An Overview of Dynamic Descriptions for Nanoscale Materials in Particulate Photocatalytic Systems from Spatiotemporal Perspectives
Corresponding Author: Wenfeng Shangguan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 196
Abstract
Particulate photocatalytic systems using nanoscale photocatalysts have been developed as an attractive promising route for solar energy utilization to achieve resource sustainability and environmental harmony. Dynamic obstacles are considered as the dominant inhibition for attaining satisfactory energy-conversion efficiency. The complexity in light absorption and carrier transfer behaviors has remained to be further clearly illuminated. It is challenging to trace the fast evolution of charge carriers involved in transfer migration and interfacial reactions within a micro–nano-single-particle photocatalyst, which requires spatiotemporal high resolution. In this review, comprehensive dynamic descriptions including irradiation field, carrier separation and transfer, and interfacial reaction processes have been elucidated and discussed. The corresponding mechanisms for revealing dynamic behaviors have been explained. In addition, numerical simulation and modeling methods have been illustrated for the description of the irradiation field. Experimental measurements and spatiotemporal characterizations have been clarified for the reflection of carrier behavior and probing detection of interfacial reactions. The representative applications have been introduced according to the reported advanced research works, and the relationships between mechanistic conclusions from variable spatiotemporal measurements and photocatalytic performance results in the specific photocatalytic reactions have been concluded. This review provides a collective perspective for the full understanding and thorough evaluation of the primary dynamic processes, which would be inspired for the improvement in designing solar-driven energy-conversion systems based on nanoscale particulate photocatalysts.
Highlights:
1 The dynamic descriptions for nanoscale particulate photocatalysts have been elucidated in terms of the irradiation field, photo-excited carrier behavior and interfacial reaction in the photocatalytic systems.
2 The advanced spatiotemporal characterization techniques and evaluation methods are collected with the introduction of recent works and applications.
3 The challenges and prospects in the elaborate investigation of photocatalytic dynamics are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J.S. Lee, Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/c8cs00699g
- S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
- T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6
- Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201
- B. Chandran, J.-K. Oh, S.-W. Lee, D.-Y. Um, S.-U. Kim et al., Solar-driven sustainability: III–V semiconductor for green energy production technologies. Nano-Micro Lett. 16, 244 (2024). https://doi.org/10.1007/s40820-024-01412-6
- Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
- W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626 (2014). https://doi.org/10.1002/adma.201400087
- T. Hisatomi, K. Takanabe, K. Domen, Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015). https://doi.org/10.1007/s10562-014-1397-z
- L. Guo, Y. Chen, J. Su, M. Liu, Y. Liu, Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow. Energy 172, 1079–1086 (2019). https://doi.org/10.1016/j.energy.2019.02.050
- D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang et al., Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
- S. Hou, X. Gao, X. Lv, Y. Zhao, X. Yin et al., Decade milestone advancement of defect-engineered g-C3N4 for solar catalytic applications. Nano-Micro Lett. 16, 70 (2024). https://doi.org/10.1007/s40820-023-01297-x
- H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014). https://doi.org/10.1039/c4cs00126e
- X. Yue, J. Fan, Q. Xiang, Internal electric field on steering charge migration: modulations, determinations and energy-related applications. Adv. Funct. Mater. 32, 2110258 (2022). https://doi.org/10.1002/adfm.202110258
- W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
- X. Zeng, X. Jiang, Y. Ning, Y. Gao, R. Che, Constructing built-In electric fields with semiconductor junctions and Schottky junctions based on Mo-MXene/Mo-metal sulfides for electromagnetic response. Nano-Micro Lett. 16, 213 (2024). https://doi.org/10.1007/s40820-024-01449-7
- Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8, 504–514 (2023). https://doi.org/10.1038/s41560-023-01242-7
- Q. Wei, Y. Wang, B. Dai, Y. Yang, H. Liu et al., Theoretical study on flow and radiation in tubular solar photocatalytic reactor. Front. Energy 15, 687–699 (2021). https://doi.org/10.1007/s11708-021-0773-9
- I.S.O. Barbosa, R.J. Santos, M.M. Dias, J.L. Faria, C.G. Silva, Radiation models for computational fluid dynamics simulations of photocatalytic reactors. Chem. Eng. Technol. 46, 1059–1077 (2023). https://doi.org/10.1002/ceat.202200551
- C. Nchikou, J.Á. Loredo-Medrano, A. Hernández-Ramírez, J.Á. Colina-Marquez, M.Á. Mueses, Estimation of the radiation field for CPC photocatalytic reactors using a novel six-flux model in two dimensions (SFM-2D). J. Environ. Chem. Eng. 9, 106392 (2021). https://doi.org/10.1016/j.jece.2021.106392
- M.A. Mueses, F. Machuca-Martinez, A. Hernández-Ramirez, G. Li Puma, Effective radiation field model to scattering—absorption applied in heterogeneous photocatalytic reactors. Chem. Eng. J. 279, 442–451 (2015). https://doi.org/10.1016/j.cej.2015.05.056
- J. Marugán, R. van Grieken, A.E. Cassano, O.M. Alfano, Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Appl. Catal. B Environ. 85, 48–60 (2008). https://doi.org/10.1016/j.apcatb.2008.06.026
- J. Moreno-SanSegundo, C. Casado, J. Marugán, Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation. Chem. Eng. J. 388, 124183 (2020). https://doi.org/10.1016/j.cej.2020.124183
- O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Photocatalysis in water environments using artificial and solar light. Catal. Today 58, 199–230 (2000). https://doi.org/10.1016/S0920-5861(00)00252-2
- G. Li Puma, A. Brucato, Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption–scattering models. Catal. Today 122, 78–90 (2007). https://doi.org/10.1016/j.cattod.2007.01.027
- G.L. Puma, J.N. Khor, A. Brucato, Modeling of an annular photocatalytic reactor for water purification: oxidation of pesticides. Environ. Sci. Technol. 38, 3737–3745 (2004). https://doi.org/10.1021/es0301020
