Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems
Corresponding Author: Zheng Jiang
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 1-12
Abstract
Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/CdS/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system (Bi2S3/TNA as photoanode and Pt/SiPVC as photocathode at the same time), a self-bias (open-circuit voltage V oc = 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). doi:10.1038/238037a0
- Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4(4), 517–528 (2010). doi:10.1002/lpor.200910025
- Y.R. Steven, A.H. Jonathan, S. Kimberly, D.J. Thomas, J.E. Arthur, J.H. Joep, G.N. Daniel, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056), 645–648 (2011). doi:10.1126/science.1209816
- N.A. Kelly, T.L. Gibson, Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrog. Energ. 31(12), 1658–1673 (2006). doi:10.1016/j.ijhydene.2005.12.014
- L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energ. 35(11), 5233–5244 (2010). doi:10.1016/j.ijhydene.2010.02.133
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). doi:10.1039/B800489G
- W.F. Shangguan, Progress in research of hydrogen production from water on photocatalysts with solar energy. Chinese J. Inorg. Chem. 17(5), 619–626 (2001)
- Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheet. JACS 133(28), 10878–10884 (2011). doi:10.1021/ja2025454
- X. Chen, W. Shangguan, Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Front. Energy 7(1), 111–118 (2013). doi:10.1007/s11708-012-0228-4
- X. Chen, W. Chen, P.B. Lin, Y. Yang, H.Y. Gao, J. Yuan, W. Shangguan, In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun. 36, 104–108 (2013). doi:10.1016/j.catcom.2013.03.016
- X. Chen, W. Chen, H.Y. Gao, Y. Yang, W. Shangguan, In situ photodeposition of NiOx on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl. Catal. B-Environ. 152, 68–72 (2014). doi:10.1016/j.apcatb.2014.01.022
- A. Iwase, Y.H. Ng, R. Amal, A. Kudo, Solar hydrogen evolution using CuGaS2 photocathode improved by incorporating reduced graphene oxide. J. Mater. Chem. A 3, 8566–8570 (2015). doi:10.1039/C5TA01237F
- Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (Oxy) nitride photocatalysts for water splitting under visible-light irradiation. Coordin. Chem. Rev. 257(13), 1957–1969 (2013). doi:10.1016/j.ccr.2013.01.021
- K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). doi:10.1021/jz1007966
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). doi:10.1039/C3CS60378D
- T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.1126/science.1246913
- X. Liu, F. Wang, Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Cheml. Phys. 14(22), 7894–7911 (2012). doi:10.1039/c2cp40976c
- M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen, Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. JACS 135(10), 3733–3735 (2013). doi:10.1021/ja312653y
- Q.Y. Zeng, J. Bai, J.H. Li, Y.P. Li, X.J. Li, B.X. Zhou, Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation. Nano Energy 9, 152–160 (2014). doi:10.1016/j.nanoen.2014.06.023
- K. Sivula, F.L. Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4(4), 432–449 (2011). doi:10.1002/cssc.201000416
- S. Yamane, N. Kato, S. Kojima, A. Imanishi, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato, Efficient solar water splitting with a composite “n-Si/p-CuI/nip a-Si/np GaP/RuO2” semiconductor electrode. J. Phys. Chem. C 113(32), 14575–14581 (2009). doi:10.1021/jp904297v
- D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J.W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. JACS 136(36), 12568–12571 (2014). doi:10.1021/ja506386e
- S.U. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). doi:10.1126/science.1075035
- Y.R. Smith, B. Sarma, S.K. Mohanty, M. Misra, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays onfoil and wire substrate for enhanced photoelectrochemical water splitting. Int. J. Hydrog. Energ. 38(5), 2062–2069 (2013). doi:10.1016/j.ijhydene.2012.11.045
- C. Cheng, H. Zhang, W. Ren, W. Dong, Y. Sun, Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2(5), 779–786 (2013). doi:10.1016/j.nanoen.2013.01.010
