueous media with low-cost adsorbents: a review. Water Air Soil Pollut. 234, 280 (2023). https://doi.org/10.1007/s11270-023-06285-w
- M.E. Mugwili, F.B. Waanders, V. Masindi, E. Fosso-Kankeu, Effective removal of ammonia from aqueous solution through struvite synthesis and breakpoint chlorination: Insights into the synergistic effects of the hybrid system. J. Environ. Manage. 334, 117506 (2023). https://doi.org/10.1016/j.jenvman.2023.117506
- H. Chu, T. Huang, X.Y. Li, G.J. Wang, S.Z. Wang, Removal of NH3-N from wastewater solid propellant production by chemical precipitation. Adv. Mater. Res. 726–731, 2572–2575 (2013). https://doi.org/10.4028/www.scientific.net/amr.726-731.2572
- Y. Yang, D. Wang, W. Liao, H. Zeng, Y. Wu et al., Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination. Adv. Fiber Mater. 6, 1026–1036 (2024). https://doi.org/10.1007/s42765-024-00392-x
- Y. Sun, W. He, C. Jiang, J. Li, J. Liu et al., Wearable biodevices based on two-dimensional materials: from flexible sensors to smart integrated systems. Nano-Micro Lett. 17, 109 (2025). https://doi.org/10.1007/s40820-024-01597-w
- J.-C. Yang, L. Wu, L. Wang, R. Ren, P. Chen et al., An efficient photothermal conversion material based on D-A type luminophore for solar-driven desalination. Aggregate 5, e535 (2024). https://doi.org/10.1002/agt2.535
- H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35, e2207262 (2023). https://doi.org/10.1002/adma.202207262
- X. Zhao, X. Meng, H. Zou, Y. Zhang, Y. Ma et al., Nano-enabled solar driven-interfacial evaporation: advanced design and opportunities. Nano Res. 16, 6015–6038 (2023). https://doi.org/10.1007/s12274-023-5488-2
- C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- V.-D. Dao, N.H. Vu, S. Yun, Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 68, 104324 (2020). https://doi.org/10.1016/j.nanoen.2019.104324
- R. Xu, H. Cui, N. Wei, Y. Yu, L. Dai et al., Biomimetic micro-nanostructured evaporator with dual-transition-metal MXene for efficient solar steam generation and multifunctional salt harvesting. Nano-Micro Lett. 17, 102 (2025). https://doi.org/10.1007/s40820-024-01612-0
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- X. Song, X. Li, B. Zhu, S. Sun, Z. Chen et al., MnO2/poly-L-lysine co-decorated carbon fiber cloth with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv. Fiber Mater. 6, 1569–1582 (2024). https://doi.org/10.1007/s42765-024-00437-1
- H.T. Kim, L. Philip, A. McDonagh, M. Johir, J. Ren et al., Recent advances in high-rate solar-driven interfacial evaporation. Adv. Sci. 11, 2401322 (2024). https://doi.org/10.1002/advs.202401322
- N. Xu, J. Li, C. Finnerty, Y. Song, L. Zhou et al., Going beyond efficiency for solar evaporation. Nat. Water 1, 494–501 (2023). https://doi.org/10.1038/s44221-023-00086-5
- X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu et al., Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, 2313090 (2024). https://doi.org/10.1002/adma.202313090
- H. Li, W. Zhu, M. Li, Y. Li, R.T.K. Kwok et al., Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 33, e2102258 (2021). https://doi.org/10.1002/adma.202102258
- Z. Zhuang, J. Li, P. Shen, Z. Zhao, B.Z. Tang, Exploring and leveraging aggregation effects on reactive oxygen species generation in photodynamic therapy. Aggregate 5, e540 (2024). https://doi.org/10.1002/agt2.540
- H. Li, B. Jin, Y. Wang, B. Deng, D. Wang et al., as fiber meets with AIE: opening a wonderland for smart flexible materials. Adv. Mater. 35, e2210085 (2023). https://doi.org/10.1002/adma.202210085