- J. Colina-Márquez, F. Machuca-Martínez, G.L. Puma, Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ. Sci. Technol. 44, 5112–5120 (2010). https://doi.org/10.1021/es100130h
- J. Colina-Márquez, F. Machuca-Martínez, G.L. Puma, Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field. Environ. Sci. Technol. 43, 8953–8960 (2009). https://doi.org/10.1021/es902004b
- R. Changrani, G.B. Raupp, Monte Carlo simulation of the radiation field in a reticulated foam photocatalytic reactor. AlChE J. 45, 1085–1094 (1999). https://doi.org/10.1002/aic.690450516
- P.J. Valadés-Pelayo, F. Guayaquil Sosa, B. Serrano, H. de Lasa, Photocatalytic reactor under different external irradiance conditions: validation of a fully predictive radiation absorption model. Chem. Eng. Sci. 126, 42–54 (2015). https://doi.org/10.1016/j.ces.2014.12.003
- R. Peralta Muniz Moreira, G. Li Puma, Multiphysics computational fluid-dynamics (CFD) modeling of annular photocatalytic reactors by the discrete ordinates method (DOM) and the six-flux model (SFM) and evaluation of the contaminant intrinsic kinetics constants. Catal. Today 361, 77–84 (2021). https://doi.org/10.1016/j.cattod.2020.01.012
- Y. Yang, Q. Wei, H. Liu, L. Zhao, Optimization of the radiation absorption for a scaled-up photocatalytic hydrogen production system. Sol. Energy 160, 168–177 (2018). https://doi.org/10.1016/j.solener.2017.11.068
- A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 58, 167–197 (2000). https://doi.org/10.1016/S0920-5861(00)00251-0
- G. Li Puma, P.L. Yue, Modelling and design of thin-film slurry photocatalytic reactors for water purification. Chem. Eng. Sci. 58, 2269–2281 (2003). https://doi.org/10.1016/S0009-2509(03)00086-1
- J. Akach, A. Ochieng, Monte Carlo simulation of the light distribution in an annular slurry bubble column photocatalytic reactor. Chem. Eng. Res. Des. 129, 248–258 (2018). https://doi.org/10.1016/j.cherd.2017.11.021
- X.-C. Ma, Y. Dai, L. Yu, B.-B. Huang, Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 5, e16017 (2016). https://doi.org/10.1038/lsa.2016.17
- Z. Zheng, W. Xie, B. Huang, Y. Dai, Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry 24, 18322–18333 (2018). https://doi.org/10.1002/chem.201803705
- X. Wang, Y. Wang, X. Yang, Y. Cao, Numerical simulation on the LSPR-effective core-shell copper/graphene nanofluids. Sol. Energy 181, 439–451 (2019). https://doi.org/10.1016/j.solener.2019.02.018
- W. Sun, Q. Fu, Z. Chen, Finite-difference time-domain solution of light scattering by dielectric ps with a perfectly matched layer absorbing boundary condition. Appl. Opt. 38, 3141–3151 (1999). https://doi.org/10.1364/ao.38.003141
- N. Zhang, C. Han, Y.-J. Xu, J.J. Foley, D. Zhang et al., Near-field dielectric scattering promotes optical absorption by platinum nanops. Nat. Photonics 10, 473–482 (2016). https://doi.org/10.1038/nphoton.2016.76
- Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou et al., Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021). https://doi.org/10.1016/j.joule.2020.12.008
- Y.A. Eremin, Encyclopedia of Modern Optics, 1st edn. (Elsevier, Amsterdam, 2005), pp.326–330
- A. Taflove, S.C. Hagness, M. Piket-May, The Electrical Engineering Handbook, 1st edn. (Elsevier, Amsterdam, 2005), pp.629–670
- W. Sun, Q. Fu, Finite-difference time-domain solution of light scattering by dielectric ps with large complex refractive indices. Appl. Opt. 39, 5569–5578 (2000). https://doi.org/10.1364/ao.39.005569
- C. Tira, D. Tira, T. Simon, S. Astilean, Finite-difference time-domain (FDTD) design of gold nanop chains with specific surface plasmon resonance. J. Mol. Struct. 1072, 137–143 (2014). https://doi.org/10.1016/j.molstruc.2014.04.086
- B. Demirdjian, I. Ozerov, F. Bedu, A. Ranguis, C.R. Henry, Plasmonic sensing: FDTD calculations to interpret experimental LSPR water adsorption isotherms. Chem. Phys. Lett. 837, 141063 (2024). https://doi.org/10.1016/j.cplett.2023.141063
- M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15, 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
- N. Zhang, M.-Y. Qi, L. Yuan, X. Fu, Z.-R. Tang et al., Broadband light harvesting and unidirectional electron flow for efficient electron accumulation for hydrogen generation. Angew. Chem. Int. Ed. 58, 10003–10007 (2019). https://doi.org/10.1002/anie.201905981
- J. Lan, S. Qu, X. Ye, Y. Zheng, M. Ma et al., Core-shell semiconductor-graphene nanoarchitectures for efficient photocatalysis: state of the art and perspectives. Nano-Micro Lett. 16, 280 (2024). https://doi.org/10.1007/s40820-024-01503-4
- H. Tüysüz, C.K. Chan, Solar Energy for Fuels, 1st edn. (Springer, Cham, 2016), pp.73–102
- K. Wang, Z. Hu, P. Yu, A.M. Balu, K. Li et al., Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 16, 5 (2023). https://doi.org/10.1007/s40820-023-01221-3
- L. Liu, Y. Zhang, H. Huang, Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction. Sol. RRL 5, 2000430 (2021). https://doi.org/10.1002/solr.202000430
- W. Zhao, P. Guo, J. Wu, D. Lin, N. Jia et al., TiO2 electron transport layer with p-n homojunctions for efficient and stable perovskite solar cells. Nano-Micro Lett. 16, 191 (2024). https://doi.org/10.1007/s40820-024-01407-3
- S. Sun, L. He, M. Yang, J. Cui, S. Liang, Facet junction engineering for photocatalysis: a comprehensive review on elementary knowledge, facet-synergistic mechanisms, functional modifications, and future perspectives. Adv. Funct. Mater. 32, 2106982 (2022). https://doi.org/10.1002/adfm.202106982
- L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields. Nanoscale 6, 24–42 (2014). https://doi.org/10.1039/c3nr03998f
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- J. Ma, T.J. Miao, J. Tang, Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chem. Soc. Rev. 51, 5777–5794 (2022). https://doi.org/10.1039/d1cs01164b
- H.L. Tan, F.F. Abdi, Y.H. Ng, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 48, 1255–1271 (2019). https://doi.org/10.1039/C8CS00882E
- J. Zhang, B. Zhu, L. Zhang, J. Yu, Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis. Chem. Commun. 59, 688–699 (2023). https://doi.org/10.1039/d2cc06300j
- H. Sudrajat, I. Carra, I. Rossetti, R. Schneider, J.C. Colmenares, Probing charge carrier behavior in engineered photocatalysts with time-resolved visible to mid-IR absorption spectroscopy. J. Phys. Chem. C 127, 21881–21914 (2023). https://doi.org/10.1021/acs.jpcc.3c05747
- T.J. Miao, J. Tang, Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J. Chem. Phys. 152, 194201 (2020). https://doi.org/10.1063/5.0008537
- K.T. Munson, C. Grieco, E.R. Kennehan, R.J. Stewart, J.B. Asbury, Time-resolved infrared spectroscopy directly probes free and trapped carriers in organo-halide perovskites. ACS Energy Lett. 2, 651–658 (2017). https://doi.org/10.1021/acsenergylett.7b00033
