Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 22
Abstract
High-voltage lithium-ion batteries (HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi0.5Mn1.5O4 (LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating, electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ahmadian, M. Sedghi, M.A. Golkar, M, Two-layer optimization methodology for wind distributed generation planning considering plug-in electric vehicles uncertainty: a flexible active-reactive power approach. Energy Convers. Manage. 124, 231–246 (2016). doi:10.1016/j.enconman.2016.07.025
- G. Sen, A.R. Boynuegri, M. Uzunoglu, O. Erdinc, J.P.S. Catalão, Design and application of a power unit to use plug-in electric vehicles as an uninterruptible power supply. Energies 9(3), 171 (2016). doi:10.3390/en9030171
- B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329–332 (2015). doi:10.1038/nclimate2564
- J. Wang, S.Z. Yao, W.Q. Lin, B.H. Wu, X.Y. He, J.Y. Li, J.B. Zhao, Improving the electrochemical properties of high-voltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries. J. Power Sources 280(15), 114–124 (2015). doi:10.1016/j.jpowsour.2015.01.087
- D. Wang, X.H. Li, Z.X. Wang, H.J. Guo, Y. Xu, Y.L. Fan, J.J. Ru, Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta 188(10), 48–56 (2016). doi:10.1016/j.electacta.2015.11.093
- D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors base on 1-D nanomaterials in prospect. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.3786/nml.v3i1.p62-71
- A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001). doi:10.1149/1.1348257
- J. Wolfenstine, J. Allen, LiNiPO4–LiCoPO4 solid solutions as cathodes. J. Power Sources 136, 150–153 (2004). doi:10.1016/j.jpowsour.2004.05.017
- J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem. Mater. 12, 3240–3242 (2000). doi:10.1021/cm000345g
- V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La, A. Salle, D. Verbaere, Y.Piffard Guyomard, LiMBO3 (M = Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics 139, 37–46 (2001). doi:10.1016/S0167-2738(00)00813-4
- N. Recham, J.N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.M. Tarascon, A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater. 9, 68–74 (2010). doi:10.1038/nmat2590
- T. Muraliganth, K.R. Stroukoff, A. Manthiram, Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater. 22(20), 5754–5761 (2010). doi:10.1021/cm102058n
- J. Ma, P. Hu, G.L. Cui, L.Q. Chen, Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 28, 3578–3606 (2016). doi:10.1021/acs.chemmater.6b00948
- R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 195(17), 5442–5451 (2010). doi:10.1016/j.jpowsour.2010.03.067
- G.Q. Lin, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J. Solid State Electrochem. 14(12), 2191–2202 (2010). doi:10.1007/s10008-010-1061-5
- T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17, 383–389 (2011). doi:10.1007/s11581-011-0550-6
- M. Hu, X.L. Pang, Z. Zhou, Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229–242 (2013). doi:10.1016/j.jpowsour.2013.03.024
- H.L. Wang, LiNi0.5Mn1.5O4 cathodes for lithium ion batteries: a review. J. Nanosci. Nanotechnol. 15(8), 6883–6890 (2015). doi:10.1166/jnn.2015.10726
- Y.R. Zhu, T.F. Yi, Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode. Ionics 22, 1759–1774 (2016). doi:10.1007/s11581-016-1788-9
- Z. Chen, H. Zhu, S. Ji, V. Linkov, J. Zhang, W. Zhu, Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. J. Power Sources 189(1), 507–509 (2009). doi:10.1016/j.jpowsour.2008.11.001
- H.S. Fang, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction. J. Power Sources 153(1), 174 (2006). doi:10.1016/j.jpowsour.2005.03.179
- X. Zhang, J. Ma, K. Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano-Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
- J.F. Yi, C.Y. Li, Y.R. Zhu, J. Sheu, R.S. Zhu, Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. J. Solid State Electrochem. 13(6), 913–919 (2009). doi:10.1007/s10008-008-0628-x
- Y. Fan, J. Wang, X. Ye, J. Zhang, Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method. Mater. Chem. Phys. 103(1), 19–23 (2007). doi:10.1016/j.matchemphys.2006.10.006
- X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: electrochemical performance, diffusion coefficient and capacity loss mechanism. Electrochim. Acta 54(28), 7471–7475 (2009). doi:10.1016/j.electacta.2009.07.084
- L.H. Yu, Y.L. Cao, H.X. Yang, X.P. Ai, Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. J. Solid State Electrochem. 10(5), 283–287 (2006). doi:10.1007/s10008-005-0695-1
- G.Z. Ma, Y. Zhang, J.T. Lin, Z.J. Chen, R.R. Zhao, P.Y. Tong, L.Y. Zou, H.Y. Chen, Synthesis of high-voltage spinel LiNi0.5Mn1.5O4material for lithium-ion batteries by a metal-cholate supramolecular hydrogel as precursor. J. Solid State Electrochem. 19(11), 3365–3372 (2015). doi:10.1007/s10008-015-2962-0
- H.L. Wang, T.A. Tan, P. Yang, M.O. Lai, L. Lu, High-rate performances of the ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J. Phys. Chem. C 115(13), 6102–6110 (2011). doi:10.1021/jp110746w
- J.J. Feng, Z.P. Huang, C. Guo, N.A. Chernova, S. Upreti, M.S. Whittingham, An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl. Mater. Interfaces 5, 10227–10232 (2013). doi:10.1021/am4029526
- L. Wen, Q. Lu, G. Xu, Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials. Electrochim. Acta 51(21), 4388–4392 (2006). doi:10.1016/j.electacta.2005.12.018
- C.H. Han, Y.S. Hong, C.M. Park, K. Kim, Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li2CO3. J. Power Sources 92(1), 95–101 (2001). doi:10.1016/S0378-7753(00)00505-X
- J.H. Kim, S.T. Myung, Y.K. Sun, Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim. Acta 49(2), 219–227 (2004). doi:10.1016/j.electacta.2003.07.003
- S.X. Deng, D.L. Mao, H. Wang, Preparation and electrochemical properties of double-shell LiNi0.5Mn1.5O4 hollow microspheres as cathode materials for Li-ion batteries. RSC Adv. 6(51), 45369–45375 (2016). doi:10.1039/C6RA05620B
- J. Cabana, M.C. Cabanas, F.O. Omenya, N.A. Chernova, D. Zeng, M.S. Whittingham, C.P. Grey, Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 24(15), 2952–2964 (2012). doi:10.1021/cm301148d
- J. Song, D.W. Shin, Y. Lu, C.D. Amos, A. Manthiram, J.B. Goodenough, Role of oxygen vacancies on the performance of Li[Ni0.5−x Mn1.5+x ]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater. 24(15), 3102–3109 (2012). doi:10.1021/cm301825h
- T. Ohzuku, K. Ariyoshi, S.J. Yamamoto, Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. Ceram. Soc. Jpn. 110(1281), 501–505 (2002). doi:10.2109/jcersj.110.501
- Y. Idemoto, H. Narai, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J. Power Sources 119, 125–129 (2003). doi:10.1016/S0378-7753(03)00140-X
- L. Wang, H. Li, X. Huang, E. Baudrin, A comparative study of Fd3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 193(1), 32–38 (2011). doi:10.1016/j.ssi.2011.04.007
- J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3¯m,
- and P4332. Chem. Mater. 16(5), 906–914 (2004). doi:10.1021/cm035050s