- Y. Zhu, G. Tian, Y. Liu, H. Li, P. Zhang et al., Low-cost, unsinkable, and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer. Adv. Sci. 8, e2101727 (2021). https://doi.org/10.1002/advs.202101727
- W. Chao, X. Sun, Y. Li, G. Cao, R. Wang et al., Enhanced directional seawater desalination using a structure-guided wood aerogel. ACS Appl. Mater. Interfaces 12, 22387–22397 (2020). https://doi.org/10.1021/acsami.0c05902
- Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfac. 12, 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
- T.C.F. Gomes, M.S. Skaf, Cellulose-builder: a toolkit for building crystalline structures of cellulose. J. Comput. Chem. 33, 1338–1346 (2012). https://doi.org/10.1002/jcc.22959
- T. Liu, W. Li, L. Li, X. Peng, T. Kuang, Effect of dynamic oscillation shear flow intensity on the mechanical and morphological properties of high-density polyethylene: an integrated experimental and molecular dynamics simulation study. Polym. Test. 80, 106122 (2019). https://doi.org/10.1016/j.polymertesting.2019.106122
- Y. Wang, X. Wu, X. Yang, G. Owens, H. Xu, Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy 78, 105269 (2020). https://doi.org/10.1016/j.nanoen.2020.105269
- X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
- B. Jin, Y. Lu, X. Zhang, X. Zhang, D. Li et al., Iceberg-inspired solar water generator for enhanced thermoelectricity–freshwater synergistic production. Chem. Eng. J. 469, 143906 (2023). https://doi.org/10.1016/j.cej.2023.143906
- X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33, 2209207 (2023). https://doi.org/10.1002/adfm.202209207
- G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper et al., A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018). https://doi.org/10.1039/c8ee00220g
- C. Dang, H. Wang, Y. Cao, J. Shen, J. Zhang et al., Ultra salt-resistant solar desalination system via large-scale easy assembly of microstructural units. Energy Environ. Sci. 15, 5405–5414 (2022). https://doi.org/10.1039/d2ee03341k
- X. Guan, P. Kumar, Z. Li, T.K.A. Tran, S. Chahal et al., Borophene embedded cellulose paper for enhanced photothermal water evaporation and prompt bacterial killing. Adv. Sci. 10, e2205809 (2023). https://doi.org/10.1002/advs.202205809
- Y. Lei, J. Wang, B. Jiang, H. Liu, M. Ding et al., Revolutionary solar evaporation system: Harnessing the power of bacterial cellulose/Ag NPs/polypyrrole with its promoted antibacterial applications. Appl. Surf. Sci. 644, 158751 (2024). https://doi.org/10.1016/j.apsusc.2023.158751
- L. Han, H. Zhou, M. Fu, J. Li, H. Ma et al., Manufacturing robust MXene-based hydrogel-coated cotton fabric via electron-beam irradiation for efficient interfacial solar evaporation. Chem. Eng. J. 473, 145337 (2023). https://doi.org/10.1016/j.cej.2023.145337
- D. Fan, Y. Lu, X. Xu, Y. Tang, H. Zhang et al., Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation. Chem. Eng. J. 471, 144421 (2023). https://doi.org/10.1016/j.cej.2023.144421
- Q. Zhang, R. Hu, Y. Chen, X. Xiao, G. Zhao et al., Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Appl. Energy 276, 115545 (2020). https://doi.org/10.1016/j.apenergy.2020.115545
- K. Zhou, L. Yin, K. Gong, Q. Wu, 3D Vascular-structured Flame-retardant Cellulose-based photothermal aerogel for Solar-driven interfacial evaporation and wastewater purification. Chem. Eng. J. 464, 142616 (2023). https://doi.org/10.1016/j.cej.2023.142616