- A. Yamakata, J.J.M. Vequizo, M. Kawaguchi, Behavior and energy state of photogenerated charge carriers in single-crystalline and polycrystalline powder SrTiO3 studied by time-resolved absorption spectroscopy in the visible to mid-infrared region. J. Phys. Chem. C 119, 1880–1885 (2015). https://doi.org/10.1021/jp510647b
- T. Asahi, A. Furube, H. Fukumura, M. Ichikawa, H. Masuhara, Development of a femtosecond diffuse reflectance spectroscopic system, evaluation of its temporal resolution, and applications to organic powder systems. Rev. Sci. Instrum. 69, 361–371 (1998). https://doi.org/10.1063/1.1148668
- B.S. Patil, P.D. Srinivasan, E. Atchison, H. Zhu, J.J. Bravo-Suárez, Design, modelling, and application of a low void-volumein situdiffuse reflectance spectroscopic reaction cell for transient catalytic studies. React. Chem. Eng. 4, 667–678 (2019). https://doi.org/10.1039/c8re00302e
- F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013). https://doi.org/10.1021/jz4013257
- J. Neu, Optical pump terahertz probe (OPTP) and time resolved terahertz spectroscopy (TRTS) of emerging solar materials. APL Photonics 8, 071103 (2023). https://doi.org/10.1063/5.0152726
- D.H.K. Murthy, H. Matsuzaki, Q. Wang, Y. Suzuki, K. Seki et al., Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts. Sustain Energy Fuels 3, 208–218 (2019). https://doi.org/10.1039/C8SE00487K
- B. Moss, Q. Wang, K.T. Butler, R. Grau-Crespo, S. Selim et al., Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021). https://doi.org/10.1038/s41563-020-00868-2
- D.H.K. Murthy, V. Nandal, A. Furube, K. Seki, R. Katoh et al., Origin of enhanced overall water splitting efficiency in aluminum-doped SrTiO3 photocatalyst. Adv. Energy Mater. 13, 2302064 (2023). https://doi.org/10.1002/aenm.202302064
- Y. Yamada, H. Yasuda, T. Tayagaki, Y. Kanemitsu, Photocarrier recombination dynamics in highly excited SrTiO3 studied by transient absorption and photoluminescence spectroscopy. Appl. Phys. Lett. 95, 121112 (2009). https://doi.org/10.1063/1.3238269
- M. Jones, G.D. Scholes, On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 20, 3533–3538 (2010). https://doi.org/10.1039/C000165A
- Y. Gao, W. Nie, X. Wang, F. Fan, C. Li, Advanced space- and time-resolved techniques for photocatalyst studies. Chem. Commun. 56, 1007–1021 (2020). https://doi.org/10.1039/c9cc07128h
- C. Wang, A. Malinoski, Perspective: mechanistic investigations of photocatalytic processes with time-resolved optical spectroscopy. J. Chem. Phys. 157, 160901 (2022). https://doi.org/10.1063/5.0111162
- Y. Xu, Z. Wang, Y. Weng, Defect states and polarons in photocatalytic semiconductors revealed via time-resolved spectroscopy. J. Phys. Chem. C 128, 16275–16290 (2024). https://doi.org/10.1021/acs.jpcc.4c03688
- L. Dai, J. Liu, K. Liang, R. Yang, D. Han et al., Realization of a time-correlated photon counting technique for fluorescence analysis. Biomed. Opt. Express 11, 2205 (2020). https://doi.org/10.1364/boe.385870
- A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini et al., Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements. Opt. Express 19, 10735–10746 (2011). https://doi.org/10.1364/OE.19.010735
- T. Kirchartz, J.A. Márquez, M. Stolterfoht, T. Unold, Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020). https://doi.org/10.1002/aenm.201904134
- S. Wang, M. Huang, Y.-N. Wu, W. Chu, J. Zhao et al., Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nat. Comput. Sci. 2, 486–493 (2022). https://doi.org/10.1038/s43588-022-00297-y
- V. Klimov, P.H. Bolivar, H. Kurz, Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B Condens. Matter 53, 1463–1467 (1996). https://doi.org/10.1103/physrevb.53.1463
- Y. Yamada, H. Yasuda, T. Tayagaki, Y. Kanemitsu, Temperature dependence of photoluminescence spectra of nondoped and electron-doped SrTiO3: crossover from auger recombination to single-carrier trapping. Phys. Rev. Lett. 102, 247401 (2009). https://doi.org/10.1103/PhysRevLett.102.247401
- X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen et al., Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 12, 7083–7090 (2010). https://doi.org/10.1039/B925277K
- J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian et al., Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C 111, 693–699 (2007). https://doi.org/10.1021/jp065744z
- W.H. Brattain, Evidence for surface states on semiconductors from change in contact potential on illumination. Phys. Rev. 72, 345 (1947). https://doi.org/10.1103/physrev.72.345.2
- S.U.M. Khan, J.O. Bockris, A model for electron transfer at the illuminated p-type semiconductor-solution interface. J. Phys. Chem. 88, 2504–2515 (1984). https://doi.org/10.1021/j150656a016
- R. Chen, F. Fan, T. Dittrich, C. Li, Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chem. Soc. Rev. 47, 8238–8262 (2018). https://doi.org/10.1039/C8CS00320C
- I. Mora-Seró, T. Dittrich, G. Garcia-Belmonte, J. Bisquert, Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements. J. Appl. Phys. 100, 103705 (2006). https://doi.org/10.1063/1.2361158
- J. Zhu, F. Fan, R. Chen, H. An, Z. Feng et al., Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Angew. Chem. Int. Ed. 54, 9111–9114 (2015). https://doi.org/10.1002/anie.201504135
- D. Gross, I. Mora-Seró, T. Dittrich, A. Belaidi, C. Mauser et al., Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010). https://doi.org/10.1021/ja101629c
- M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng et al., Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4, 1300995 (2014). https://doi.org/10.1002/aenm.201300995
- R. Chen, S. Pang, H. An, T. Dittrich, F. Fan et al., Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts. Nano Lett. 19, 426–432 (2019). https://doi.org/10.1021/acs.nanolett.8b04245
- T. Dittrich, S. Bönisch, P. Zabel, S. Dube, High precision differential measurement of surface photovoltage transients on ultrathin CdS layers. Rev. Sci. Instrum. 79, 113903 (2008). https://doi.org/10.1063/1.3020757
- R. Chen, C. Ni, J. Zhu, F. Fan, C. Li, Surface photovoltage microscopy for mapping charge separation on photocatalyst ps. Nat. Protoc. 19, 2250–2282 (2024). https://doi.org/10.1038/s41596-024-00992-2
- K. Fukumoto, K. Onda, Y. Yamada, T. Matsuki, T. Mukuta et al., Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors. Rev. Sci. Instrum. 85, 083705 (2014). https://doi.org/10.1063/1.4893484
- M.W.H. Garming, I.G.C. Weppelman, M. Lee, T. Stavenga, J.P. Hoogenboom, Ultrafast scanning electron microscopy with sub-micrometer optical pump resolution. Appl. Phys. Rev. 9, 021418 (2022). https://doi.org/10.1063/5.0085597