- S.K. Hong, S.I. Mho, I.H. Yeo, Y. Kang, D.W. Kim, Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes. Electrochim. Acta 156, 29–37 (2015). doi:10.1016/j.electacta.2015.01.027
- J.H. Kim, N.P.W. Pieczonka, L. Yang, Challenges and approaches for high voltage spinel lithium-ion batteries. Chem. Phys. Chem. 15(10), 1940–1954 (2014). doi:10.1002/cphc.201400052
- D. Lu, M. Xu, L. Zhou, A. Garsuch, B.L. Lucht, Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J. Electrochem. Soc. 160(5), A3138–A3143 (2013). doi:10.1149/2.022305jes
- K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 48(2), 145–151 (2002). doi:10.1016/S0013-4686(02)00593-5
- G.H. Kim, S.T. Myung, H.J. Bang, J. Prakash, Y.K. Sun, Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3−x)Mg x ]O2−yFy via coprecipitation. Electrochem. Solid-State Lett. 7(12), A477–A480 (2004). doi:10.1149/1.1809554
- D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y.S. Cohen, H.J. Kim, M. Schmidt, On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim. Acta 47(27), 4291–4306 (2002). doi:10.1016/S0013-4686(02)00417-6
- Z.H. Chen, J.R. Dahn, Improving the capacity retention of LiCoO2 Cycled to 4.5 V by heat-treatment. Electrochem. Solid-State Lett. 7(1), A11–A14 (2004). doi:10.1149/1.1628871
- H. Xia, L. Liu, Y.S. Meng, G. Ceder, Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154(4), A337–A342 (2007). doi:10.1149/1.2509021
- D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). doi:10.1016/S0378-7753(00)00431-6
- R. Fong, M.C. Reid, R.S. McMillan, J.R. Dahn, In situ study of electrolyte reactions in secondary lithium cells. J. Electrochem. Soc. 134(3), 516–519 (1987). doi:10.1149/1.2100501
- M. Arakawa, J. Yamaki, Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes. J. Power Sources 54(2), 250–254 (1995). doi:10.1016/0378-7753(94)02078-H
- D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50(2), 50–54 (2004). doi:10.1016/j.electacta.2004.01.090
- M. Moshkovich, M. Cojocaru, H.E. Gottlieb, D. Aurbach, The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J. Electroanal. Chem. 497(1), 84–96 (2001). doi:10.1016/S0022-0728(00)00457-5
- Y. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive. J. Am. Chem. Soc. 124(16), 4408–4421 (2001). doi:10.1021/ja017073i
- L.E. Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal, D. Gonbeau, The effect of vinylene carbonate additive on surface film formation on both electrodes in li-ion batteries. J. Electrochem. Soc. 156(2), A103–A113 (2009). doi:10.1149/1.3029674
- Y. Wang, S. Nakamura, M. Ue, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123(47), 11708–11718 (2001). doi:10.1021/ja0164529
- L. Xing, O. Borodin, Oxidation induced decomposition of ethylene carbonate from DFT calculations-importance of explicitly treating surrounding solvent. Phys. Chem. Chem. Phys. 14(37), 12838–12843 (2012). doi:10.1039/C2CP41103B
- L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, J. Yi, Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113(52), 16596–16602 (2009). doi:10.1021/jp9074064
- M. Onuki, S. Kinoshita, Y. Sakata, M. Yanagidate, Y. Otake, M. Ue, M. Deguchi, Identification of the source of evolved gas in li-ion batteries using C-labeled solvents. J. Electrochem. Soc. 155(11), A794–A797 (2008). doi:10.1149/1.2969947
- N.P.W. Pieczonka, Z.Y. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 117(31), 15947–15957 (2013). doi:10.1021/jp405158m
- S. Gopukumar, Y. Jeong, K.B. Kim, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ionics 159(3), 223–232 (2003). doi:10.1016/S0167-2738(03)00081-X
- H. Kobayashi, S. Shigemura, M. Tabuchi, H. Sakaebe, K. Ado et al., Electrochemical properties of hydrothermally obtained LiCo1-xFex O 2 as a positive electrode material for rechargeable lithium batteries. J. Electrochem. Soc. 147(3), 960–969 (2000). doi:10.1149/1.1393298
- M. Zou, M. Yoshio, S. Gopukumar, J.I. Yamaki, Performance of LiM0.05Co0.95O2 cathode materials in lithium rechargeable cells when cycled up to 4.5V. Chem. Mater. 17(6), 1284–1286 (2005). doi:10.1021/cm048734o
- S.A. Needham, G.X. Wang, H.K. Liu, V.A. Drozd, R.S. Liu, Synthesis and electrochemical performance of doped LiCoO2 materials. J. Power Sources 174(2), 828–831 (2007). doi:10.1016/j.jpowsour.2007.06.228
- C.D. Jones, E. Rossen, J.R. Dahn, Structure and electrochemistry of LixCryCo1−yO2. Solid State Ionics 68(1), 65–69 (1994). doi:10.1016/0167-2738(94)90235-6
- C. Julien, M.A.C. Lopez, T. Mohan, S. Chitra, P. Kalyani, S. Gopukumar, Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics 135(1), 214–248 (2000). doi:10.1016/S0167-2738(00)00370-2
- I. Sadoune, C. Delmas, On the LixNi0.8Co0.2O2 system. J. Solid State Chem. 136(1), 8–15 (1998). doi:10.1006/jssc.1997.7599
- M. Zou, M. Yoshio, S. Gopukumar, J.I. Yamaki, Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells. Chem. Mater. 15(25), 4699–4706 (2003). doi:10.1021/cm0347032
- R.Z. Yin, Y.S. Kim, S.J. Shin, I. Jung, J.S. Kim, S.K. Jeong, In situ XRD investigation and thermal properties of Mg doped LiCoO2 for lithium ion batteries. J. Electrochem. Soc. 159(3), A253–A258 (2012). doi:10.1149/2.006203jes
- M. Schroeder, S. Glatthaar, H. Geßwein, V. Winkler, M. Bruns, T. Scherer, V.S.K. Chakravadhanula, J.R. Binder, Post-doping via spray-drying: a novel sol-gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material. J. Mater. Sci. 48(9), 3404–3414 (2013). doi:10.1007/s10853-012-7127-2
- J. Mao, K. Dai, M.J. Xuan, G.S. Shao, R.M. Qiao, W.L. Yang, V.S. Battaglia, G. Liu, Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl. Mater. Interfaces 8(14), 9116–9124 (2016). doi:10.1021/acsami.6b00877
- N.V. Kosova, I.A. Bobrikov, O.A. Podgornova, A.M. Balagurov, A.K. Gutakovskii, Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5-xMn1.5-yMx+yO4 (M = Co, Cr, Ti; x + y = 0.05) prepared by mechanochemical way. J. Solid State Electrochem. 20(1), 235–246 (2016). doi:10.1007/s10008-015-3015-4
- S.W. Oh, S.H. Park, J.H. Kim, Y.C. Bae, Y.K. Sun, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J. Power Sources 157(1), 464–470 (2006). doi:10.1016/j.jpowsour.2005.07.056
- X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang, LiNi0.5Mn1.5O3.975F0.05 as novel 5 V cathode material. J. Power Sources 174(2), 1113–1116 (2007). doi:10.1016/j.jpowsour.2007.06.101
- G. Du, Y. NuLi, J. Yang, J. Wang, Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater. Res. Bull. 43(12), 3607–3613 (2008). doi:10.1016/j.materresbull.2008.02.025
- Y.K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, J. Prakash, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−x Sx spinel material in 3-V region. J. Power Sources 161(1), 19–26 (2006). doi:10.1016/j.jpowsour.2006.03.085
- Y. Lee, A.J. Woo, K.S. Han, K.S. Ryu, D. Sohn, D. Kim, H. Lee, Solid-state NMR studies of Al-doped, Al2O3-coated LiCoO2. Electrochim. Acta 50(2), 491–494 (2004). doi:10.1016/j.electacta.2004.02.063
- F. Nobili, F. Croce, R. Tossici, I. Meschini, P. Reale, R. Marassi, Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012). doi:10.1016/j.jpowsour.2011.09.053
- M.C. Rao, O.M. Hussain, Synthesis and electrochemical properties of Ti doped LiCoO2 thin film cathodes. J. Alloys Compd. 491(1), 503–506 (2010). doi:10.1016/j.jallcom.2009.10.246
