Preparation of Sandwich-like NiCo2O4/rGO/NiO Heterostructure on Nickel Foam for High-Performance Supercapacitor Electrodes
Corresponding Author: Chunxu Pan
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 16
Abstract
A kind of sandwich-like NiCo2O4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo2O4, reduced graphene oxide (rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo2O4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm−2 at current density of 1 mA cm−2, and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.
Highlights:
1 A new sandwich-like NiCo2O4/rGO/NiO heterostructure is prepared by using a facile process via a three-step hydrothermal method.
2 This sandwich-like heterostructure exhibits a specific capacitance up to 2644 mF cm−2 and shows enhanced electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010). doi:10.1021/ja102267j
- J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). doi:10.1002/aenm.201300816
- L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/b813846j
- X.Y. Chen, H.L. Zhu, Y.C. Chen, Y.Y. Shang, A.Y. Cao, L.B. Hu, G.W. Rubloff, MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6(9), 7948–7955 (2012). doi:10.1021/nn302417x
- Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). doi:10.1038/nmat3087
- L. Wang, Z.H. Dong, Z.G. Wang, F.X. Zhang, J. Jin, Layered-Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 23(21), 2758–2764 (2013). doi:10.1002/adfm.201202786
- X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8(2), 143–150 (2016). doi:10.1007/s40820-015-0069-x
- L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai et al., Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1), 656–661 (2012). doi:10.1021/nn2041279
- S.M. Hwang, S.Y. Kim, J.G. Kim, K.J. Kim, J.W. Lee et al., Electrospun manganese-cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale 7(18), 8351–8355 (2015). doi:10.1039/C5NR01145K
- K.N. Jung, S.M. Hwang, M.S. Park, K.J. Kim, J.G. Kim, S.X. Dou, J.H. Kim, J.W. Lee, One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries. Sci. Rep. 5, 7665 (2015). doi:10.1038/srep07665
- C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). doi:10.1002/anie.201303971
- Q.F. Wang, X.F. Wang, B. Liu, G. Yu, X.J. Hou, D. Chen, G.Z. Shen, NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 1(7), 2468–2473 (2013). doi:10.1039/c2ta01283a
- Z.Y. Wang, Y.F. Zhang, Y.H. Li, H.Y. Fu, Hierarchical porous NiCo2O4 nanograss arrays grown on Ni foam as electrode material for high-performance supercapacitors. RSC Adv. 4(39), 20234–20238 (2014). doi:10.1039/c3ra47243d
- Y. Lei, J. Li, Y.Y. Wang, L. Gu, Y.F. Chang, H.Y. Yuan, D. Xiao, Rapid microwave-assisted green synthesis of 3d hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6(3), 1773–1780 (2014). doi:10.1021/am404765y
- G.H. Zhang, T.H. Wang, X.Z. Yu, H.N. Zhang, H.G. Duan, B.A. Lu, Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2(5), 586–594 (2013). doi:10.1016/j.nanoen.2013.07.008
- X.J. Liu, J.F. Liu, X.M. Sun, NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 3(26), 13900–13905 (2015). doi:10.1039/C5TA02429C
- F. Cai, Y.R. Kang, H.Y. Chen, M.H. Chen, Q.W. Li, Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A 2(29), 11509–11515 (2014). doi:10.1039/c4ta01235f
- D.L. Li, Y.N. Gong, Y.P. Zhang, C.Z. Luo, W.P. Li, Q. Fu, C.X. Pan, Facile synthesis of carbon nanosphere/NiCo2O4 core-shell sub-microspheres for high performance supercapacitor. Sci. Rep. 5, 12903 (2015). doi:10.1038/srep12903
- D.L. Li, C.Z. Yu, M.S. Wang, Y.P. Zhang, C.X. Pan, Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors. RSC Adv. 4(98), 55394–55399 (2014). doi:10.1039/C4RA10761F
- C. Zhang, T. Kuila, N.H. Kim, S.H. Lee, J.H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89, 328–339 (2015). doi:10.1016/j.carbon.2015.03.051
- S.N. Liu, J. Wu, J. Zhou, G.Z. Fang, S.Q. Liang, Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim. Acta 176, 1–9 (2015). doi:10.1016/j.electacta.2015.06.131
- Y.P. Zhang, D.L. Li, X.J. Tan, B. Zhang, X.F. Ruan et al., High quality graphene sheets from graphene oxide by hot-pressing. Carbon 54, 143–148 (2013). doi:10.1016/j.carbon.2012.11.012