- J. Wang, Z. Chen, L. Feng, F. Yu, C. Ran et al., Plants transpiration-inspired antibacterial evaporator with multiscale structure and low vaporization enthalpy for solar steam generation. Nano Energy 114, 108631 (2023). https://doi.org/10.1016/j.nanoen.2023.108631
- S. Zhou, Z. Qiu, M. Strømme, C. Xu, Solar-driven ionic power generation via a film of nanocellulose @ conductive metal–organic framework. Energy Environ. Sci. 14, 900–905 (2021). https://doi.org/10.1039/D0EE02730H
- X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018). https://doi.org/10.1039/c8ee00567b
- Y. Li, Y. Ma, Y. Liao, L. Ji, R. Zhao et al., High-entropy-alloy-nanops enabled wood evaporator for efficient photothermal conversion and sustainable solar desalination. Adv. Energy Mater. 12, 2203057 (2022). https://doi.org/10.1002/aenm.202203057
- Y. Zhao, D. You, Y. Chen, Q. Pan, Z. Su et al., Highly efficient 3D evaporator for interfacial solar steam generation and wastewater treatment. Energy Technol. 12, 2300586 (2024). https://doi.org/10.1002/ente.202300586
- K. Sheng, M. Tian, J. Zhu, Y. Zhang, B. Van der Bruggen, When coordination polymers meet wood: from molecular design toward sustainable solar desalination. ACS Nano 17, 15482–15491 (2023). https://doi.org/10.1021/acsnano.3c01421
- Z. Wang, R. Jin, S. Zhang, X. Han, P. Guo et al., Bioinspired, sustainable, high-efficiency solar evaporators for sewage purification. Adv. Funct. Mater. 33, 2306806 (2023). https://doi.org/10.1002/adfm.202306806
- R. Zheng, T. Lin, W.-L. Zhao, R. Yin, H. Li et al., Hierarchical CoMn-LDH based photothermal membrane with low evaporation enthalpy and narrow bandgap toward highly efficient solar-driven evaporation. Chem. Eng. J. 470, 144103 (2023). https://doi.org/10.1016/j.cej.2023.144103
- J. Sun, R. Teng, J. Tan, M. Xu, C. Ma et al., An integrated cellulose aerogel evaporator with improved thermal management and reduced enthalpy of evaporation using a hierarchical coordinated control strategy. J. Mater. Chem. A 11, 6248–6257 (2023). https://doi.org/10.1039/D2TA07122C
- Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020). https://doi.org/10.1002/adma.201907061
- Y. Guo, C.M. Dundas, X. Zhou, K.P. Johnston, G. Yu, Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation. Adv. Mater. 33, e2102994 (2021). https://doi.org/10.1002/adma.202102994
- J. Tang, T. Zheng, Z. Song, Y. Shao, N. Li et al., Realization of low latent heat of a solar evaporator via regulating the water state in wood channels. ACS Appl. Mater. Interfac. 12, 18504–18511 (2020). https://doi.org/10.1021/acsami.0c01261
- X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16, 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
- Q. Chen, M. Choi, H. Chen, J. Kim, C. Qin et al., Tree-inspired aerogel comprising nonoxidized graphene flakes and cellulose as solar absorber for efficient water generation. Nano Lett. 24, 10583–10591 (2024). https://doi.org/10.1021/acs.nanolett.4c02742
- T. Wang, M. Li, H. Xu, X. Wang, M. Jia et al., MXene sediment-based poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned channels for highly efficient solar steam generation. Nano-Micro Lett. 16, 220 (2024). https://doi.org/10.1007/s40820-024-01433-1
- B. Peng, Q. Lyu, Y. Gao, M. Li, G. Xie et al., Composite polyelectrolyte photothermal hydrogel with anti-biofouling and antibacterial properties for the real-world application of solar steam generation. ACS Appl. Mater. Interfac. 14, 16546–16557 (2022). https://doi.org/10.1021/acsami.2c02464