- Q. Gang, Akira watanabe, surface texturing of TiO2 film by mist deposition of TiO2 nanoparticles. Nano-Micro Lett. 5(2), 129–134 (2013). doi:10.1007/BF03353740
- Z. Su, W. Zhou, F. Jiang, M. Hong, Anodic formation of nanoporous and nanotubular metal oxides. J. Mater. Chem. 22(2), 535–544 (2012). doi:10.1039/C1JM13338A
- Y.R. Smith, R.S. Ray, K. Carlson, B. Sarma, M. Misra, Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials 6(7), 2892–2957 (2013). doi:10.3390/ma6072892
- O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592–597 (2009). doi:10.1038/nnano.2009.226
- X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008). doi:10.1021/nl802096a
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). doi:10.1016/j.rser.2005.01.009
- S. In, A. Orlov, R. Beng, F. Garcia, S.P. Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. JACS 129(45), 13790–13791 (2007). doi:10.1021/ja0749237
- S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). doi:10.1021/jp204364a
- Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20(5), 1044–1049 (2008). doi:10.1002/adma.200701619
- J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006). doi:10.1021/nl051807y
- J. Xu, Y. Ao, M. Chen, D. Fu, Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays. Appl. Surf. Sci. 256(13), 4397–4401 (2010). doi:10.1016/j.apsusc.2010.02.037
- X. Tang, D. Li, Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C 112(14), 5405–5409 (2008). doi:10.1021/jp710468a
- N. Lu, H. Zhao, J. Li, X. Quan, S. Chen, Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity. Sep. Purif. Technol. 62(3), 668–673 (2008). doi:10.1016/j.seppur.2008.03.021
- R. Liang, A. Hu, J. Persic, Y.N. Zhou, Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett. 5(3), 202–212 (2013). doi:10.1007/BF03353751
- Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin, B. Fitzmorris, C. Liu, X. Lu, Y. Tong, J. Zhang, Y. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). doi:10.1021/nl4018385
- H.J. Kim, S.H. Lee, A.A. Upadhye, I. Ro, M.I. Tejedor-Tejedor, M.A. Anderson, W.B. Kim, G.W. Huber, Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 8(10), 10756–10765 (2014). doi:10.1021/nn504484u
- X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interf. 6(6), 4480–4489 (2014). doi:10.1021/am500234v
- J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K. Choi, Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20(16), 5266–5273 (2008). doi:10.1021/cm8010666
- L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient photocatalytic degradation of p–nitrophenol on a unique Cu2O/TiO2 p–n heterojunction network catalyst. Environ. Sci. Technol. 44(19), 7641–7646 (2010). doi:10.1021/es101711k
- W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mat. Sol. C 77(3), 229–237 (2003). doi:10.1016/S0927-0248(02)00343-4
- X. Gao, W. Sun, Z. Hu, G. Ai, Y. Zhang, S. Feng, F. Li, L. Peng, An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 113(47), 20481–20485 (2009). doi:10.1021/jp904320d
- Q.C. Xu, D.V. Wellia, Y.H. Ng, R. Amal, T.T.Y. Tan, Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 115(15), 7419–7428 (2011). doi:10.1021/jp1090137
- J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1), 387–395 (2010). doi:10.1021/nn901087c
- C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I.Y. Tok, H.J. Fan, Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 8(1), 37–42 (2012). doi:10.1002/smll.201101660
- H. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. J. Phys. Chem. C 115(19), 9797–9805 (2011). doi:10.1021/jp1122823
- G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4(21), 6682–6691 (2012). doi:10.1039/c2nr32222f
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). doi:10.1021/nl201766h
- U. Diebolda, J. Lehmana, T. Mahmouda, M. Kuhna, G. Leonardellib, W. Hebenstreitb, M. Schmidb, P. Vargab, Intrinsic defects on a TiO2 (110)(1 × 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf. Sci. 411(1), 137–153 (1998). doi:10.1016/S0039-6028(98)00356-2
- Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. P. Natl. Acad Sci. USA 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
- A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19(12), 1849–1856 (2009). doi:10.1002/adfm.200801363
- X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9(6), 2331–2336 (2009). doi:10.1021/nl900772q
- P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
- J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
- Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water Splitting. J. Phys. Chem. Lett. 1(17), 2607–2612 (2010). doi:10.1021/jz100978u
- W.D. Chemelewski, H. Lee, J. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. JACS 136(7), 2843–2850 (2014). doi:10.1021/ja411835a
- M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 24(5), 580–586 (2014). doi:10.1002/adfm.201301889
- R. Xie, J. Su, L. Guo, Ag2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting. Int. J. Nanotechnol. 10(12), 1115–1128 (2013). doi:10.1504/IJNT.2013.058569
- G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10(3), 1088–1092 (2010). doi:10.1021/nl100250z
- A.A. Tahir, M.A. Ehsan, M. Mazhar, K.G.U. Wijayantha, M. Zeller, A.D. Hunter, Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 22(17), 5084–5092 (2010). doi:10.1021/cm101642b
- R. Abe, M. Higashi, K. Domen, Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. JACS 132(34), 11828–11829 (2010). doi:10.1021/ja1016552
- M. Higashi, K. Domen, R. Abe, Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. JACS 134(16), 6968–6971 (2012). doi:10.1021/ja302059g
- M. Higashi, K. Domen, R. Abe, Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4(10), 4138–4147 (2011). doi:10.1039/c1ee01878g
- F. Su, J. Lu, Y. Tian, X. Ma, J. Gong, Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(29), 12026–12032 (2013). doi:10.1039/c3cp51291f
- X. Cheng, G. Pan, X. Yu, T. Zheng, Preparation of CdS NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta 105, 535–541 (2013). doi:10.1016/j.electacta.2013.05.040
- J. Nian, C.C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energ. 33(12), 2897–2903 (2008). doi:10.1016/j.ijhydene.2008.03.052
- A. Shalom, A. Heller, Efficient p-InP (Rh-H alloy) and p-InP (Re-H Alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129(12), 2865–2866 (1982). doi:10.1149/1.2123695
- O. Khaselev, J.A. Turner, Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting. J. Electrochem. Soc. 145(10), 3335–3339 (1998). doi:10.1149/1.1838808
- O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362), 425–427 (1998). doi:10.1126/science.280.5362.425
- W. Gunawan, S. Septina, T. Ikeda, T. Harada, K. Minegishi, M. Domen, Matsumura, Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting. Chem. Commun. 50(64), 8941–8943 (2014). doi:10.1039/C4CC03634D
- T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, T. Torimoto, Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J. Mater. Chem. 20(25), 5319–5324 (2010). doi:10.1039/c0jm00454e
- D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konagai, K. Domen, Photoelectrochemical water splitting using a Cu(In, Ga)Se2 thin film. Electrochem. Commun. 12(6), 851–853 (2010). doi:10.1016/j.elecom.2010.04.004
- C.C. Hu, J.N. Nian, H. Teng, Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol. Energy Mat. Sol. C 92(9), 1071–1076 (2008). doi:10.1016/j.solmat.2008.03.012
- C.M. McShane, K.S. Choi, Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14(17), 6112–6118 (2012). doi:10.1039/c2cp40502d
- T. Jiang, T. Xie, W. Yang, L. Chen, H. Fan, D. Wang, Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J. Phys. Chem. C 117(9), 4619–4624 (2013). doi:10.1021/jp311532s
- A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456–461 (2011). doi:10.1038/nmat3017
- R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder, M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. JACS 104(2), 467–482 (1982). doi:10.1021/ja00366a016
- S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D.T. Evans et al., Photoelectrochemical hydrogen evolution using Si microwire arrays. JACS 133(5), 1216–1219 (2011). doi:10.1021/ja108801m