- S. Biswas, L.T. Drzal, Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 22(20), 5667–5671 (2010). doi:10.1021/cm101132g
- G.A. Babu, G. Ravi, Y. Hayakawa, Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures. Appl. Phys. A 119(1), 219–232 (2015). doi:10.1007/s00339-014-8951-9
- M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl. Mater. Interfaces 4(9), 4631–4636 (2012). doi:10.1021/am301010u
- Z. Wu, Y. Zhu, X. Ji, NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A 2(36), 14759 (2014). doi:10.1039/C4TA02390K
- X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012). doi:10.1021/nn301454q
- F. Shi, L. Li, X.L. Wang, C.D. Gu, J.P. Tu, Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4(79), 41910–41921 (2014). doi:10.1039/C4RA06136E
- Q.W. Zhou, J.C. Xing, Y.F. Gao, X.J. Lv, Y.M. He, Z.H. Guo, Y.M. Li, Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl. Mater. Interfaces 6(14), 11394–11402 (2014). doi:10.1021/am501988s
- H. Wang, C. Qing, J.T. Guo, A.A. Aref, D.M. Sun, B.X. Wang, Y.W. Tang, Highly conductive carbon-CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J. Mater. Chem. A 2(30), 11776–11783 (2014). doi:10.1039/C4TA01132E
- H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009). doi:10.1039/b906812k
- W.L. Yang, Z. Gao, J. Ma, X.M. Zhang, J. Wang, J.Y. Liu, Hierarchical NiCo2O4@NiO core-shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J. Mater. Chem. A 2(5), 1448–1457 (2014). doi:10.1039/C3TA14488G
- D.D. Zhao, W.J. Zhou, H.L. Li, Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films. Chem. Mater. 19(16), 3882–3891 (2007). doi:10.1021/cm062720w
- G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 48, 6537–6539 (2008). doi:10.1039/b815647f
- J. Jiang, Y.Y. Li, J.P. Liu, X.T. Huang, C.Z. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). doi:10.1002/adma.201202146
- J. Xu, L. Li, P. Gao, L. Yu, Y.J. Chen, P. Yang, S.L. Gai, P.P. Yang, Facile preparation of NiCo2O4 nanobelt/graphene composite for electrochemical capacitor application. Electrochim. Acta 166, 206–214 (2015). doi:10.1016/j.electacta.2015.03.093
- J. Yan, Q. Wang, C.P. Lin, T. Wei, Z.J. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 4(13), 1400500 (2014). doi:10.1002/aenm.201400500
- W. Li, Y.F. Bu, H.L. Jin, J. Wang, W.M. Zhang, S. Wang, J.C. Wang, The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy Fuels 27(10), 6304–6310 (2013). doi:10.1021/ef401190b
References
H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010). doi:10.1021/ja102267j
J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). doi:10.1002/aenm.201300816
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/b813846j
X.Y. Chen, H.L. Zhu, Y.C. Chen, Y.Y. Shang, A.Y. Cao, L.B. Hu, G.W. Rubloff, MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6(9), 7948–7955 (2012). doi:10.1021/nn302417x
Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, H.J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). doi:10.1038/nmat3087
L. Wang, Z.H. Dong, Z.G. Wang, F.X. Zhang, J. Jin, Layered-Co(OH)2 nanocones as electrode materials for pseudocapacitors: understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 23(21), 2758–2764 (2013). doi:10.1002/adfm.201202786
X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8(2), 143–150 (2016). doi:10.1007/s40820-015-0069-x
L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai et al., Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1), 656–661 (2012). doi:10.1021/nn2041279
S.M. Hwang, S.Y. Kim, J.G. Kim, K.J. Kim, J.W. Lee et al., Electrospun manganese-cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale 7(18), 8351–8355 (2015). doi:10.1039/C5NR01145K
K.N. Jung, S.M. Hwang, M.S. Park, K.J. Kim, J.G. Kim, S.X. Dou, J.H. Kim, J.W. Lee, One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries. Sci. Rep. 5, 7665 (2015). doi:10.1038/srep07665
C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). doi:10.1002/anie.201303971
Q.F. Wang, X.F. Wang, B. Liu, G. Yu, X.J. Hou, D. Chen, G.Z. Shen, NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 1(7), 2468–2473 (2013). doi:10.1039/c2ta01283a