- O. Takeuchi, S. Yoshida, H. Shigekawa, Light-modulated scanning tunneling spectroscopy for nanoscale imaging of surface photovoltage. Appl. Phys. Lett. 84, 3645–3647 (2004). https://doi.org/10.1063/1.1737063
- A. Li, Z. Wang, H. Yin, S. Wang, P. Yan et al., Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 7, 6076–6082 (2016). https://doi.org/10.1039/C6SC01611A
- R. Chen, S. Pang, H. An, J. Zhu, S. Ye et al., Charge separation via asymmetric illumination in photocatalytic Cu2O ps. Nat. Energy 3, 655–663 (2018). https://doi.org/10.1038/s41560-018-0194-0
- J. Zhu, S. Pang, T. Dittrich, Y. Gao, W. Nie et al., Visualizing the nano cocatalyst aligned electric fields on single photocatalyst ps. Nano Lett. 17, 6735–6741 (2017). https://doi.org/10.1021/acs.nanolett.7b02799
- R. Chen, F. Fan, C. Li, Unraveling charge-separation mechanisms in photocatalyst ps by spatially resolved surface photovoltage techniques. Angew. Chem. Int. Ed. 61, e202117567 (2022). https://doi.org/10.1002/anie.202117567
- R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich et al., Spatiotemporal imaging of charge transfer in photocatalyst ps. Nature 610, 296–301 (2022). https://doi.org/10.1038/s41586-022-05183-1
- E. Laine Wong, A.J. Winchester, V. Pareek, J. Madéo, M.K.L. Man et al., Pulling apart photoexcited electrons by photoinducing an in-plane surface electric field. Sci. Adv. 4, eaat9722 (2018). https://doi.org/10.1126/sciadv.aat9722
- B.-H. Li, G.-H. Zhang, Y. Liang, Q.-Q. Hao, J.-L. Sun et al., Femtosecond time-resolved spectroscopic photoemission electron microscopy for probing ultrafast carrier dynamics in heterojunctions. Chin. J. Chem. Phys. 32, 399–405 (2019). https://doi.org/10.1063/1674-0068/cjcp1903044
- C. Perez, S.R. Ellis, F.M. Alcorn, E.J. Smoll, E.J. Fuller et al., Picosecond carrier dynamics in InAs and GaAs revealed by ultrafast electron microscopy. Sci. Adv. 10, eadn8980 (2024). https://doi.org/10.1126/sciadv.adn8980
- S. Grafström, Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002). https://doi.org/10.1063/1.1432113
- M. Boutchich, K. Fukumoto, A. Mahmoudi, A. Jaffré, J. Alvarez et al., Direct reconstruction of the band diagram of rhombohedral-stacked bilayer WSe2–graphene heterostructure via photoemission electron microscopy. ACS Appl. Electron. Mater. 6, 6484–6492 (2024). https://doi.org/10.1021/acsaelm.4c00965
- Y. Liang, G. Zhang, J. Sun, C. Zhou, Z. Li et al., Carrier dynamics in the space charge layer of MoS2 flakes studied by time-resolved μ-surface photovoltage. J. Phys. Chem. C 127, 7319–7326 (2023). https://doi.org/10.1021/acs.jpcc.3c00055
- B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 16, 8751–8760 (2014). https://doi.org/10.1039/c3cp55317e
- C. Minero, Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal. Today 54, 205–216 (1999). https://doi.org/10.1016/S0920-5861(99)00183-2
- X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng et al., Enhanced photocatalytic reaction at air–liquid–solid joint interfaces. J. Am. Chem. Soc. 139, 12402–12405 (2017). https://doi.org/10.1021/jacs.7b07187
- T. Hisatomi, T. Minegishi, K. Domen, Kinetic assessment and numerical modeling of photocatalytic water splitting toward efficient solar hydrogen production. Bull. Chem. Soc. Jpn 85, 647–655 (2012). https://doi.org/10.1246/bcsj.20120058
- S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463 (2016). https://doi.org/10.1039/C6RA10539D
- P. Chen, X. Zhou, H. Shen, N.M. Andoy, E. Choudhary et al., Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010). https://doi.org/10.1039/B909052P
- S. Zhang, D. Fan, Q. Yan, Y. Lu, D. Wu et al., Single-molecule fluorescence imaging of photocatalytic nanomaterials. J. Mater. Chem. A 12, 19627–19662 (2024). https://doi.org/10.1039/d4ta02347a
- M. Shen, W.H. Rackers, B. Sadtler, Getting the most out of fluorogenic probes: challenges and opportunities in using single-molecule fluorescence to image electro- and photocatalysis. Chem. Biomed. Imaging 1, 692–715 (2023). https://doi.org/10.1021/cbmi.3c00075
- N. Wang, T. Tachikawa, T. Majima, Single-molecule, single-p observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci. 2, 891 (2011). https://doi.org/10.1039/c0sc00648c
- T. Tachikawa, S. Yamashita, T. Majima, Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011). https://doi.org/10.1021/ja201415j
- T. Tachikawa, N. Wang, S. Yamashita, S.-C. Cui, T. Majima, Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 49, 8593–8597 (2010). https://doi.org/10.1002/anie.201004976
- J. An, X. Song, W. Wan, Y. Chen, H. Si et al., Kinetics of the photoelectron-transfer process characterized by real-time single-molecule fluorescence imaging on individual photocatalyst ps. ACS Catal. 11, 6872–6882 (2021). https://doi.org/10.1021/acscatal.1c00983
- K. Naito, T. Tachikawa, M. Fujitsuka, T. Majima, Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J. Am. Chem. Soc. 131, 934–936 (2009). https://doi.org/10.1021/ja808335b
- L. Colson, Y. Kwon, S. Nam, A. Bhandari, N.M. Maya et al., Trends in single-molecule total internal reflection fluorescence imaging and their biological applications with lab-on-a-chip technology. Sensors 23, 7691 (2023). https://doi.org/10.3390/s23187691
- C.B. Dunn, S. Valdez, Z. Qiang, Single-molecule fluorescence microscopy for imaging chemical reactions: recent progress and future opportunities for advancing polymer systems. J. Polym. Sci. 62, 1235–1259 (2024). https://doi.org/10.1002/pol.20230621
- T. Tachikawa, T. Majima, Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire. J. Am. Chem. Soc. 131, 8485–8495 (2009). https://doi.org/10.1021/ja900194m
- T. Tachikawa, T. Majima, Single-molecule, single-p fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 39, 4802–4819 (2010). https://doi.org/10.1039/b919698f
- B. Yang, G. Chen, A. Ghafoor, Y. Zhang, Y. Zhang et al., Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020). https://doi.org/10.1038/s41566-020-0677-y
- X. Mao, C. Liu, M. Hesari, N. Zou, P. Chen, Super-resolution imaging of non-fluorescent reactions via competition. Nat. Chem. 11, 687–694 (2019). https://doi.org/10.1038/s41557-019-0288-8
- X. Mao, P. Chen, Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2022). https://doi.org/10.1038/s41563-021-01161-6
- V. Kumar, S. Schlücker, E. Hasselbrink, Molecular and Laser Spectroscopy, 1st edn. (Elsevier, Amsterdam, 2020), pp.563–594
- S.-G. Sun, Z.-Y. Zhou, In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, 1st edn. (Elsevier, Amsterdam, 2007), pp.139–178