- Y.S. Jung, A.S. Cvanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe li-ion batteries. Adv. Mater. 22(19), 2172–2176 (2010). doi:10.1002/adma.200903951
- B.J. Hwang, C.Y. Chen, M.Y. Cheng, R. Santhanam, K. Ragavendran, Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J. Power Sources 195(13), 4255–4265 (2010). doi:10.1016/j.jpowsour.2010.01.040
- J. Liu, A. Manthiram, Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J. Electrochem. Soc. 156(11), A833–A838 (2009). doi:10.1149/1.3206590
- J. Liu, A. Manthiram, Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem. Mater. 21(8), 1695–1707 (2009). doi:10.1021/cm9000043
- S.T. Myung, K. Amine, Y.K. Sun, Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. J. Mater. Chem. 20(34), 7074–7095 (2010). doi:10.1039/C0JM00508H
- Y. Wang, Q. Peng, G. Yang, Z. Yang, L.C. Zhang, H. Long, Y.H. Huang, P.X. Lu, High-stability 5 V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide. Electrochim. Acta 136, 450–456 (2014). doi:10.1016/j.electacta.2014.04.184
- N. Ohta, K. Takada, I. Sakaguchi, L.Q. Zhang, R.Z. Ma, K.S. Fukuda, LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9(7), 1486–1490 (2007). doi:10.1016/j.elecom.2007.02.008
- W.S. Yoon, K.Y. Chung, K.W. Nam, K.B. Kim, Characterization of LiMn2O4-coated LiCoO2 film electrode prepared by electrostatic spray deposition. J. Power Sources 163(1), 207–210 (2006). doi:10.1016/j.jpowsour.2005.12.058
- T.F. Yi, J. Shu, Y. Wang, J. Xue, J. Meng, C.B. Yue, R.S. Zhu, Effect of treated temperature on structure and performance of LiCoO2 coated by Li4Ti5O12. Surf. Coat. Technol. 205(13), 3885–3889 (2011). doi:10.1016/j.surfcoat.2011.02.003
- G.R. Hu, J.C. Cao, Z.D. Peng, Y.B. Cao, K. Du, Enhanced high-voltage properties of LiCoO2 coated with Li[Li0.2Mn0.6Ni0.2]O2. Electrochim. Acta 149, 49–55 (2014). doi:10.1016/j.electacta.2014.10.072
- H. Wang, W.D. Zhang, L.Y. Zhu, M.C. Chen, Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature. Solid State Ionics 178(1), 131–136 (2007). doi:10.1016/j.ssi.2006.10.028
- M. Murakami, H. Yamashige, H. Arai, Y. Uchimoto, Z. Ogumi, Association of paramagnetic species with formation of LiF at the surface of LiCoO2. Electrochim. Acta 78, 49–54 (2012). doi:10.1016/j.electacta.2012.05.141
- H.J. Lee, Y.J. Park, Interface characterization of MgF2-coated LiCoO2 thin films. Solid State Ionics 230, 86–91 (2013). doi:10.1016/j.ssi.2012.08.003
- K.S. Lee, S.T. Myung, D.W. Kim, Y.K. Sun, AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J. Power Sources 196(16), 6974–6977 (2001). doi:10.1016/j.jpowsour.2010.11.014
- Y. Fan, J. Wang, Z. Tang, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim. Acta 52(11), 3870–3875 (2007). doi:10.1016/j.electacta.2006.10.063
- Y. Lee, Tae Y. Kim, D.W. Kim, J.K. Lee, W. Choi, Coating of spinel LiNi0.5Mn1.5O4 cathodes with SnO2 by an electron cyclotron resonance metal-organic chemical vapor deposition method for high-voltage applications in lithium ion batteries. J. Electroanal. Chem. 736, 16–21 (2015). doi:10.1016/j.jelechem.2014.10.022
- X. Fang, M.Y. Ge, J.P. Rong, Y.C. Che, N. Aroonyadet, X.L. Wang, Y.H. Liu, A.Y. Zhang, C.W. Zhou, Ultrathin surface modification by atomic layer deposition on high voltage cathode LiNi0.5Mn1.5O4 for lithium ion batteries. Energy Technol 2(2), 159–165 (2014). doi:10.1002/ente.201300102
- J. Song, X.G. Han, K.J. Gaskell, K. Xu, S.B. Lee, L.B. Hu, Enhanced electrochemical stability of high-voltage LiNi0.5Mn1.5O4 cathode by surface modification using atomic layer deposition. J. Nanopart. Res. 16(11), 1–8 (2014). doi:10.1007/s11051-014-2745-z
- K. Zaghib, P. Charest, M. Dontigny, A. Guerfi, M. Lagace, A. Mauger, M. Kopec, C.M. Julien, LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J. Power Sources 195(24), 8280–8288 (2010). doi:10.1016/j.jpowsour.2010.07.010
- S. Ferrari, R.L. Lavall, D. Capsoni, E. Quartarone, A. Magistris, P. Mustarelli, P. Canton, Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J. Phys. Chem. C 11(29), 12598–12603 (2010). doi:10.1021/jp1025834
- W.S. Kim, S.B. Kim, I.C. Jang, H.H. Lim, Y.S. Lee, Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Alloys Compd. 492(1), L87–L90 (2010). doi:10.1016/j.jallcom.2009.12.034
- D. Liu, J. Trottier, P. Charest, J. Fréchette, A. Guerfi, A. Mauger, C.M. Julien, K. Zaghi, Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries. J. Power Sources 204, 127–132 (2012). doi:10.1016/j.jpowsour.2011.11.059
- S.J. Shi, J.P. Tu, Y.Y. Tang, Y.Q. Zhang, X.Y. Liu, X.L. Wang, C.D. Gu, Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J. Power Sources 255, 338–346 (2013). doi:10.1016/j.jpowsour.2012.10.065
- J.G. Li, X.M. He, R.S. Zhao, Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries. Trans. Nonferrous Met. Soc. China 17(6), 1324–1327 (2007). doi:10.1016/S1003-6326(07)60270-2
- J. Li, L. Wang, Q. Zhang, X. He, Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J. Power Sources 190(1), 149–153 (2009). doi:10.1016/j.jpowsour.2008.08.011
- Q. Wu, X. Zhang, S. Sun, N. Wan, D. Pan, Y. Bai, H. Zhu, Y.S. Hu, S. Dai, Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Nanoscale 7(38), 15609–15617 (2015). doi:10.1039/C5NR03564C
- J.S. Park, A.U. Mane, J.W. Elam, J.R. Croy, Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem. Mater. 27(6), 1917–1920 (2015). doi:10.1021/acs.chemmater.5b00603
- X. Liu, J. Liu, T. Huang, A. Yu, CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 109, 52–58 (2013). doi:10.1016/j.electacta.2013.07.069
- X. Liu, J. Liu, T. Huang, A. Yu, Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim. Acta 163, 82–92 (2015). doi:10.1016/j.electacta.2015.02.155
- J. Zheng, M. Gu, J. Xiao, B.J. Polzin, P. Yan, X. Chen, C. Wang, J.G. Zhang, Functioning mechanism of AlF3 coating on the Li- and Mn-Rich cathode materials. Chem. Mater. 26(22), 6320–6327 (2014). doi:10.1021/cm502071h
- Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan, Y. Bai, Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. Electrochim. Acta 158, 73–80 (2015). doi:10.1016/j.electacta.2015.01.145
- Y.Y. Huang, X.L. Zeng, C. Zhou, P. Wu, D.G. Tong, Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J. Mater. Sci. 48(2), 625–635 (2013). doi:10.1007/s10853-012-6765-8
- C. Lu, H. Wu, Y. Zhang, H. Liu, B. Chen, N. Wu, S. Wang, Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J. Power Sources 267, 682–691 (2014). doi:10.1016/j.jpowsour.2014.05.122
- Q. Chen, Y. Wang, T. Zhang, W. Yin, J. Yang, X. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 83, 65–72 (2012). doi:10.1016/j.electacta.2012.08.025
- Q.L. Xie, Z.B. Hu, C.H. Zhao, S.R. Zhang, K.Y. Liu, LaF3-coated Li[Li0.2Mn0.56Ni0.16Co0.08]O2 as cathode material with improved electrochemical performance for lithium ion batteries. RSC Adv. 5(63), 50859–50864 (2015). doi:10.1039/c5ra06243h
- J.M. Zheng, Z.R. Zhang, X.B. Wu, The effects of AlF3 coating on the performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J. Electrochem. Soc. 155(10), A775–A782 (2008). doi:10.1149/1.2966694