- J. Coatings, S. Bussjaeger, G. Daisey, R. Simmons, S. Spindel et al., Mildew and mildew control for wood surfaces. J. Coat. Technol. 71, 67–69 (1999). https://doi.org/10.1007/BF02697901
- M. Kang, Z. Zhang, N. Song, M. Li, P. Sun et al., Aggregation-enhanced theranostics: AIE sparkles in biomedical field. Aggregate 1, 80–106 (2020). https://doi.org/10.1002/agt2.7
- W. Wang, F. Wu, Q. Zhang, N. Zhou, M. Zhang et al., Aggregation-induced emission nanops for single near-infrared light-triggered photodynamic and photothermal antibacterial therapy. ACS Nano 16, 7961–7970 (2022). https://doi.org/10.1021/acsnano.2c00734
- Y.-Q. Zhao, L. Yu, L. Zhang, H. Liu, Y. Zhou et al., Activated aggregation-induced emission therapeutics agents for triggering regulated cell death. Aggregate 5, e503 (2024). https://doi.org/10.1002/agt2.503
- P. Xiao, Z. Shen, D. Wang, Y. Pan, Y. Li et al., Precise molecular engineering of type I photosensitizers with near-infrared aggregation-induced emission for image-guided photodynamic killing of multidrug-resistant bacteria. Adv. Sci. 9, e2104079 (2022). https://doi.org/10.1002/advs.202104079
- J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang et al., A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun. 9, 2963 (2018). https://doi.org/10.1038/s41467-018-05298-y
- L.-X. Yan, L.-J. Chen, X. Zhao, X.-P. Yan, pH switchable nanoplatform for in vivo persistent luminescence imaging and precise photothermal therapy of bacterial infection. Adv. Funct. Mater. 30, 1909042 (2020). https://doi.org/10.1002/adfm.201909042
- Y. Wang, Y. Li, Z. Zhang, L. Wang, D. Wang et al., Triple-jump photodynamic theranostics: MnO2 combined upconversion nanoplatforms involving a type-I photosensitizer with aggregation-induced emission characteristics for potent cancer treatment. Adv. Mater. 33, e2103748 (2021). https://doi.org/10.1002/adma.202103748
- J. Li, Z. Zhuang, Z. Zhao, B.Z. Tang, Type I AIE photosensitizers: mechanism and application. View 3, 20200121 (2022). https://doi.org/10.1002/VIW.20200121
- Z. Wang, T. Horseman, A.P. Straub, N.Y. Yip, D. Li et al., Pathways and challenges for efficient solar-thermal desalination. Sci. Adv.ci. Adv. 5, eaax0763 (2019). https://doi.org/10.1126/sciadv.aax0763
- Y. Zhang, S.K. Ravi, S.C. Tan, Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization. Adv. Sustain. Syst. 3, 1900044 (2019). https://doi.org/10.1002/adsu.201900044
References
N. Krakat, B. Demirel, R. Anjum, D. Dietz, Methods of ammonia removal in anaerobic digestion: a review. Water Sci. Technol. 76, 1925–1938 (2017). https://doi.org/10.2166/wst.2017.406
L. Zhang, E.G. Xu, Y. Li, H. Liu, D.E. Vidal-Dorsch et al., Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China. Chemosphere 202, 136–144 (2018). https://doi.org/10.1016/j.chemosphere.2018.03.098
A. Temkin, S. Evans, T. Manidis, C. Campbell, O.V. Naidenko, Exposure-based assessment and economic valuation of adverse birth outcomes and cancer risk due to nitrate in United States drinking water. Environ. Res. 176, 108442 (2019). https://doi.org/10.1016/j.envres.2019.04.009
S. Yin, K. Chen, C. Srinivasakannan, S. Guo, S. Li et al., Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology. Chem. Eng. J. 337, 515–521 (2018). https://doi.org/10.1016/j.cej.2017.12.147