- S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, T. Ishihara, Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. JACS 132(49), 17343–17345 (2010). doi:10.1021/ja106930f
- H. Wang, T. Deutsch, J.A. Turner, Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91–F96 (2008). doi:10.1149/1.2888477
References
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). doi:10.1038/238037a0
Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4(4), 517–528 (2010). doi:10.1002/lpor.200910025
Y.R. Steven, A.H. Jonathan, S. Kimberly, D.J. Thomas, J.E. Arthur, J.H. Joep, G.N. Daniel, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056), 645–648 (2011). doi:10.1126/science.1209816
N.A. Kelly, T.L. Gibson, Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrog. Energ. 31(12), 1658–1673 (2006). doi:10.1016/j.ijhydene.2005.12.014
L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energ. 35(11), 5233–5244 (2010). doi:10.1016/j.ijhydene.2010.02.133
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). doi:10.1039/B800489G
W.F. Shangguan, Progress in research of hydrogen production from water on photocatalysts with solar energy. Chinese J. Inorg. Chem. 17(5), 619–626 (2001)
Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheet. JACS 133(28), 10878–10884 (2011). doi:10.1021/ja2025454
X. Chen, W. Shangguan, Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Front. Energy 7(1), 111–118 (2013). doi:10.1007/s11708-012-0228-4
X. Chen, W. Chen, P.B. Lin, Y. Yang, H.Y. Gao, J. Yuan, W. Shangguan, In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun. 36, 104–108 (2013). doi:10.1016/j.catcom.2013.03.016
X. Chen, W. Chen, H.Y. Gao, Y. Yang, W. Shangguan, In situ photodeposition of NiOx on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl. Catal. B-Environ. 152, 68–72 (2014). doi:10.1016/j.apcatb.2014.01.022
A. Iwase, Y.H. Ng, R. Amal, A. Kudo, Solar hydrogen evolution using CuGaS2 photocathode improved by incorporating reduced graphene oxide. J. Mater. Chem. A 3, 8566–8570 (2015). doi:10.1039/C5TA01237F
Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (Oxy) nitride photocatalysts for water splitting under visible-light irradiation. Coordin. Chem. Rev. 257(13), 1957–1969 (2013). doi:10.1016/j.ccr.2013.01.021
K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). doi:10.1021/jz1007966
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). doi:10.1039/C3CS60378D
T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.1126/science.1246913
X. Liu, F. Wang, Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Cheml. Phys. 14(22), 7894–7911 (2012). doi:10.1039/c2cp40976c
M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen, Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. JACS 135(10), 3733–3735 (2013). doi:10.1021/ja312653y
Q.Y. Zeng, J. Bai, J.H. Li, Y.P. Li, X.J. Li, B.X. Zhou, Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation. Nano Energy 9, 152–160 (2014). doi:10.1016/j.nanoen.2014.06.023
K. Sivula, F.L. Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4(4), 432–449 (2011). doi:10.1002/cssc.201000416
S. Yamane, N. Kato, S. Kojima, A. Imanishi, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato, Efficient solar water splitting with a composite “n-Si/p-CuI/nip a-Si/np GaP/RuO2” semiconductor electrode. J. Phys. Chem. C 113(32), 14575–14581 (2009). doi:10.1021/jp904297v
D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J.W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. JACS 136(36), 12568–12571 (2014). doi:10.1021/ja506386e
S.U. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). doi:10.1126/science.1075035
Y.R. Smith, B. Sarma, S.K. Mohanty, M. Misra, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays onfoil and wire substrate for enhanced photoelectrochemical water splitting. Int. J. Hydrog. Energ. 38(5), 2062–2069 (2013). doi:10.1016/j.ijhydene.2012.11.045
C. Cheng, H. Zhang, W. Ren, W. Dong, Y. Sun, Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2(5), 779–786 (2013). doi:10.1016/j.nanoen.2013.01.010
Q. Gang, Akira watanabe, surface texturing of TiO2 film by mist deposition of TiO2 nanoparticles. Nano-Micro Lett. 5(2), 129–134 (2013). doi:10.1007/BF03353740