Z.Y. Wang, Y.F. Zhang, Y.H. Li, H.Y. Fu, Hierarchical porous NiCo2O4 nanograss arrays grown on Ni foam as electrode material for high-performance supercapacitors. RSC Adv. 4(39), 20234–20238 (2014). doi:10.1039/c3ra47243d
Y. Lei, J. Li, Y.Y. Wang, L. Gu, Y.F. Chang, H.Y. Yuan, D. Xiao, Rapid microwave-assisted green synthesis of 3d hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6(3), 1773–1780 (2014). doi:10.1021/am404765y
G.H. Zhang, T.H. Wang, X.Z. Yu, H.N. Zhang, H.G. Duan, B.A. Lu, Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2(5), 586–594 (2013). doi:10.1016/j.nanoen.2013.07.008
X.J. Liu, J.F. Liu, X.M. Sun, NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 3(26), 13900–13905 (2015). doi:10.1039/C5TA02429C
F. Cai, Y.R. Kang, H.Y. Chen, M.H. Chen, Q.W. Li, Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A 2(29), 11509–11515 (2014). doi:10.1039/c4ta01235f
D.L. Li, Y.N. Gong, Y.P. Zhang, C.Z. Luo, W.P. Li, Q. Fu, C.X. Pan, Facile synthesis of carbon nanosphere/NiCo2O4 core-shell sub-microspheres for high performance supercapacitor. Sci. Rep. 5, 12903 (2015). doi:10.1038/srep12903
D.L. Li, C.Z. Yu, M.S. Wang, Y.P. Zhang, C.X. Pan, Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors. RSC Adv. 4(98), 55394–55399 (2014). doi:10.1039/C4RA10761F
C. Zhang, T. Kuila, N.H. Kim, S.H. Lee, J.H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89, 328–339 (2015). doi:10.1016/j.carbon.2015.03.051
S.N. Liu, J. Wu, J. Zhou, G.Z. Fang, S.Q. Liang, Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim. Acta 176, 1–9 (2015). doi:10.1016/j.electacta.2015.06.131
Y.P. Zhang, D.L. Li, X.J. Tan, B. Zhang, X.F. Ruan et al., High quality graphene sheets from graphene oxide by hot-pressing. Carbon 54, 143–148 (2013). doi:10.1016/j.carbon.2012.11.012
S. Biswas, L.T. Drzal, Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 22(20), 5667–5671 (2010). doi:10.1021/cm101132g
G.A. Babu, G. Ravi, Y. Hayakawa, Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures. Appl. Phys. A 119(1), 219–232 (2015). doi:10.1007/s00339-014-8951-9
M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl. Mater. Interfaces 4(9), 4631–4636 (2012). doi:10.1021/am301010u
Z. Wu, Y. Zhu, X. Ji, NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A 2(36), 14759 (2014). doi:10.1039/C4TA02390K
X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.-B. Zhao, H.J. Fan, High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6), 5531–5538 (2012). doi:10.1021/nn301454q
F. Shi, L. Li, X.L. Wang, C.D. Gu, J.P. Tu, Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4(79), 41910–41921 (2014). doi:10.1039/C4RA06136E
Q.W. Zhou, J.C. Xing, Y.F. Gao, X.J. Lv, Y.M. He, Z.H. Guo, Y.M. Li, Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl. Mater. Interfaces 6(14), 11394–11402 (2014). doi:10.1021/am501988s
H. Wang, C. Qing, J.T. Guo, A.A. Aref, D.M. Sun, B.X. Wang, Y.W. Tang, Highly conductive carbon-CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J. Mater. Chem. A 2(30), 11776–11783 (2014). doi:10.1039/C4TA01132E
H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009). doi:10.1039/b906812k
W.L. Yang, Z. Gao, J. Ma, X.M. Zhang, J. Wang, J.Y. Liu, Hierarchical NiCo2O4@NiO core-shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor. J. Mater. Chem. A 2(5), 1448–1457 (2014). doi:10.1039/C3TA14488G
D.D. Zhao, W.J. Zhou, H.L. Li, Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films. Chem. Mater. 19(16), 3882–3891 (2007). doi:10.1021/cm062720w
G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 48, 6537–6539 (2008). doi:10.1039/b815647f
J. Jiang, Y.Y. Li, J.P. Liu, X.T. Huang, C.Z. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). doi:10.1002/adma.201202146
J. Xu, L. Li, P. Gao, L. Yu, Y.J. Chen, P. Yang, S.L. Gai, P.P. Yang, Facile preparation of NiCo2O4 nanobelt/graphene composite for electrochemical capacitor application. Electrochim. Acta 166, 206–214 (2015). doi:10.1016/j.electacta.2015.03.093
J. Yan, Q. Wang, C.P. Lin, T. Wei, Z.J. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 4(13), 1400500 (2014). doi:10.1002/aenm.201400500
W. Li, Y.F. Bu, H.L. Jin, J. Wang, W.M. Zhang, S. Wang, J.C. Wang, The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy Fuels 27(10), 6304–6310 (2013). doi:10.1021/ef401190b