W. Li, X. Shi, S. Zhang, G. Qi, Modelling of ammonia recovery from wastewater by air stripping in rotating packed beds. Sci. Total. Environ. 702, 134971 (2020). https://doi.org/10.1016/j.scitotenv.2019.134971
D. Kim, H.-D. Ryu, M.-S. Kim, J. Kim, S.-I. Lee, Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 146, 81–85 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.054
H. Huang, J. Liu, P. Zhang, D. Zhang, F. Gao, Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 307, 696–706 (2017). https://doi.org/10.1016/j.cej.2016.08.134
N. Liu, Z. Sun, H. Zhang, L.H. Klausen, R. Moonhee et al., Emerging high-ammonia-nitrogen wastewater remediation by biological treatment and photocatalysis techniques. Sci. Total. Environ. 875, 162603 (2023). https://doi.org/10.1016/j.scitotenv.2023.162603
L. Feng, T. Qiu, H. Yan, C. Liu, Y. Chen et al., Removal of ammonia nitrogen from aqueous media with low-cost adsorbents: a review. Water Air Soil Pollut. 234, 280 (2023). https://doi.org/10.1007/s11270-023-06285-w
M.E. Mugwili, F.B. Waanders, V. Masindi, E. Fosso-Kankeu, Effective removal of ammonia from aqueous solution through struvite synthesis and breakpoint chlorination: Insights into the synergistic effects of the hybrid system. J. Environ. Manage. 334, 117506 (2023). https://doi.org/10.1016/j.jenvman.2023.117506
H. Chu, T. Huang, X.Y. Li, G.J. Wang, S.Z. Wang, Removal of NH3-N from wastewater solid propellant production by chemical precipitation. Adv. Mater. Res. 726–731, 2572–2575 (2013). https://doi.org/10.4028/www.scientific.net/amr.726-731.2572
Y. Yang, D. Wang, W. Liao, H. Zeng, Y. Wu et al., Arch-bridge photothermal fabric with efficient warp-direction water paths for continuous solar desalination. Adv. Fiber Mater. 6, 1026–1036 (2024). https://doi.org/10.1007/s42765-024-00392-x
Y. Sun, W. He, C. Jiang, J. Li, J. Liu et al., Wearable biodevices based on two-dimensional materials: from flexible sensors to smart integrated systems. Nano-Micro Lett. 17, 109 (2025). https://doi.org/10.1007/s40820-024-01597-w
J.-C. Yang, L. Wu, L. Wang, R. Ren, P. Chen et al., An efficient photothermal conversion material based on D-A type luminophore for solar-driven desalination. Aggregate 5, e535 (2024). https://doi.org/10.1002/agt2.535
H. Zou, X. Meng, X. Zhao, J. Qiu, Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 35, e2207262 (2023). https://doi.org/10.1002/adma.202207262
X. Zhao, X. Meng, H. Zou, Y. Zhang, Y. Ma et al., Nano-enabled solar driven-interfacial evaporation: advanced design and opportunities. Nano Res. 16, 6015–6038 (2023). https://doi.org/10.1007/s12274-023-5488-2
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
V.-D. Dao, N.H. Vu, S. Yun, Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 68, 104324 (2020). https://doi.org/10.1016/j.nanoen.2019.104324
R. Xu, H. Cui, N. Wei, Y. Yu, L. Dai et al., Biomimetic micro-nanostructured evaporator with dual-transition-metal MXene for efficient solar steam generation and multifunctional salt harvesting. Nano-Micro Lett. 17, 102 (2025). https://doi.org/10.1007/s40820-024-01612-0
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
X. Song, X. Li, B. Zhu, S. Sun, Z. Chen et al., MnO2/poly-L-lysine co-decorated carbon fiber cloth with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance for solar-enabled anti-fouling seawater desalination. Adv. Fiber Mater. 6, 1569–1582 (2024). https://doi.org/10.1007/s42765-024-00437-1