- M. Abdellah, A.M. El-Zohry, L.J. Antila, C.D. Windle, E. Reisner et al., Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2-Re catalyst system for CO2 photoreduction. J. Am. Chem. Soc. 139, 1226–1232 (2017). https://doi.org/10.1021/jacs.6b11308
- A. Vlček Jr., H. Kvapilová, M. Towrie, S. Záliš, Electron-transfer acceleration investigated by time resolved infrared spectroscopy. Acc. Chem. Res. 48, 868–876 (2015). https://doi.org/10.1021/ar5004048
- M. Zhang, M. de Respinis, H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanop catalyst. Nat. Chem. 6, 362–367 (2014). https://doi.org/10.1038/nchem.1874
- T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma et al., Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 111, 8005–8014 (2007). https://doi.org/10.1021/jp071022b
- A. Maeda, T.-A. Ishibashi, Time-resolved IR observation of a photocatalytic reaction of pivalic acid on platinized titanium dioxide. Chem. Phys. 419, 167–171 (2013). https://doi.org/10.1016/j.chemphys.2013.02.001
- A. Yamakata, T.-A. Ishibashi, K. Takeshita, H. Onishi, Time-resolved infrared absorption study of photochemical reactions over metal oxides. Top. Catal. 35, 211–216 (2005). https://doi.org/10.1007/s11244-005-3826-0
References
J.H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J.S. Lee, Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/c8cs00699g
S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6
Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201
B. Chandran, J.-K. Oh, S.-W. Lee, D.-Y. Um, S.-U. Kim et al., Solar-driven sustainability: III–V semiconductor for green energy production technologies. Nano-Micro Lett. 16, 244 (2024). https://doi.org/10.1007/s40820-024-01412-6
Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626 (2014). https://doi.org/10.1002/adma.201400087
T. Hisatomi, K. Takanabe, K. Domen, Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015). https://doi.org/10.1007/s10562-014-1397-z
L. Guo, Y. Chen, J. Su, M. Liu, Y. Liu, Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow. Energy 172, 1079–1086 (2019). https://doi.org/10.1016/j.energy.2019.02.050
D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang et al., Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
S. Hou, X. Gao, X. Lv, Y. Zhao, X. Yin et al., Decade milestone advancement of defect-engineered g-C3N4 for solar catalytic applications. Nano-Micro Lett. 16, 70 (2024). https://doi.org/10.1007/s40820-023-01297-x
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234 (2014). https://doi.org/10.1039/c4cs00126e
X. Yue, J. Fan, Q. Xiang, Internal electric field on steering charge migration: modulations, determinations and energy-related applications. Adv. Funct. Mater. 32, 2110258 (2022). https://doi.org/10.1002/adfm.202110258
W. Zhan, L. Sun, X. Han, Recent progress on engineering highly efficient porous semiconductor photocatalysts derived from metal-organic frameworks. Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-018-0235-z
X. Zeng, X. Jiang, Y. Ning, Y. Gao, R. Che, Constructing built-In electric fields with semiconductor junctions and Schottky junctions based on Mo-MXene/Mo-metal sulfides for electromagnetic response. Nano-Micro Lett. 16, 213 (2024). https://doi.org/10.1007/s40820-024-01449-7
Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8, 504–514 (2023). https://doi.org/10.1038/s41560-023-01242-7
Q. Wei, Y. Wang, B. Dai, Y. Yang, H. Liu et al., Theoretical study on flow and radiation in tubular solar photocatalytic reactor. Front. Energy 15, 687–699 (2021). https://doi.org/10.1007/s11708-021-0773-9
I.S.O. Barbosa, R.J. Santos, M.M. Dias, J.L. Faria, C.G. Silva, Radiation models for computational fluid dynamics simulations of photocatalytic reactors. Chem. Eng. Technol. 46, 1059–1077 (2023). https://doi.org/10.1002/ceat.202200551
C. Nchikou, J.Á. Loredo-Medrano, A. Hernández-Ramírez, J.Á. Colina-Marquez, M.Á. Mueses, Estimation of the radiation field for CPC photocatalytic reactors using a novel six-flux model in two dimensions (SFM-2D). J. Environ. Chem. Eng. 9, 106392 (2021). https://doi.org/10.1016/j.jece.2021.106392
M.A. Mueses, F. Machuca-Martinez, A. Hernández-Ramirez, G. Li Puma, Effective radiation field model to scattering—absorption applied in heterogeneous photocatalytic reactors. Chem. Eng. J. 279, 442–451 (2015). https://doi.org/10.1016/j.cej.2015.05.056
J. Marugán, R. van Grieken, A.E. Cassano, O.M. Alfano, Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Appl. Catal. B Environ. 85, 48–60 (2008). https://doi.org/10.1016/j.apcatb.2008.06.026
J. Moreno-SanSegundo, C. Casado, J. Marugán, Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation. Chem. Eng. J. 388, 124183 (2020). https://doi.org/10.1016/j.cej.2020.124183
O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Photocatalysis in water environments using artificial and solar light. Catal. Today 58, 199–230 (2000). https://doi.org/10.1016/S0920-5861(00)00252-2
G. Li Puma, A. Brucato, Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption–scattering models. Catal. Today 122, 78–90 (2007). https://doi.org/10.1016/j.cattod.2007.01.027
G.L. Puma, J.N. Khor, A. Brucato, Modeling of an annular photocatalytic reactor for water purification: oxidation of pesticides. Environ. Sci. Technol. 38, 3737–3745 (2004). https://doi.org/10.1021/es0301020
J. Colina-Márquez, F. Machuca-Martínez, G.L. Puma, Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ. Sci. Technol. 44, 5112–5120 (2010). https://doi.org/10.1021/es100130h
J. Colina-Márquez, F. Machuca-Martínez, G.L. Puma, Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field. Environ. Sci. Technol. 43, 8953–8960 (2009). https://doi.org/10.1021/es902004b
R. Changrani, G.B. Raupp, Monte Carlo simulation of the radiation field in a reticulated foam photocatalytic reactor. AlChE J. 45, 1085–1094 (1999). https://doi.org/10.1002/aic.690450516
P.J. Valadés-Pelayo, F. Guayaquil Sosa, B. Serrano, H. de Lasa, Photocatalytic reactor under different external irradiance conditions: validation of a fully predictive radiation absorption model. Chem. Eng. Sci. 126, 42–54 (2015). https://doi.org/10.1016/j.ces.2014.12.003
R. Peralta Muniz Moreira, G. Li Puma, Multiphysics computational fluid-dynamics (CFD) modeling of annular photocatalytic reactors by the discrete ordinates method (DOM) and the six-flux model (SFM) and evaluation of the contaminant intrinsic kinetics constants. Catal. Today 361, 77–84 (2021). https://doi.org/10.1016/j.cattod.2020.01.012
Y. Yang, Q. Wei, H. Liu, L. Zhao, Optimization of the radiation absorption for a scaled-up photocatalytic hydrogen production system. Sol. Energy 160, 168–177 (2018). https://doi.org/10.1016/j.solener.2017.11.068