Z. Su, W. Zhou, F. Jiang, M. Hong, Anodic formation of nanoporous and nanotubular metal oxides. J. Mater. Chem. 22(2), 535–544 (2012). doi:10.1039/C1JM13338A
Y.R. Smith, R.S. Ray, K. Carlson, B. Sarma, M. Misra, Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials 6(7), 2892–2957 (2013). doi:10.3390/ma6072892
O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592–597 (2009). doi:10.1038/nnano.2009.226
X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008). doi:10.1021/nl802096a
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). doi:10.1016/j.rser.2005.01.009
S. In, A. Orlov, R. Beng, F. Garcia, S.P. Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. JACS 129(45), 13790–13791 (2007). doi:10.1021/ja0749237
S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). doi:10.1021/jp204364a
Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20(5), 1044–1049 (2008). doi:10.1002/adma.200701619
J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006). doi:10.1021/nl051807y
J. Xu, Y. Ao, M. Chen, D. Fu, Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays. Appl. Surf. Sci. 256(13), 4397–4401 (2010). doi:10.1016/j.apsusc.2010.02.037
X. Tang, D. Li, Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C 112(14), 5405–5409 (2008). doi:10.1021/jp710468a
N. Lu, H. Zhao, J. Li, X. Quan, S. Chen, Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity. Sep. Purif. Technol. 62(3), 668–673 (2008). doi:10.1016/j.seppur.2008.03.021
R. Liang, A. Hu, J. Persic, Y.N. Zhou, Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett. 5(3), 202–212 (2013). doi:10.1007/BF03353751
Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin, B. Fitzmorris, C. Liu, X. Lu, Y. Tong, J. Zhang, Y. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). doi:10.1021/nl4018385
H.J. Kim, S.H. Lee, A.A. Upadhye, I. Ro, M.I. Tejedor-Tejedor, M.A. Anderson, W.B. Kim, G.W. Huber, Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 8(10), 10756–10765 (2014). doi:10.1021/nn504484u
X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interf. 6(6), 4480–4489 (2014). doi:10.1021/am500234v
J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K. Choi, Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20(16), 5266–5273 (2008). doi:10.1021/cm8010666
L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient photocatalytic degradation of p–nitrophenol on a unique Cu2O/TiO2 p–n heterojunction network catalyst. Environ. Sci. Technol. 44(19), 7641–7646 (2010). doi:10.1021/es101711k
W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mat. Sol. C 77(3), 229–237 (2003). doi:10.1016/S0927-0248(02)00343-4
X. Gao, W. Sun, Z. Hu, G. Ai, Y. Zhang, S. Feng, F. Li, L. Peng, An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 113(47), 20481–20485 (2009). doi:10.1021/jp904320d
Q.C. Xu, D.V. Wellia, Y.H. Ng, R. Amal, T.T.Y. Tan, Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 115(15), 7419–7428 (2011). doi:10.1021/jp1090137
J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1), 387–395 (2010). doi:10.1021/nn901087c
C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I.Y. Tok, H.J. Fan, Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 8(1), 37–42 (2012). doi:10.1002/smll.201101660
H. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. J. Phys. Chem. C 115(19), 9797–9805 (2011). doi:10.1021/jp1122823
G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4(21), 6682–6691 (2012). doi:10.1039/c2nr32222f
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). doi:10.1021/nl201766h
U. Diebolda, J. Lehmana, T. Mahmouda, M. Kuhna, G. Leonardellib, W. Hebenstreitb, M. Schmidb, P. Vargab, Intrinsic defects on a TiO2 (110)(1 × 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf. Sci. 411(1), 137–153 (1998). doi:10.1016/S0039-6028(98)00356-2
Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. P. Natl. Acad Sci. USA 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19(12), 1849–1856 (2009). doi:10.1002/adfm.200801363
X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9(6), 2331–2336 (2009). doi:10.1021/nl900772q