H.T. Kim, L. Philip, A. McDonagh, M. Johir, J. Ren et al., Recent advances in high-rate solar-driven interfacial evaporation. Adv. Sci. 11, 2401322 (2024). https://doi.org/10.1002/advs.202401322
N. Xu, J. Li, C. Finnerty, Y. Song, L. Zhou et al., Going beyond efficiency for solar evaporation. Nat. Water 1, 494–501 (2023). https://doi.org/10.1038/s44221-023-00086-5
X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu et al., Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, 2313090 (2024). https://doi.org/10.1002/adma.202313090
H. Li, W. Zhu, M. Li, Y. Li, R.T.K. Kwok et al., Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation. Adv. Mater. 33, e2102258 (2021). https://doi.org/10.1002/adma.202102258
Z. Zhuang, J. Li, P. Shen, Z. Zhao, B.Z. Tang, Exploring and leveraging aggregation effects on reactive oxygen species generation in photodynamic therapy. Aggregate 5, e540 (2024). https://doi.org/10.1002/agt2.540
H. Li, B. Jin, Y. Wang, B. Deng, D. Wang et al., as fiber meets with AIE: opening a wonderland for smart flexible materials. Adv. Mater. 35, e2210085 (2023). https://doi.org/10.1002/adma.202210085
Y. Zhu, G. Tian, Y. Liu, H. Li, P. Zhang et al., Low-cost, unsinkable, and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer. Adv. Sci. 8, e2101727 (2021). https://doi.org/10.1002/advs.202101727
W. Chao, X. Sun, Y. Li, G. Cao, R. Wang et al., Enhanced directional seawater desalination using a structure-guided wood aerogel. ACS Appl. Mater. Interfaces 12, 22387–22397 (2020). https://doi.org/10.1021/acsami.0c05902
Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfac. 12, 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
T.C.F. Gomes, M.S. Skaf, Cellulose-builder: a toolkit for building crystalline structures of cellulose. J. Comput. Chem. 33, 1338–1346 (2012). https://doi.org/10.1002/jcc.22959
T. Liu, W. Li, L. Li, X. Peng, T. Kuang, Effect of dynamic oscillation shear flow intensity on the mechanical and morphological properties of high-density polyethylene: an integrated experimental and molecular dynamics simulation study. Polym. Test. 80, 106122 (2019). https://doi.org/10.1016/j.polymertesting.2019.106122
Y. Wang, X. Wu, X. Yang, G. Owens, H. Xu, Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy 78, 105269 (2020). https://doi.org/10.1016/j.nanoen.2020.105269
X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
B. Jin, Y. Lu, X. Zhang, X. Zhang, D. Li et al., Iceberg-inspired solar water generator for enhanced thermoelectricity–freshwater synergistic production. Chem. Eng. J. 469, 143906 (2023). https://doi.org/10.1016/j.cej.2023.143906
X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33, 2209207 (2023). https://doi.org/10.1002/adfm.202209207
G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper et al., A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018). https://doi.org/10.1039/c8ee00220g
C. Dang, H. Wang, Y. Cao, J. Shen, J. Zhang et al., Ultra salt-resistant solar desalination system via large-scale easy assembly of microstructural units. Energy Environ. Sci. 15, 5405–5414 (2022). https://doi.org/10.1039/d2ee03341k
X. Guan, P. Kumar, Z. Li, T.K.A. Tran, S. Chahal et al., Borophene embedded cellulose paper for enhanced photothermal water evaporation and prompt bacterial killing. Adv. Sci. 10, e2205809 (2023). https://doi.org/10.1002/advs.202205809
Y. Lei, J. Wang, B. Jiang, H. Liu, M. Ding et al., Revolutionary solar evaporation system: Harnessing the power of bacterial cellulose/Ag NPs/polypyrrole with its promoted antibacterial applications. Appl. Surf. Sci. 644, 158751 (2024). https://doi.org/10.1016/j.apsusc.2023.158751