A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 58, 167–197 (2000). https://doi.org/10.1016/S0920-5861(00)00251-0
G. Li Puma, P.L. Yue, Modelling and design of thin-film slurry photocatalytic reactors for water purification. Chem. Eng. Sci. 58, 2269–2281 (2003). https://doi.org/10.1016/S0009-2509(03)00086-1
J. Akach, A. Ochieng, Monte Carlo simulation of the light distribution in an annular slurry bubble column photocatalytic reactor. Chem. Eng. Res. Des. 129, 248–258 (2018). https://doi.org/10.1016/j.cherd.2017.11.021
X.-C. Ma, Y. Dai, L. Yu, B.-B. Huang, Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 5, e16017 (2016). https://doi.org/10.1038/lsa.2016.17
Z. Zheng, W. Xie, B. Huang, Y. Dai, Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chemistry 24, 18322–18333 (2018). https://doi.org/10.1002/chem.201803705
X. Wang, Y. Wang, X. Yang, Y. Cao, Numerical simulation on the LSPR-effective core-shell copper/graphene nanofluids. Sol. Energy 181, 439–451 (2019). https://doi.org/10.1016/j.solener.2019.02.018
W. Sun, Q. Fu, Z. Chen, Finite-difference time-domain solution of light scattering by dielectric ps with a perfectly matched layer absorbing boundary condition. Appl. Opt. 38, 3141–3151 (1999). https://doi.org/10.1364/ao.38.003141
N. Zhang, C. Han, Y.-J. Xu, J.J. Foley, D. Zhang et al., Near-field dielectric scattering promotes optical absorption by platinum nanops. Nat. Photonics 10, 473–482 (2016). https://doi.org/10.1038/nphoton.2016.76
Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou et al., Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021). https://doi.org/10.1016/j.joule.2020.12.008
Y.A. Eremin, Encyclopedia of Modern Optics, 1st edn. (Elsevier, Amsterdam, 2005), pp.326–330
A. Taflove, S.C. Hagness, M. Piket-May, The Electrical Engineering Handbook, 1st edn. (Elsevier, Amsterdam, 2005), pp.629–670
W. Sun, Q. Fu, Finite-difference time-domain solution of light scattering by dielectric ps with large complex refractive indices. Appl. Opt. 39, 5569–5578 (2000). https://doi.org/10.1364/ao.39.005569
C. Tira, D. Tira, T. Simon, S. Astilean, Finite-difference time-domain (FDTD) design of gold nanop chains with specific surface plasmon resonance. J. Mol. Struct. 1072, 137–143 (2014). https://doi.org/10.1016/j.molstruc.2014.04.086
B. Demirdjian, I. Ozerov, F. Bedu, A. Ranguis, C.R. Henry, Plasmonic sensing: FDTD calculations to interpret experimental LSPR water adsorption isotherms. Chem. Phys. Lett. 837, 141063 (2024). https://doi.org/10.1016/j.cplett.2023.141063
M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15, 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
N. Zhang, M.-Y. Qi, L. Yuan, X. Fu, Z.-R. Tang et al., Broadband light harvesting and unidirectional electron flow for efficient electron accumulation for hydrogen generation. Angew. Chem. Int. Ed. 58, 10003–10007 (2019). https://doi.org/10.1002/anie.201905981
J. Lan, S. Qu, X. Ye, Y. Zheng, M. Ma et al., Core-shell semiconductor-graphene nanoarchitectures for efficient photocatalysis: state of the art and perspectives. Nano-Micro Lett. 16, 280 (2024). https://doi.org/10.1007/s40820-024-01503-4
H. Tüysüz, C.K. Chan, Solar Energy for Fuels, 1st edn. (Springer, Cham, 2016), pp.73–102
K. Wang, Z. Hu, P. Yu, A.M. Balu, K. Li et al., Understanding bridging sites and accelerating quantum efficiency for photocatalytic CO2 reduction. Nano-Micro Lett. 16, 5 (2023). https://doi.org/10.1007/s40820-023-01221-3
L. Liu, Y. Zhang, H. Huang, Junction engineering for photocatalytic and photoelectrocatalytic CO2 reduction. Sol. RRL 5, 2000430 (2021). https://doi.org/10.1002/solr.202000430
W. Zhao, P. Guo, J. Wu, D. Lin, N. Jia et al., TiO2 electron transport layer with p-n homojunctions for efficient and stable perovskite solar cells. Nano-Micro Lett. 16, 191 (2024). https://doi.org/10.1007/s40820-024-01407-3
S. Sun, L. He, M. Yang, J. Cui, S. Liang, Facet junction engineering for photocatalysis: a comprehensive review on elementary knowledge, facet-synergistic mechanisms, functional modifications, and future perspectives. Adv. Funct. Mater. 32, 2106982 (2022). https://doi.org/10.1002/adfm.202106982
L. Li, P.A. Salvador, G.S. Rohrer, Photocatalysts with internal electric fields. Nanoscale 6, 24–42 (2014). https://doi.org/10.1039/c3nr03998f
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
J. Ma, T.J. Miao, J. Tang, Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by time-resolved spectroscopies. Chem. Soc. Rev. 51, 5777–5794 (2022). https://doi.org/10.1039/d1cs01164b
H.L. Tan, F.F. Abdi, Y.H. Ng, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem. Soc. Rev. 48, 1255–1271 (2019). https://doi.org/10.1039/C8CS00882E
J. Zhang, B. Zhu, L. Zhang, J. Yu, Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis. Chem. Commun. 59, 688–699 (2023). https://doi.org/10.1039/d2cc06300j
H. Sudrajat, I. Carra, I. Rossetti, R. Schneider, J.C. Colmenares, Probing charge carrier behavior in engineered photocatalysts with time-resolved visible to mid-IR absorption spectroscopy. J. Phys. Chem. C 127, 21881–21914 (2023). https://doi.org/10.1021/acs.jpcc.3c05747
T.J. Miao, J. Tang, Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J. Chem. Phys. 152, 194201 (2020). https://doi.org/10.1063/5.0008537
K.T. Munson, C. Grieco, E.R. Kennehan, R.J. Stewart, J.B. Asbury, Time-resolved infrared spectroscopy directly probes free and trapped carriers in organo-halide perovskites. ACS Energy Lett. 2, 651–658 (2017). https://doi.org/10.1021/acsenergylett.7b00033
A. Yamakata, J.J.M. Vequizo, M. Kawaguchi, Behavior and energy state of photogenerated charge carriers in single-crystalline and polycrystalline powder SrTiO3 studied by time-resolved absorption spectroscopy in the visible to mid-infrared region. J. Phys. Chem. C 119, 1880–1885 (2015). https://doi.org/10.1021/jp510647b
T. Asahi, A. Furube, H. Fukumura, M. Ichikawa, H. Masuhara, Development of a femtosecond diffuse reflectance spectroscopic system, evaluation of its temporal resolution, and applications to organic powder systems. Rev. Sci. Instrum. 69, 361–371 (1998). https://doi.org/10.1063/1.1148668
B.S. Patil, P.D. Srinivasan, E. Atchison, H. Zhu, J.J. Bravo-Suárez, Design, modelling, and application of a low void-volumein situdiffuse reflectance spectroscopic reaction cell for transient catalytic studies. React. Chem. Eng. 4, 667–678 (2019). https://doi.org/10.1039/c8re00302e
F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013). https://doi.org/10.1021/jz4013257