P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.1007/s40820-015-0033-9
J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.1021/nl2000743
Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water Splitting. J. Phys. Chem. Lett. 1(17), 2607–2612 (2010). doi:10.1021/jz100978u
W.D. Chemelewski, H. Lee, J. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. JACS 136(7), 2843–2850 (2014). doi:10.1021/ja411835a
M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 24(5), 580–586 (2014). doi:10.1002/adfm.201301889
R. Xie, J. Su, L. Guo, Ag2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting. Int. J. Nanotechnol. 10(12), 1115–1128 (2013). doi:10.1504/IJNT.2013.058569
G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10(3), 1088–1092 (2010). doi:10.1021/nl100250z
A.A. Tahir, M.A. Ehsan, M. Mazhar, K.G.U. Wijayantha, M. Zeller, A.D. Hunter, Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 22(17), 5084–5092 (2010). doi:10.1021/cm101642b
R. Abe, M. Higashi, K. Domen, Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. JACS 132(34), 11828–11829 (2010). doi:10.1021/ja1016552
M. Higashi, K. Domen, R. Abe, Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. JACS 134(16), 6968–6971 (2012). doi:10.1021/ja302059g
M. Higashi, K. Domen, R. Abe, Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4(10), 4138–4147 (2011). doi:10.1039/c1ee01878g
F. Su, J. Lu, Y. Tian, X. Ma, J. Gong, Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(29), 12026–12032 (2013). doi:10.1039/c3cp51291f
X. Cheng, G. Pan, X. Yu, T. Zheng, Preparation of CdS NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta 105, 535–541 (2013). doi:10.1016/j.electacta.2013.05.040
J. Nian, C.C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energ. 33(12), 2897–2903 (2008). doi:10.1016/j.ijhydene.2008.03.052
A. Shalom, A. Heller, Efficient p-InP (Rh-H alloy) and p-InP (Re-H Alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129(12), 2865–2866 (1982). doi:10.1149/1.2123695
O. Khaselev, J.A. Turner, Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting. J. Electrochem. Soc. 145(10), 3335–3339 (1998). doi:10.1149/1.1838808
O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362), 425–427 (1998). doi:10.1126/science.280.5362.425
W. Gunawan, S. Septina, T. Ikeda, T. Harada, K. Minegishi, M. Domen, Matsumura, Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting. Chem. Commun. 50(64), 8941–8943 (2014). doi:10.1039/C4CC03634D
T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, T. Torimoto, Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J. Mater. Chem. 20(25), 5319–5324 (2010). doi:10.1039/c0jm00454e
D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konagai, K. Domen, Photoelectrochemical water splitting using a Cu(In, Ga)Se2 thin film. Electrochem. Commun. 12(6), 851–853 (2010). doi:10.1016/j.elecom.2010.04.004
C.C. Hu, J.N. Nian, H. Teng, Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol. Energy Mat. Sol. C 92(9), 1071–1076 (2008). doi:10.1016/j.solmat.2008.03.012
C.M. McShane, K.S. Choi, Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14(17), 6112–6118 (2012). doi:10.1039/c2cp40502d
T. Jiang, T. Xie, W. Yang, L. Chen, H. Fan, D. Wang, Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J. Phys. Chem. C 117(9), 4619–4624 (2013). doi:10.1021/jp311532s
A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456–461 (2011). doi:10.1038/nmat3017
R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder, M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. JACS 104(2), 467–482 (1982). doi:10.1021/ja00366a016
S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D.T. Evans et al., Photoelectrochemical hydrogen evolution using Si microwire arrays. JACS 133(5), 1216–1219 (2011). doi:10.1021/ja108801m
S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, T. Ishihara, Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. JACS 132(49), 17343–17345 (2010). doi:10.1021/ja106930f
H. Wang, T. Deutsch, J.A. Turner, Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91–F96 (2008). doi:10.1149/1.2888477