- J. Li, Y. Zhang, J. Li, AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics 17(8), 671–675 (2011). doi:10.1007/s11581-011-0617-4
- A. Kraytsberg, H. Drezner, M. Auinat, A. Shapira, P.A.N. Solomatin, M.W. Mehrens, Y.E. Eli, Atomic layer deposition of a particularized protective MgF2 film on a Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. ChemNanoMat 1(8), 577–585 (2015). doi:10.1002/cnma.201500149
- J.H. Park, J.H. Cho, J.S. Kim, E.G. Shim, S.Y. Lee, High-voltage cell performance and thermal stability of nanoarchitectured polyimide gel polymer electrolyte-coated LiCoO2 cathode materials. Electrochim. Acta 86, 346–351 (2012). doi:10.1016/j.electacta.2012.04.073
- J.K. Park, J.S. Kim, E.G. Shim, K.W. Park, Y.T. Hong, Y.S. Lee, S.Y. Lee, Polyimide gel polymer electrolyte-nanoencapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries. Electrochem. Commun. 12(8), 1099–1102 (2010). doi:10.1016/j.elecom.2010.05.038
- J.H. Park, J.H. Cho, S.B. Kim, W.S. Kim, Y.S. Lee, S.Y. Lee, A novel ion-conductive protection skin based on polyimide gel polymerelectrolyte: application to nanoscale coating layer of high voltage LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries. J. Mater. Chem. 22(25), 12574–12581 (2012). doi:10.1039/C2JM16799A
- H.B. Kang, S.T. Myung, K. Amine, S.M. Lee, Y.K. Sun, Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. J. Power Sources 195(7), 2023–2028 (2010). doi:10.1016/j.jpowsour.2009.10.068
- J. Arrebola, A. Caballero, L. Hernan, J. Morales, E.R. Castellon, J.R.R. Barrado, Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J. Electrochem. Soc. 154(3), A178–A184 (2007). doi:10.1149/1.2426799
- H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources 195(9), 2909–2913 (2010). doi:10.1016/j.jpowsour.2009.11.029
- X. Fang, M. Ge, J. Rong, C. Zhou, Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life. J. Mater. Chem. A 1(12), 4083–4088 (2013). doi:10.1039/C3TA01534C
- J.H. Park, J.H. Cho, E.H. Lee, J.M. Kim, S.Y. Lee, Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries. J. Power Sources 244, 442–449 (2013). doi:10.1016/j.jpowsour.2012.11.111
- M.C. Kim, S.H. Kim, V. Aravindan, W.S. Kim, S.Y. Lee, Y.S. Lee, Ultrathin polyimide coating for a spinel LiNi0.5Mn1.5O4 cathode and its superior lithium storage properties under elevated temperature conditions. J. Electrochem. Soc. 160(8), A1003–A1008 (2013). doi:10.1149/2.013308jes
- J.H. Cho, J.H. Park, M.H. Lee, H.K. Song, S.Y. Lee, A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case. Energy Environ. Sci. 5(5), 7124–7131 (2012). doi:10.1039/C2EE03389E
- J. Guo, H. Gu, H. Wei, Q. Zhang, N. Haldolaarachchige, Y. Li, D.P. Young, S. Wei, Z. Guo, Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J. Phys. Chem. C 117(19), 10191–10202 (2013). doi:10.1021/jp402236n
- K. Ding, H. Jia, S. Wei, Z. Guo, Electrocatalysis of sandwich-structured Pd/Polypyrrole/Pd composites toward formic acid oxidation. Ind. Eng. Chem. Res. 50(11), 7077–7082 (2011). doi:10.1021/ie102392n
- P.P. Deshpande, N.G. Jadhav, V.J. Gelling, D. Sazou, Conducting polymers for corrosion protection: a review. J. Coat. Technol. Res. 11(4), 473–494 (2014). doi:10.1007/s11998-014-9586-7
- M. Sevilla, P.V. Vign, A.B. Fuertes, N-Doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21(14), 2781–2787 (2011). doi:10.1002/adfm.201100291
- Z.W. Seh, H. Wang, P.C. Hsu, Q. Zhang, W. Li, G. Zheng, H. Yao, Y. Cui, Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 7(2), 672–676 (2014). doi:10.1039/C3EE43395A
- Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2(17), 6086–6091 (2014). doi:10.1039/C4TA00484A
- J.F. Zhao, S.C. Zhang, W.B. Liu, Z.J. Du, H. Fang, Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim. Acta 121, 428–433 (2014). doi:10.1016/j.electacta.2013.12.105
- J.L. Liu, W.W. Zhou, L.F. Lai, H.P. Yang, S.H. Lim, Y.D. Zhen, T. Yu, Z.X. Shen, J.Y. Lin, Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy 2(5), 726–732 (2013). doi:10.1016/j.nanoen.2012.12.008
- A.D. Pasquier, F. Orsini, A.S. Gozdz, J.M. Tarascon, Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region. J. Power Sources 81, 607–611 (1999). doi:10.1016/S0378-7753(99)00230-X
- S.Y. Chew, C.Q. Feng, S.H. Ng, J.Z. Wang, Z.P. Guo, H.K. Liu, Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties. J. Electrochem. Soc. 154(7), A633–A637 (2007). doi:10.1149/1.2734778
- F.H. Tian, L. Liu, Z.H. Yang, X.Y. Wang, Q.Q. Chen, X.Y. Wang, Electrochemical characterization of a LiV3O8-polypyrrole composite as a cathode material for lithium ion batteries. Mater. Chem. Phys. 127(1), 151–155 (2011). doi:10.1016/j.matchemphys.2011.01.051
- Z.J. Zhang, J.Z. Wang, S.L. Chou, H.K. Liu, K. Ozawa, H.J. Li, Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries. Electrochim. Acta 108, 820–826 (2013). doi:10.1016/j.electacta.2013.06.130
- Y. Yang, X.Z. Liao, Z.F. Ma, B.F. Wang, L. He, Y.S. He, Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55 C. Electrochem. Commun. 11(6), 1277–1280 (2009). doi:10.1016/j.elecom.2009.04.021
- P.X. Zhang, L. Zhang, X.Z. Ren, Q.H. Yuan, J.H. Liu, Q.L. Zhang, Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery. Synth. Met. 161(11), 1092–1097 (2011). doi:10.1016/j.synthmet.2011.03.021
- X.W. Gao, Y.F. Deng, D. Wexler, G.H. Chen, S.L. Chou, H.K. Liu, Z.C. Shi, J.Z. Wang, Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J. Mater. Chem. A 3(1), 404–411 (2015). doi:10.1039/C4TA04018J
- M. Kunduraciz, G.G. Amatucci, Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J. Electrochem. Soc. 153(7), A1345–A1352 (2006). doi:10.1149/1.2198110
- J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142(1), 389–390 (2005). doi:10.1016/j.jpowsour.2004.11.024
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10(9), 682–686 (2011). doi:10.1038/nmat3066
- Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu et al., Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135(3), 975–978 (2013). doi:10.1021/ja3110895
- G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney, C. Liang, Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7(3), 1053–1058 (2014). doi:10.1039/C3EE43357A
- E. Rangasamy, G. Sahu, J. Keum, A. Rondinone, N. Dudney, C. Liang, A high conductivity oxide–sulfide composite lithium superionic conductor. J. Mater. Chem. A 2(12), 4111–4116 (2014). doi:10.1039/C3TA15223E
- N.J. Dudney, Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 116(3), 245–249 (2005). doi:10.1016/j.mseb.2004.05.045
- J.J. Xu, D. Xu, Z.L. Wang, H.G. Wang, L.L. Zhang, X.B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew. Chem. Int. Ed. 52(14), 3887–3890 (2013). doi:10.1002/anie.201210057
- B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur, Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 186(1), 29–36 (2011). doi:10.1016/j.ssi.2011.01.006
- C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato, T. Saito, F. Sagane, Y. Iriyama, Dielectric modification of 5 V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). doi:10.1002/aenm.201301416
- J.C. Li, C. Ma, M.F. Chi, C.D. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). doi:10.1002/aenm.201401408