J. Neu, Optical pump terahertz probe (OPTP) and time resolved terahertz spectroscopy (TRTS) of emerging solar materials. APL Photonics 8, 071103 (2023). https://doi.org/10.1063/5.0152726
D.H.K. Murthy, H. Matsuzaki, Q. Wang, Y. Suzuki, K. Seki et al., Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts. Sustain Energy Fuels 3, 208–218 (2019). https://doi.org/10.1039/C8SE00487K
B. Moss, Q. Wang, K.T. Butler, R. Grau-Crespo, S. Selim et al., Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021). https://doi.org/10.1038/s41563-020-00868-2
D.H.K. Murthy, V. Nandal, A. Furube, K. Seki, R. Katoh et al., Origin of enhanced overall water splitting efficiency in aluminum-doped SrTiO3 photocatalyst. Adv. Energy Mater. 13, 2302064 (2023). https://doi.org/10.1002/aenm.202302064
Y. Yamada, H. Yasuda, T. Tayagaki, Y. Kanemitsu, Photocarrier recombination dynamics in highly excited SrTiO3 studied by transient absorption and photoluminescence spectroscopy. Appl. Phys. Lett. 95, 121112 (2009). https://doi.org/10.1063/1.3238269
M. Jones, G.D. Scholes, On the use of time-resolved photoluminescence as a probe of nanocrystal photoexcitation dynamics. J. Mater. Chem. 20, 3533–3538 (2010). https://doi.org/10.1039/C000165A
Y. Gao, W. Nie, X. Wang, F. Fan, C. Li, Advanced space- and time-resolved techniques for photocatalyst studies. Chem. Commun. 56, 1007–1021 (2020). https://doi.org/10.1039/c9cc07128h
C. Wang, A. Malinoski, Perspective: mechanistic investigations of photocatalytic processes with time-resolved optical spectroscopy. J. Chem. Phys. 157, 160901 (2022). https://doi.org/10.1063/5.0111162
Y. Xu, Z. Wang, Y. Weng, Defect states and polarons in photocatalytic semiconductors revealed via time-resolved spectroscopy. J. Phys. Chem. C 128, 16275–16290 (2024). https://doi.org/10.1021/acs.jpcc.4c03688
L. Dai, J. Liu, K. Liang, R. Yang, D. Han et al., Realization of a time-correlated photon counting technique for fluorescence analysis. Biomed. Opt. Express 11, 2205 (2020). https://doi.org/10.1364/boe.385870
A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini et al., Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements. Opt. Express 19, 10735–10746 (2011). https://doi.org/10.1364/OE.19.010735
T. Kirchartz, J.A. Márquez, M. Stolterfoht, T. Unold, Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020). https://doi.org/10.1002/aenm.201904134
S. Wang, M. Huang, Y.-N. Wu, W. Chu, J. Zhao et al., Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nat. Comput. Sci. 2, 486–493 (2022). https://doi.org/10.1038/s43588-022-00297-y
V. Klimov, P.H. Bolivar, H. Kurz, Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B Condens. Matter 53, 1463–1467 (1996). https://doi.org/10.1103/physrevb.53.1463
Y. Yamada, H. Yasuda, T. Tayagaki, Y. Kanemitsu, Temperature dependence of photoluminescence spectra of nondoped and electron-doped SrTiO3: crossover from auger recombination to single-carrier trapping. Phys. Rev. Lett. 102, 247401 (2009). https://doi.org/10.1103/PhysRevLett.102.247401
X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen et al., Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 12, 7083–7090 (2010). https://doi.org/10.1039/B925277K
J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian et al., Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C 111, 693–699 (2007). https://doi.org/10.1021/jp065744z
W.H. Brattain, Evidence for surface states on semiconductors from change in contact potential on illumination. Phys. Rev. 72, 345 (1947). https://doi.org/10.1103/physrev.72.345.2
S.U.M. Khan, J.O. Bockris, A model for electron transfer at the illuminated p-type semiconductor-solution interface. J. Phys. Chem. 88, 2504–2515 (1984). https://doi.org/10.1021/j150656a016
R. Chen, F. Fan, T. Dittrich, C. Li, Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chem. Soc. Rev. 47, 8238–8262 (2018). https://doi.org/10.1039/C8CS00320C
I. Mora-Seró, T. Dittrich, G. Garcia-Belmonte, J. Bisquert, Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements. J. Appl. Phys. 100, 103705 (2006). https://doi.org/10.1063/1.2361158
J. Zhu, F. Fan, R. Chen, H. An, Z. Feng et al., Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Angew. Chem. Int. Ed. 54, 9111–9114 (2015). https://doi.org/10.1002/anie.201504135
D. Gross, I. Mora-Seró, T. Dittrich, A. Belaidi, C. Mauser et al., Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010). https://doi.org/10.1021/ja101629c
M. Xie, X. Fu, L. Jing, P. Luan, Y. Feng et al., Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4, 1300995 (2014). https://doi.org/10.1002/aenm.201300995
R. Chen, S. Pang, H. An, T. Dittrich, F. Fan et al., Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts. Nano Lett. 19, 426–432 (2019). https://doi.org/10.1021/acs.nanolett.8b04245
T. Dittrich, S. Bönisch, P. Zabel, S. Dube, High precision differential measurement of surface photovoltage transients on ultrathin CdS layers. Rev. Sci. Instrum. 79, 113903 (2008). https://doi.org/10.1063/1.3020757
R. Chen, C. Ni, J. Zhu, F. Fan, C. Li, Surface photovoltage microscopy for mapping charge separation on photocatalyst ps. Nat. Protoc. 19, 2250–2282 (2024). https://doi.org/10.1038/s41596-024-00992-2
K. Fukumoto, K. Onda, Y. Yamada, T. Matsuki, T. Mukuta et al., Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors. Rev. Sci. Instrum. 85, 083705 (2014). https://doi.org/10.1063/1.4893484
M.W.H. Garming, I.G.C. Weppelman, M. Lee, T. Stavenga, J.P. Hoogenboom, Ultrafast scanning electron microscopy with sub-micrometer optical pump resolution. Appl. Phys. Rev. 9, 021418 (2022). https://doi.org/10.1063/5.0085597
O. Takeuchi, S. Yoshida, H. Shigekawa, Light-modulated scanning tunneling spectroscopy for nanoscale imaging of surface photovoltage. Appl. Phys. Lett. 84, 3645–3647 (2004). https://doi.org/10.1063/1.1737063
A. Li, Z. Wang, H. Yin, S. Wang, P. Yan et al., Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 7, 6076–6082 (2016). https://doi.org/10.1039/C6SC01611A
R. Chen, S. Pang, H. An, J. Zhu, S. Ye et al., Charge separation via asymmetric illumination in photocatalytic Cu2O ps. Nat. Energy 3, 655–663 (2018). https://doi.org/10.1038/s41560-018-0194-0
J. Zhu, S. Pang, T. Dittrich, Y. Gao, W. Nie et al., Visualizing the nano cocatalyst aligned electric fields on single photocatalyst ps. Nano Lett. 17, 6735–6741 (2017). https://doi.org/10.1021/acs.nanolett.7b02799
R. Chen, F. Fan, C. Li, Unraveling charge-separation mechanisms in photocatalyst ps by spatially resolved surface photovoltage techniques. Angew. Chem. Int. Ed. 61, e202117567 (2022). https://doi.org/10.1002/anie.202117567
R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich et al., Spatiotemporal imaging of charge transfer in photocatalyst ps. Nature 610, 296–301 (2022). https://doi.org/10.1038/s41586-022-05183-1