L. Han, H. Zhou, M. Fu, J. Li, H. Ma et al., Manufacturing robust MXene-based hydrogel-coated cotton fabric via electron-beam irradiation for efficient interfacial solar evaporation. Chem. Eng. J. 473, 145337 (2023). https://doi.org/10.1016/j.cej.2023.145337
D. Fan, Y. Lu, X. Xu, Y. Tang, H. Zhang et al., Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation. Chem. Eng. J. 471, 144421 (2023). https://doi.org/10.1016/j.cej.2023.144421
Q. Zhang, R. Hu, Y. Chen, X. Xiao, G. Zhao et al., Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Appl. Energy 276, 115545 (2020). https://doi.org/10.1016/j.apenergy.2020.115545
K. Zhou, L. Yin, K. Gong, Q. Wu, 3D Vascular-structured Flame-retardant Cellulose-based photothermal aerogel for Solar-driven interfacial evaporation and wastewater purification. Chem. Eng. J. 464, 142616 (2023). https://doi.org/10.1016/j.cej.2023.142616
J. Wang, Z. Chen, L. Feng, F. Yu, C. Ran et al., Plants transpiration-inspired antibacterial evaporator with multiscale structure and low vaporization enthalpy for solar steam generation. Nano Energy 114, 108631 (2023). https://doi.org/10.1016/j.nanoen.2023.108631
S. Zhou, Z. Qiu, M. Strømme, C. Xu, Solar-driven ionic power generation via a film of nanocellulose @ conductive metal–organic framework. Energy Environ. Sci. 14, 900–905 (2021). https://doi.org/10.1039/D0EE02730H
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018). https://doi.org/10.1039/c8ee00567b
Y. Li, Y. Ma, Y. Liao, L. Ji, R. Zhao et al., High-entropy-alloy-nanops enabled wood evaporator for efficient photothermal conversion and sustainable solar desalination. Adv. Energy Mater. 12, 2203057 (2022). https://doi.org/10.1002/aenm.202203057
Y. Zhao, D. You, Y. Chen, Q. Pan, Z. Su et al., Highly efficient 3D evaporator for interfacial solar steam generation and wastewater treatment. Energy Technol. 12, 2300586 (2024). https://doi.org/10.1002/ente.202300586
K. Sheng, M. Tian, J. Zhu, Y. Zhang, B. Van der Bruggen, When coordination polymers meet wood: from molecular design toward sustainable solar desalination. ACS Nano 17, 15482–15491 (2023). https://doi.org/10.1021/acsnano.3c01421
Z. Wang, R. Jin, S. Zhang, X. Han, P. Guo et al., Bioinspired, sustainable, high-efficiency solar evaporators for sewage purification. Adv. Funct. Mater. 33, 2306806 (2023). https://doi.org/10.1002/adfm.202306806
R. Zheng, T. Lin, W.-L. Zhao, R. Yin, H. Li et al., Hierarchical CoMn-LDH based photothermal membrane with low evaporation enthalpy and narrow bandgap toward highly efficient solar-driven evaporation. Chem. Eng. J. 470, 144103 (2023). https://doi.org/10.1016/j.cej.2023.144103
J. Sun, R. Teng, J. Tan, M. Xu, C. Ma et al., An integrated cellulose aerogel evaporator with improved thermal management and reduced enthalpy of evaporation using a hierarchical coordinated control strategy. J. Mater. Chem. A 11, 6248–6257 (2023). https://doi.org/10.1039/D2TA07122C
Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi et al., Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification. Adv. Mater. 32, 1907061 (2020). https://doi.org/10.1002/adma.201907061
Y. Guo, C.M. Dundas, X. Zhou, K.P. Johnston, G. Yu, Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation. Adv. Mater. 33, e2102994 (2021). https://doi.org/10.1002/adma.202102994