- K. Takada, Progress, prospective of solid-state lithium batteries. Acta Mater. 61(3), 759–770 (2013). doi:10.1016/j.actamat.2012.10.034
- A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8), 1913–1942 (2008). doi:10.1016/j.materresbull.2007.08.031
- K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, T. Sasaki, Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179(27), 1333–1337 (2008). doi:10.1016/j.ssi.2008.02.017
- A. Brazier, L. Dupont, L.D. Laffont, N. Kuwata, J. Kawamura, J.M. Tarascon, First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem. Mater. 20(6), 2352–2359 (2008). doi:10.1021/cm7033933
- K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). doi:10.1021/cr030203g
- N. Shao, X.G. Sun, S. Dai, D. Jiang, Electrochemical windows of sulfone-based electrolytes for high-voltage li-ion batteries. J. Phys. Chem. B 115(42), 12120–12125 (2011). doi:10.1021/jp204401t
- R. McMillan, H. Slegr, Z.X. Shu, W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 81, 20–26 (1999). doi:10.1016/S0378-7753(98)00201-8
- N. Nanbu, K. Takimoto, M. Takehara, M. Ue, Y. Sasaki, Electrochemical properties of fluoropropylene carbonate and its application to lithium-ion batteries. Electrochem. Commun. 10(5), 783–786 (2008). doi:10.1016/j.elecom.2008.02.031
- N. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161(2), 1254–1259 (2006). doi:10.1016/j.jpowsour.2006.05.049
- M.C. Smart, B.V. Ratnakumar, V.S.R. Mowrey, S. Surampudi, G.K.S. Prakash, J. Hu, I. Cheung, Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes. J. Power Sources 119, 359–367 (2003). doi:10.1016/S0378-7753(03)00266-0
- L. Hu, Z. Zhang, K. Amine, Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem. Commun. 35, 76–79 (2013). doi:10.1016/j.elecom.2013.08.009
- Z.C. Zhang, L.B. Hu, H.M. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6(6), 1806–1810 (2013). doi:10.1039/C3EE24414H
- T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J. Electrochem. Soc. 157(6), A707–A712 (2010). doi:10.1149/1.3377084
- A. Cresce, K. Xu, Electrolyte additive in support of 5 V Li ion chemistry. J. Electrochem. Soc. 158(3), A337–A342 (2011). doi:10.1149/1.3532047
- S. Dalavi, M. Xu, B. Knight, B.L. Lucht, Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochem. Solid-State Lett. 15(2), A28–A31 (2011). doi:10.1149/2.015202esl
- S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F.L. Cras, S. Jouanneau, S. Martinet, High voltage spinel oxides for Li-ion batteries: from the material research to the application. J. Power Sources 189(1), 344–352 (2009). doi:10.1016/j.jpowsour.2008.08.043
- L. Xia, Y.G. Xia, Z.P. Liu, Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. Electrochim. Acta 151, 429–436 (2015). doi:10.1016/j.electacta.2014.11.062
- J.P. Yang, Y.F. Zhang, P. Zhao, Y.M. Shang, L. Wang, X.M. He, J.L. Wang, In-situ coating of cathode by electrolyte additive for high-voltage performance of lithium-ion batteries. Electrochim. Acta 158, 202–208 (2015). doi:10.1016/j.electacta.2014.12.143
- G.C. Yan, X.H. Li, Z.X. Wang, H.J. Guo, J.X. Wang, W.J. Peng, Q.Y. Hu, Effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the high voltage cycling performance of graphite/LiNi0.5Co0.2Mn0.3O2 battery. Electrochim. Acta 166, 190–196 (2015). doi:10.1016/j.electacta.2015.03.111
- X.S. Wang, L.D. Xing, X.L. Liao, X.F. Chen, W.N. Huang, Q.P. Yu, M.Q. Xu, Q.M. Huang, W.S. Li, Improving cyclic stability of lithium cobalt oxide based lithium ion battery at high voltage by using trimethylboroxine as an electrolyte additive. Electrochim. Acta 173, 804–811 (2015). doi:10.1016/j.electacta.2015.05.110
- Z. Wang, N. Dupré, L. Lajaunie, P. Moreau, J.F. Martin, L. Boutafa, S. Patoux, D. Guyomard, Effect of glutaric anhydride additive on the LiNi0.4Mn1.6O4 electrode/electrolyte interface evolution: a MAS NMR and TEM/EELS study. J. Power Sources 215, 170–178 (2012). doi:10.1016/j.jpowsour.2012.05.027
- S. Mai, M. Xu, X. Liao, L. Xing, W. Li, Improving cyclic stability of lithium nickel manganese oxide cathode at elevated temperature by using dimethyl phenylphosphonite as electrolyte additive. J. Power Sources 273, 816–822 (2015). doi:10.1016/j.jpowsour.2014.09.171
- G. Yan, X. Li, Z. Wang, H. Guo, C. Wang, Tris(trimethylsilyl)phosphate: a film-forming additive for high voltage cathode material in lithium-ion batteries. J. Power Sources 248, 1306–1311 (2014). doi:10.1016/j.jpowsour.2013.10.037
- T. Takeuchi, T. Kyuna, H. Morimoto, S.I. Tobishima, Influence of surface modification of LiCoO2 by organic compounds on electrochemical and thermal properties of Li/LiCoO2 rechargeable cells. J. Power Sources 196(5), 2790–2801 (2011). doi:10.1016/j.jpowsour.2010.11.064
- H. Lee, S. Choi, S. Choi, H.J. Kim, Y. Choi, S. Yoon, J.J. Cho, SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries. Electrochem. Commun. 9(4), 801–806 (2007). doi:10.1016/j.elecom.2006.11.008
- M. Xu, D. Lu, A. Garsuch, B.L. Lucht, Improved performance of LiNi0.5Mn1.5O4 cathodes with electrolytes containing dimethylmethylphosphonate (DMMP). J. Electrochem. Soc. 159(12), A2130–A2134 (2012). doi:10.1149/2.077212jes
- V. Tarnopolskiy, J. Kalhoff, M. Nádherná, D. Bresser, L. Picard, F. Fabre, M. Rey, S. Passerini, Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes. J. Power Sources 236, 39–46 (2013). doi:10.1016/j.jpowsour.2013.02.030
- W.N. Huang, L.D. Xing, Y.T. Wang, M.Q. Xu, W.S. Li, F.C. Xie, S.G. Xia, 4-(Trifluoromethyl)-benzonitrile: a novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery. J. Power Sources 267, 560–565 (2014). doi:10.1016/j.jpowsour.2014.05.124
- X.L. Zhang, F.Y. Cheng, J.G. Yang, J. Chen, LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett. 13(6), 2822–2825 (2013). doi:10.1021/nl401072x
- L. Zhou, D.Y. Zhao, X.W. Lou, LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. 124(1), 242–245 (2012). doi:10.1002/ange.201106998
References
A. Ahmadian, M. Sedghi, M.A. Golkar, M, Two-layer optimization methodology for wind distributed generation planning considering plug-in electric vehicles uncertainty: a flexible active-reactive power approach. Energy Convers. Manage. 124, 231–246 (2016). doi:10.1016/j.enconman.2016.07.025
G. Sen, A.R. Boynuegri, M. Uzunoglu, O. Erdinc, J.P.S. Catalão, Design and application of a power unit to use plug-in electric vehicles as an uninterruptible power supply. Energies 9(3), 171 (2016). doi:10.3390/en9030171
B. Nykvist, M. Nilsson, Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329–332 (2015). doi:10.1038/nclimate2564
J. Wang, S.Z. Yao, W.Q. Lin, B.H. Wu, X.Y. He, J.Y. Li, J.B. Zhao, Improving the electrochemical properties of high-voltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries. J. Power Sources 280(15), 114–124 (2015). doi:10.1016/j.jpowsour.2015.01.087
D. Wang, X.H. Li, Z.X. Wang, H.J. Guo, Y. Xu, Y.L. Fan, J.J. Ru, Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta 188(10), 48–56 (2016). doi:10.1016/j.electacta.2015.11.093
D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors base on 1-D nanomaterials in prospect. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.3786/nml.v3i1.p62-71