E. Laine Wong, A.J. Winchester, V. Pareek, J. Madéo, M.K.L. Man et al., Pulling apart photoexcited electrons by photoinducing an in-plane surface electric field. Sci. Adv. 4, eaat9722 (2018). https://doi.org/10.1126/sciadv.aat9722
B.-H. Li, G.-H. Zhang, Y. Liang, Q.-Q. Hao, J.-L. Sun et al., Femtosecond time-resolved spectroscopic photoemission electron microscopy for probing ultrafast carrier dynamics in heterojunctions. Chin. J. Chem. Phys. 32, 399–405 (2019). https://doi.org/10.1063/1674-0068/cjcp1903044
C. Perez, S.R. Ellis, F.M. Alcorn, E.J. Smoll, E.J. Fuller et al., Picosecond carrier dynamics in InAs and GaAs revealed by ultrafast electron microscopy. Sci. Adv. 10, eadn8980 (2024). https://doi.org/10.1126/sciadv.adn8980
S. Grafström, Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002). https://doi.org/10.1063/1.1432113
M. Boutchich, K. Fukumoto, A. Mahmoudi, A. Jaffré, J. Alvarez et al., Direct reconstruction of the band diagram of rhombohedral-stacked bilayer WSe2–graphene heterostructure via photoemission electron microscopy. ACS Appl. Electron. Mater. 6, 6484–6492 (2024). https://doi.org/10.1021/acsaelm.4c00965
Y. Liang, G. Zhang, J. Sun, C. Zhou, Z. Li et al., Carrier dynamics in the space charge layer of MoS2 flakes studied by time-resolved μ-surface photovoltage. J. Phys. Chem. C 127, 7319–7326 (2023). https://doi.org/10.1021/acs.jpcc.3c00055
B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 16, 8751–8760 (2014). https://doi.org/10.1039/c3cp55317e
C. Minero, Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal. Today 54, 205–216 (1999). https://doi.org/10.1016/S0920-5861(99)00183-2
X. Sheng, Z. Liu, R. Zeng, L. Chen, X. Feng et al., Enhanced photocatalytic reaction at air–liquid–solid joint interfaces. J. Am. Chem. Soc. 139, 12402–12405 (2017). https://doi.org/10.1021/jacs.7b07187
T. Hisatomi, T. Minegishi, K. Domen, Kinetic assessment and numerical modeling of photocatalytic water splitting toward efficient solar hydrogen production. Bull. Chem. Soc. Jpn 85, 647–655 (2012). https://doi.org/10.1246/bcsj.20120058
S. Bai, W. Yin, L. Wang, Z. Li, Y. Xiong, Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463 (2016). https://doi.org/10.1039/C6RA10539D
P. Chen, X. Zhou, H. Shen, N.M. Andoy, E. Choudhary et al., Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010). https://doi.org/10.1039/B909052P
S. Zhang, D. Fan, Q. Yan, Y. Lu, D. Wu et al., Single-molecule fluorescence imaging of photocatalytic nanomaterials. J. Mater. Chem. A 12, 19627–19662 (2024). https://doi.org/10.1039/d4ta02347a
M. Shen, W.H. Rackers, B. Sadtler, Getting the most out of fluorogenic probes: challenges and opportunities in using single-molecule fluorescence to image electro- and photocatalysis. Chem. Biomed. Imaging 1, 692–715 (2023). https://doi.org/10.1021/cbmi.3c00075
N. Wang, T. Tachikawa, T. Majima, Single-molecule, single-p observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci. 2, 891 (2011). https://doi.org/10.1039/c0sc00648c
T. Tachikawa, S. Yamashita, T. Majima, Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011). https://doi.org/10.1021/ja201415j
T. Tachikawa, N. Wang, S. Yamashita, S.-C. Cui, T. Majima, Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 49, 8593–8597 (2010). https://doi.org/10.1002/anie.201004976
J. An, X. Song, W. Wan, Y. Chen, H. Si et al., Kinetics of the photoelectron-transfer process characterized by real-time single-molecule fluorescence imaging on individual photocatalyst ps. ACS Catal. 11, 6872–6882 (2021). https://doi.org/10.1021/acscatal.1c00983
K. Naito, T. Tachikawa, M. Fujitsuka, T. Majima, Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J. Am. Chem. Soc. 131, 934–936 (2009). https://doi.org/10.1021/ja808335b
L. Colson, Y. Kwon, S. Nam, A. Bhandari, N.M. Maya et al., Trends in single-molecule total internal reflection fluorescence imaging and their biological applications with lab-on-a-chip technology. Sensors 23, 7691 (2023). https://doi.org/10.3390/s23187691
C.B. Dunn, S. Valdez, Z. Qiang, Single-molecule fluorescence microscopy for imaging chemical reactions: recent progress and future opportunities for advancing polymer systems. J. Polym. Sci. 62, 1235–1259 (2024). https://doi.org/10.1002/pol.20230621
T. Tachikawa, T. Majima, Exploring the spatial distribution and transport behavior of charge carriers in a single titania nanowire. J. Am. Chem. Soc. 131, 8485–8495 (2009). https://doi.org/10.1021/ja900194m
T. Tachikawa, T. Majima, Single-molecule, single-p fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 39, 4802–4819 (2010). https://doi.org/10.1039/b919698f
B. Yang, G. Chen, A. Ghafoor, Y. Zhang, Y. Zhang et al., Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020). https://doi.org/10.1038/s41566-020-0677-y
X. Mao, C. Liu, M. Hesari, N. Zou, P. Chen, Super-resolution imaging of non-fluorescent reactions via competition. Nat. Chem. 11, 687–694 (2019). https://doi.org/10.1038/s41557-019-0288-8
X. Mao, P. Chen, Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2022). https://doi.org/10.1038/s41563-021-01161-6
V. Kumar, S. Schlücker, E. Hasselbrink, Molecular and Laser Spectroscopy, 1st edn. (Elsevier, Amsterdam, 2020), pp.563–594
S.-G. Sun, Z.-Y. Zhou, In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, 1st edn. (Elsevier, Amsterdam, 2007), pp.139–178
M. Abdellah, A.M. El-Zohry, L.J. Antila, C.D. Windle, E. Reisner et al., Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2-Re catalyst system for CO2 photoreduction. J. Am. Chem. Soc. 139, 1226–1232 (2017). https://doi.org/10.1021/jacs.6b11308
A. Vlček Jr., H. Kvapilová, M. Towrie, S. Záliš, Electron-transfer acceleration investigated by time resolved infrared spectroscopy. Acc. Chem. Res. 48, 868–876 (2015). https://doi.org/10.1021/ar5004048
M. Zhang, M. de Respinis, H. Frei, Time-resolved observations of water oxidation intermediates on a cobalt oxide nanop catalyst. Nat. Chem. 6, 362–367 (2014). https://doi.org/10.1038/nchem.1874
T. Chen, Z. Feng, G. Wu, J. Shi, G. Ma et al., Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 111, 8005–8014 (2007). https://doi.org/10.1021/jp071022b
A. Maeda, T.-A. Ishibashi, Time-resolved IR observation of a photocatalytic reaction of pivalic acid on platinized titanium dioxide. Chem. Phys. 419, 167–171 (2013). https://doi.org/10.1016/j.chemphys.2013.02.001
A. Yamakata, T.-A. Ishibashi, K. Takeshita, H. Onishi, Time-resolved infrared absorption study of photochemical reactions over metal oxides. Top. Catal. 35, 211–216 (2005). https://doi.org/10.1007/s11244-005-3826-0