J. Tang, T. Zheng, Z. Song, Y. Shao, N. Li et al., Realization of low latent heat of a solar evaporator via regulating the water state in wood channels. ACS Appl. Mater. Interfac. 12, 18504–18511 (2020). https://doi.org/10.1021/acsami.0c01261
X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16, 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
Q. Chen, M. Choi, H. Chen, J. Kim, C. Qin et al., Tree-inspired aerogel comprising nonoxidized graphene flakes and cellulose as solar absorber for efficient water generation. Nano Lett. 24, 10583–10591 (2024). https://doi.org/10.1021/acs.nanolett.4c02742
T. Wang, M. Li, H. Xu, X. Wang, M. Jia et al., MXene sediment-based poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned channels for highly efficient solar steam generation. Nano-Micro Lett. 16, 220 (2024). https://doi.org/10.1007/s40820-024-01433-1
B. Peng, Q. Lyu, Y. Gao, M. Li, G. Xie et al., Composite polyelectrolyte photothermal hydrogel with anti-biofouling and antibacterial properties for the real-world application of solar steam generation. ACS Appl. Mater. Interfac. 14, 16546–16557 (2022). https://doi.org/10.1021/acsami.2c02464
J. Coatings, S. Bussjaeger, G. Daisey, R. Simmons, S. Spindel et al., Mildew and mildew control for wood surfaces. J. Coat. Technol. 71, 67–69 (1999). https://doi.org/10.1007/BF02697901
M. Kang, Z. Zhang, N. Song, M. Li, P. Sun et al., Aggregation-enhanced theranostics: AIE sparkles in biomedical field. Aggregate 1, 80–106 (2020). https://doi.org/10.1002/agt2.7
W. Wang, F. Wu, Q. Zhang, N. Zhou, M. Zhang et al., Aggregation-induced emission nanops for single near-infrared light-triggered photodynamic and photothermal antibacterial therapy. ACS Nano 16, 7961–7970 (2022). https://doi.org/10.1021/acsnano.2c00734
Y.-Q. Zhao, L. Yu, L. Zhang, H. Liu, Y. Zhou et al., Activated aggregation-induced emission therapeutics agents for triggering regulated cell death. Aggregate 5, e503 (2024). https://doi.org/10.1002/agt2.503
P. Xiao, Z. Shen, D. Wang, Y. Pan, Y. Li et al., Precise molecular engineering of type I photosensitizers with near-infrared aggregation-induced emission for image-guided photodynamic killing of multidrug-resistant bacteria. Adv. Sci. 9, e2104079 (2022). https://doi.org/10.1002/advs.202104079
J. Wang, X. Gu, H. Ma, Q. Peng, X. Huang et al., A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun. 9, 2963 (2018). https://doi.org/10.1038/s41467-018-05298-y
L.-X. Yan, L.-J. Chen, X. Zhao, X.-P. Yan, pH switchable nanoplatform for in vivo persistent luminescence imaging and precise photothermal therapy of bacterial infection. Adv. Funct. Mater. 30, 1909042 (2020). https://doi.org/10.1002/adfm.201909042
Y. Wang, Y. Li, Z. Zhang, L. Wang, D. Wang et al., Triple-jump photodynamic theranostics: MnO2 combined upconversion nanoplatforms involving a type-I photosensitizer with aggregation-induced emission characteristics for potent cancer treatment. Adv. Mater. 33, e2103748 (2021). https://doi.org/10.1002/adma.202103748
J. Li, Z. Zhuang, Z. Zhao, B.Z. Tang, Type I AIE photosensitizers: mechanism and application. View 3, 20200121 (2022). https://doi.org/10.1002/VIW.20200121
Z. Wang, T. Horseman, A.P. Straub, N.Y. Yip, D. Li et al., Pathways and challenges for efficient solar-thermal desalination. Sci. Adv.ci. Adv. 5, eaax0763 (2019). https://doi.org/10.1126/sciadv.aax0763
Y. Zhang, S.K. Ravi, S.C. Tan, Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization. Adv. Sustain. Syst. 3, 1900044 (2019). https://doi.org/10.1002/adsu.201900044