A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001). doi:10.1149/1.1348257
J. Wolfenstine, J. Allen, LiNiPO4–LiCoPO4 solid solutions as cathodes. J. Power Sources 136, 150–153 (2004). doi:10.1016/j.jpowsour.2004.05.017
J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem. Mater. 12, 3240–3242 (2000). doi:10.1021/cm000345g
V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La, A. Salle, D. Verbaere, Y.Piffard Guyomard, LiMBO3 (M = Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ionics 139, 37–46 (2001). doi:10.1016/S0167-2738(00)00813-4
N. Recham, J.N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.M. Tarascon, A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater. 9, 68–74 (2010). doi:10.1038/nmat2590
T. Muraliganth, K.R. Stroukoff, A. Manthiram, Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater. 22(20), 5754–5761 (2010). doi:10.1021/cm102058n
J. Ma, P. Hu, G.L. Cui, L.Q. Chen, Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 28, 3578–3606 (2016). doi:10.1021/acs.chemmater.6b00948
R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J. Power Sources 195(17), 5442–5451 (2010). doi:10.1016/j.jpowsour.2010.03.067
G.Q. Lin, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J. Solid State Electrochem. 14(12), 2191–2202 (2010). doi:10.1007/s10008-010-1061-5
T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17, 383–389 (2011). doi:10.1007/s11581-011-0550-6
M. Hu, X.L. Pang, Z. Zhou, Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229–242 (2013). doi:10.1016/j.jpowsour.2013.03.024
H.L. Wang, LiNi0.5Mn1.5O4 cathodes for lithium ion batteries: a review. J. Nanosci. Nanotechnol. 15(8), 6883–6890 (2015). doi:10.1166/jnn.2015.10726
Y.R. Zhu, T.F. Yi, Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode. Ionics 22, 1759–1774 (2016). doi:10.1007/s11581-016-1788-9
Z. Chen, H. Zhu, S. Ji, V. Linkov, J. Zhang, W. Zhu, Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. J. Power Sources 189(1), 507–509 (2009). doi:10.1016/j.jpowsour.2008.11.001
H.S. Fang, Z.X. Wang, X.H. Li, H.J. Guo, W.J. Peng, Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction. J. Power Sources 153(1), 174 (2006). doi:10.1016/j.jpowsour.2005.03.179
X. Zhang, J. Ma, K. Chen, Impact of morphology of conductive agent and anode material on lithium storage properties. Nano-Micro Lett. 7(4), 360–367 (2015). doi:10.1007/s40820-015-0051-7
J.F. Yi, C.Y. Li, Y.R. Zhu, J. Sheu, R.S. Zhu, Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. J. Solid State Electrochem. 13(6), 913–919 (2009). doi:10.1007/s10008-008-0628-x
Y. Fan, J. Wang, X. Ye, J. Zhang, Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method. Mater. Chem. Phys. 103(1), 19–23 (2007). doi:10.1016/j.matchemphys.2006.10.006
X. Fang, N. Ding, X.Y. Feng, Y. Lu, C.H. Chen, Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: electrochemical performance, diffusion coefficient and capacity loss mechanism. Electrochim. Acta 54(28), 7471–7475 (2009). doi:10.1016/j.electacta.2009.07.084
L.H. Yu, Y.L. Cao, H.X. Yang, X.P. Ai, Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. J. Solid State Electrochem. 10(5), 283–287 (2006). doi:10.1007/s10008-005-0695-1
G.Z. Ma, Y. Zhang, J.T. Lin, Z.J. Chen, R.R. Zhao, P.Y. Tong, L.Y. Zou, H.Y. Chen, Synthesis of high-voltage spinel LiNi0.5Mn1.5O4material for lithium-ion batteries by a metal-cholate supramolecular hydrogel as precursor. J. Solid State Electrochem. 19(11), 3365–3372 (2015). doi:10.1007/s10008-015-2962-0
H.L. Wang, T.A. Tan, P. Yang, M.O. Lai, L. Lu, High-rate performances of the ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J. Phys. Chem. C 115(13), 6102–6110 (2011). doi:10.1021/jp110746w
J.J. Feng, Z.P. Huang, C. Guo, N.A. Chernova, S. Upreti, M.S. Whittingham, An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl. Mater. Interfaces 5, 10227–10232 (2013). doi:10.1021/am4029526
L. Wen, Q. Lu, G. Xu, Molten salt synthesis of spherical LiNi0.5Mn1.5O4 cathode materials. Electrochim. Acta 51(21), 4388–4392 (2006). doi:10.1016/j.electacta.2005.12.018
C.H. Han, Y.S. Hong, C.M. Park, K. Kim, Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl-Li2CO3. J. Power Sources 92(1), 95–101 (2001). doi:10.1016/S0378-7753(00)00505-X
J.H. Kim, S.T. Myung, Y.K. Sun, Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim. Acta 49(2), 219–227 (2004). doi:10.1016/j.electacta.2003.07.003
S.X. Deng, D.L. Mao, H. Wang, Preparation and electrochemical properties of double-shell LiNi0.5Mn1.5O4 hollow microspheres as cathode materials for Li-ion batteries. RSC Adv. 6(51), 45369–45375 (2016). doi:10.1039/C6RA05620B
J. Cabana, M.C. Cabanas, F.O. Omenya, N.A. Chernova, D. Zeng, M.S. Whittingham, C.P. Grey, Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 24(15), 2952–2964 (2012). doi:10.1021/cm301148d
J. Song, D.W. Shin, Y. Lu, C.D. Amos, A. Manthiram, J.B. Goodenough, Role of oxygen vacancies on the performance of Li[Ni0.5−x Mn1.5+x ]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater. 24(15), 3102–3109 (2012). doi:10.1021/cm301825h
T. Ohzuku, K. Ariyoshi, S.J. Yamamoto, Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. Ceram. Soc. Jpn. 110(1281), 501–505 (2002). doi:10.2109/jcersj.110.501
Y. Idemoto, H. Narai, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J. Power Sources 119, 125–129 (2003). doi:10.1016/S0378-7753(03)00140-X
L. Wang, H. Li, X. Huang, E. Baudrin, A comparative study of Fd3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 193(1), 32–38 (2011). doi:10.1016/j.ssi.2011.04.007
J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3¯m,
and P4332. Chem. Mater. 16(5), 906–914 (2004). doi:10.1021/cm035050s
S.K. Hong, S.I. Mho, I.H. Yeo, Y. Kang, D.W. Kim, Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes. Electrochim. Acta 156, 29–37 (2015). doi:10.1016/j.electacta.2015.01.027
J.H. Kim, N.P.W. Pieczonka, L. Yang, Challenges and approaches for high voltage spinel lithium-ion batteries. Chem. Phys. Chem. 15(10), 1940–1954 (2014). doi:10.1002/cphc.201400052
D. Lu, M. Xu, L. Zhou, A. Garsuch, B.L. Lucht, Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J. Electrochem. Soc. 160(5), A3138–A3143 (2013). doi:10.1149/2.022305jes
K.M. Shaju, G.V.S. Rao, B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim. Acta 48(2), 145–151 (2002). doi:10.1016/S0013-4686(02)00593-5
G.H. Kim, S.T. Myung, H.J. Bang, J. Prakash, Y.K. Sun, Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3−x)Mg x ]O2−yFy via coprecipitation. Electrochem. Solid-State Lett. 7(12), A477–A480 (2004). doi:10.1149/1.1809554
D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y.S. Cohen, H.J. Kim, M. Schmidt, On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim. Acta 47(27), 4291–4306 (2002). doi:10.1016/S0013-4686(02)00417-6
Z.H. Chen, J.R. Dahn, Improving the capacity retention of LiCoO2 Cycled to 4.5 V by heat-treatment. Electrochem. Solid-State Lett. 7(1), A11–A14 (2004). doi:10.1149/1.1628871
H. Xia, L. Liu, Y.S. Meng, G. Ceder, Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154(4), A337–A342 (2007). doi:10.1149/1.2509021
D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89(2), 206–218 (2000). doi:10.1016/S0378-7753(00)00431-6
R. Fong, M.C. Reid, R.S. McMillan, J.R. Dahn, In situ study of electrolyte reactions in secondary lithium cells. J. Electrochem. Soc. 134(3), 516–519 (1987). doi:10.1149/1.2100501
M. Arakawa, J. Yamaki, Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes. J. Power Sources 54(2), 250–254 (1995). doi:10.1016/0378-7753(94)02078-H
D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50(2), 50–54 (2004). doi:10.1016/j.electacta.2004.01.090
M. Moshkovich, M. Cojocaru, H.E. Gottlieb, D. Aurbach, The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J. Electroanal. Chem. 497(1), 84–96 (2001). doi:10.1016/S0022-0728(00)00457-5
Y. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive. J. Am. Chem. Soc. 124(16), 4408–4421 (2001). doi:10.1021/ja017073i
L.E. Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal, D. Gonbeau, The effect of vinylene carbonate additive on surface film formation on both electrodes in li-ion batteries. J. Electrochem. Soc. 156(2), A103–A113 (2009). doi:10.1149/1.3029674
Y. Wang, S. Nakamura, M. Ue, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123(47), 11708–11718 (2001). doi:10.1021/ja0164529
L. Xing, O. Borodin, Oxidation induced decomposition of ethylene carbonate from DFT calculations-importance of explicitly treating surrounding solvent. Phys. Chem. Chem. Phys. 14(37), 12838–12843 (2012). doi:10.1039/C2CP41103B
L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, J. Yi, Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113(52), 16596–16602 (2009). doi:10.1021/jp9074064
M. Onuki, S. Kinoshita, Y. Sakata, M. Yanagidate, Y. Otake, M. Ue, M. Deguchi, Identification of the source of evolved gas in li-ion batteries using C-labeled solvents. J. Electrochem. Soc. 155(11), A794–A797 (2008). doi:10.1149/1.2969947
N.P.W. Pieczonka, Z.Y. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 117(31), 15947–15957 (2013). doi:10.1021/jp405158m
S. Gopukumar, Y. Jeong, K.B. Kim, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ionics 159(3), 223–232 (2003). doi:10.1016/S0167-2738(03)00081-X
H. Kobayashi, S. Shigemura, M. Tabuchi, H. Sakaebe, K. Ado et al., Electrochemical properties of hydrothermally obtained LiCo1-xFex O 2 as a positive electrode material for rechargeable lithium batteries. J. Electrochem. Soc. 147(3), 960–969 (2000). doi:10.1149/1.1393298
M. Zou, M. Yoshio, S. Gopukumar, J.I. Yamaki, Performance of LiM0.05Co0.95O2 cathode materials in lithium rechargeable cells when cycled up to 4.5V. Chem. Mater. 17(6), 1284–1286 (2005). doi:10.1021/cm048734o
S.A. Needham, G.X. Wang, H.K. Liu, V.A. Drozd, R.S. Liu, Synthesis and electrochemical performance of doped LiCoO2 materials. J. Power Sources 174(2), 828–831 (2007). doi:10.1016/j.jpowsour.2007.06.228
C.D. Jones, E. Rossen, J.R. Dahn, Structure and electrochemistry of LixCryCo1−yO2. Solid State Ionics 68(1), 65–69 (1994). doi:10.1016/0167-2738(94)90235-6
C. Julien, M.A.C. Lopez, T. Mohan, S. Chitra, P. Kalyani, S. Gopukumar, Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics 135(1), 214–248 (2000). doi:10.1016/S0167-2738(00)00370-2
I. Sadoune, C. Delmas, On the LixNi0.8Co0.2O2 system. J. Solid State Chem. 136(1), 8–15 (1998). doi:10.1006/jssc.1997.7599
M. Zou, M. Yoshio, S. Gopukumar, J.I. Yamaki, Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells. Chem. Mater. 15(25), 4699–4706 (2003). doi:10.1021/cm0347032
R.Z. Yin, Y.S. Kim, S.J. Shin, I. Jung, J.S. Kim, S.K. Jeong, In situ XRD investigation and thermal properties of Mg doped LiCoO2 for lithium ion batteries. J. Electrochem. Soc. 159(3), A253–A258 (2012). doi:10.1149/2.006203jes
M. Schroeder, S. Glatthaar, H. Geßwein, V. Winkler, M. Bruns, T. Scherer, V.S.K. Chakravadhanula, J.R. Binder, Post-doping via spray-drying: a novel sol-gel process for the batch synthesis of doped LiNi0.5Mn1.5O4 spinel material. J. Mater. Sci. 48(9), 3404–3414 (2013). doi:10.1007/s10853-012-7127-2
J. Mao, K. Dai, M.J. Xuan, G.S. Shao, R.M. Qiao, W.L. Yang, V.S. Battaglia, G. Liu, Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl. Mater. Interfaces 8(14), 9116–9124 (2016). doi:10.1021/acsami.6b00877
N.V. Kosova, I.A. Bobrikov, O.A. Podgornova, A.M. Balagurov, A.K. Gutakovskii, Peculiarities of structure, morphology, and electrochemistry of the doped 5-V spinel cathode materials LiNi0.5-xMn1.5-yMx+yO4 (M = Co, Cr, Ti; x + y = 0.05) prepared by mechanochemical way. J. Solid State Electrochem. 20(1), 235–246 (2016). doi:10.1007/s10008-015-3015-4
S.W. Oh, S.H. Park, J.H. Kim, Y.C. Bae, Y.K. Sun, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J. Power Sources 157(1), 464–470 (2006). doi:10.1016/j.jpowsour.2005.07.056
X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang, LiNi0.5Mn1.5O3.975F0.05 as novel 5 V cathode material. J. Power Sources 174(2), 1113–1116 (2007). doi:10.1016/j.jpowsour.2007.06.101
G. Du, Y. NuLi, J. Yang, J. Wang, Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater. Res. Bull. 43(12), 3607–3613 (2008). doi:10.1016/j.materresbull.2008.02.025
Y.K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, J. Prakash, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−x Sx spinel material in 3-V region. J. Power Sources 161(1), 19–26 (2006). doi:10.1016/j.jpowsour.2006.03.085
Y. Lee, A.J. Woo, K.S. Han, K.S. Ryu, D. Sohn, D. Kim, H. Lee, Solid-state NMR studies of Al-doped, Al2O3-coated LiCoO2. Electrochim. Acta 50(2), 491–494 (2004). doi:10.1016/j.electacta.2004.02.063
F. Nobili, F. Croce, R. Tossici, I. Meschini, P. Reale, R. Marassi, Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012). doi:10.1016/j.jpowsour.2011.09.053
M.C. Rao, O.M. Hussain, Synthesis and electrochemical properties of Ti doped LiCoO2 thin film cathodes. J. Alloys Compd. 491(1), 503–506 (2010). doi:10.1016/j.jallcom.2009.10.246
Y.S. Jung, A.S. Cvanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe li-ion batteries. Adv. Mater. 22(19), 2172–2176 (2010). doi:10.1002/adma.200903951
B.J. Hwang, C.Y. Chen, M.Y. Cheng, R. Santhanam, K. Ragavendran, Mechanism study of enhanced electrochemical performance of ZrO2-coated LiCoO2 in high voltage region. J. Power Sources 195(13), 4255–4265 (2010). doi:10.1016/j.jpowsour.2010.01.040
J. Liu, A. Manthiram, Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J. Electrochem. Soc. 156(11), A833–A838 (2009). doi:10.1149/1.3206590
J. Liu, A. Manthiram, Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem. Mater. 21(8), 1695–1707 (2009). doi:10.1021/cm9000043
S.T. Myung, K. Amine, Y.K. Sun, Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. J. Mater. Chem. 20(34), 7074–7095 (2010). doi:10.1039/C0JM00508H
Y. Wang, Q. Peng, G. Yang, Z. Yang, L.C. Zhang, H. Long, Y.H. Huang, P.X. Lu, High-stability 5 V spinel LiNi0.5Mn1.5O4 sputtered thin film electrodes by modifying with aluminium oxide. Electrochim. Acta 136, 450–456 (2014). doi:10.1016/j.electacta.2014.04.184
N. Ohta, K. Takada, I. Sakaguchi, L.Q. Zhang, R.Z. Ma, K.S. Fukuda, LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9(7), 1486–1490 (2007). doi:10.1016/j.elecom.2007.02.008
W.S. Yoon, K.Y. Chung, K.W. Nam, K.B. Kim, Characterization of LiMn2O4-coated LiCoO2 film electrode prepared by electrostatic spray deposition. J. Power Sources 163(1), 207–210 (2006). doi:10.1016/j.jpowsour.2005.12.058
T.F. Yi, J. Shu, Y. Wang, J. Xue, J. Meng, C.B. Yue, R.S. Zhu, Effect of treated temperature on structure and performance of LiCoO2 coated by Li4Ti5O12. Surf. Coat. Technol. 205(13), 3885–3889 (2011). doi:10.1016/j.surfcoat.2011.02.003
G.R. Hu, J.C. Cao, Z.D. Peng, Y.B. Cao, K. Du, Enhanced high-voltage properties of LiCoO2 coated with Li[Li0.2Mn0.6Ni0.2]O2. Electrochim. Acta 149, 49–55 (2014). doi:10.1016/j.electacta.2014.10.072
H. Wang, W.D. Zhang, L.Y. Zhu, M.C. Chen, Effect of LiFePO4 coating on electrochemical performance of LiCoO2 at high temperature. Solid State Ionics 178(1), 131–136 (2007). doi:10.1016/j.ssi.2006.10.028
M. Murakami, H. Yamashige, H. Arai, Y. Uchimoto, Z. Ogumi, Association of paramagnetic species with formation of LiF at the surface of LiCoO2. Electrochim. Acta 78, 49–54 (2012). doi:10.1016/j.electacta.2012.05.141
H.J. Lee, Y.J. Park, Interface characterization of MgF2-coated LiCoO2 thin films. Solid State Ionics 230, 86–91 (2013). doi:10.1016/j.ssi.2012.08.003
K.S. Lee, S.T. Myung, D.W. Kim, Y.K. Sun, AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J. Power Sources 196(16), 6974–6977 (2001). doi:10.1016/j.jpowsour.2010.11.014
Y. Fan, J. Wang, Z. Tang, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim. Acta 52(11), 3870–3875 (2007). doi:10.1016/j.electacta.2006.10.063
Y. Lee, Tae Y. Kim, D.W. Kim, J.K. Lee, W. Choi, Coating of spinel LiNi0.5Mn1.5O4 cathodes with SnO2 by an electron cyclotron resonance metal-organic chemical vapor deposition method for high-voltage applications in lithium ion batteries. J. Electroanal. Chem. 736, 16–21 (2015). doi:10.1016/j.jelechem.2014.10.022
X. Fang, M.Y. Ge, J.P. Rong, Y.C. Che, N. Aroonyadet, X.L. Wang, Y.H. Liu, A.Y. Zhang, C.W. Zhou, Ultrathin surface modification by atomic layer deposition on high voltage cathode LiNi0.5Mn1.5O4 for lithium ion batteries. Energy Technol 2(2), 159–165 (2014). doi:10.1002/ente.201300102
J. Song, X.G. Han, K.J. Gaskell, K. Xu, S.B. Lee, L.B. Hu, Enhanced electrochemical stability of high-voltage LiNi0.5Mn1.5O4 cathode by surface modification using atomic layer deposition. J. Nanopart. Res. 16(11), 1–8 (2014). doi:10.1007/s11051-014-2745-z
K. Zaghib, P. Charest, M. Dontigny, A. Guerfi, M. Lagace, A. Mauger, M. Kopec, C.M. Julien, LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J. Power Sources 195(24), 8280–8288 (2010). doi:10.1016/j.jpowsour.2010.07.010
S. Ferrari, R.L. Lavall, D. Capsoni, E. Quartarone, A. Magistris, P. Mustarelli, P. Canton, Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J. Phys. Chem. C 11(29), 12598–12603 (2010). doi:10.1021/jp1025834
W.S. Kim, S.B. Kim, I.C. Jang, H.H. Lim, Y.S. Lee, Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Alloys Compd. 492(1), L87–L90 (2010). doi:10.1016/j.jallcom.2009.12.034
D. Liu, J. Trottier, P. Charest, J. Fréchette, A. Guerfi, A. Mauger, C.M. Julien, K. Zaghi, Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5 V cathode for lithium ion batteries. J. Power Sources 204, 127–132 (2012). doi:10.1016/j.jpowsour.2011.11.059
S.J. Shi, J.P. Tu, Y.Y. Tang, Y.Q. Zhang, X.Y. Liu, X.L. Wang, C.D. Gu, Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J. Power Sources 255, 338–346 (2013). doi:10.1016/j.jpowsour.2012.10.065
J.G. Li, X.M. He, R.S. Zhao, Electrochemical performance of SrF2-coated LiMn2O4 cathode material for Li-ion batteries. Trans. Nonferrous Met. Soc. China 17(6), 1324–1327 (2007). doi:10.1016/S1003-6326(07)60270-2
J. Li, L. Wang, Q. Zhang, X. He, Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J. Power Sources 190(1), 149–153 (2009). doi:10.1016/j.jpowsour.2008.08.011
Q. Wu, X. Zhang, S. Sun, N. Wan, D. Pan, Y. Bai, H. Zhu, Y.S. Hu, S. Dai, Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Nanoscale 7(38), 15609–15617 (2015). doi:10.1039/C5NR03564C
J.S. Park, A.U. Mane, J.W. Elam, J.R. Croy, Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. Chem. Mater. 27(6), 1917–1920 (2015). doi:10.1021/acs.chemmater.5b00603
X. Liu, J. Liu, T. Huang, A. Yu, CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 109, 52–58 (2013). doi:10.1016/j.electacta.2013.07.069
X. Liu, J. Liu, T. Huang, A. Yu, Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim. Acta 163, 82–92 (2015). doi:10.1016/j.electacta.2015.02.155
J. Zheng, M. Gu, J. Xiao, B.J. Polzin, P. Yan, X. Chen, C. Wang, J.G. Zhang, Functioning mechanism of AlF3 coating on the Li- and Mn-Rich cathode materials. Chem. Mater. 26(22), 6320–6327 (2014). doi:10.1021/cm502071h
Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan, Y. Bai, Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. Electrochim. Acta 158, 73–80 (2015). doi:10.1016/j.electacta.2015.01.145
Y.Y. Huang, X.L. Zeng, C. Zhou, P. Wu, D.G. Tong, Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J. Mater. Sci. 48(2), 625–635 (2013). doi:10.1007/s10853-012-6765-8
C. Lu, H. Wu, Y. Zhang, H. Liu, B. Chen, N. Wu, S. Wang, Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J. Power Sources 267, 682–691 (2014). doi:10.1016/j.jpowsour.2014.05.122
Q. Chen, Y. Wang, T. Zhang, W. Yin, J. Yang, X. Wang, Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 83, 65–72 (2012). doi:10.1016/j.electacta.2012.08.025
Q.L. Xie, Z.B. Hu, C.H. Zhao, S.R. Zhang, K.Y. Liu, LaF3-coated Li[Li0.2Mn0.56Ni0.16Co0.08]O2 as cathode material with improved electrochemical performance for lithium ion batteries. RSC Adv. 5(63), 50859–50864 (2015). doi:10.1039/c5ra06243h
J.M. Zheng, Z.R. Zhang, X.B. Wu, The effects of AlF3 coating on the performance of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J. Electrochem. Soc. 155(10), A775–A782 (2008). doi:10.1149/1.2966694
J. Li, Y. Zhang, J. Li, AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics 17(8), 671–675 (2011). doi:10.1007/s11581-011-0617-4
A. Kraytsberg, H. Drezner, M. Auinat, A. Shapira, P.A.N. Solomatin, M.W. Mehrens, Y.E. Eli, Atomic layer deposition of a particularized protective MgF2 film on a Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. ChemNanoMat 1(8), 577–585 (2015). doi:10.1002/cnma.201500149
J.H. Park, J.H. Cho, J.S. Kim, E.G. Shim, S.Y. Lee, High-voltage cell performance and thermal stability of nanoarchitectured polyimide gel polymer electrolyte-coated LiCoO2 cathode materials. Electrochim. Acta 86, 346–351 (2012). doi:10.1016/j.electacta.2012.04.073
J.K. Park, J.S. Kim, E.G. Shim, K.W. Park, Y.T. Hong, Y.S. Lee, S.Y. Lee, Polyimide gel polymer electrolyte-nanoencapsulated LiCoO2 cathode materials for high-voltage Li-ion batteries. Electrochem. Commun. 12(8), 1099–1102 (2010). doi:10.1016/j.elecom.2010.05.038
J.H. Park, J.H. Cho, S.B. Kim, W.S. Kim, Y.S. Lee, S.Y. Lee, A novel ion-conductive protection skin based on polyimide gel polymerelectrolyte: application to nanoscale coating layer of high voltage LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries. J. Mater. Chem. 22(25), 12574–12581 (2012). doi:10.1039/C2JM16799A
H.B. Kang, S.T. Myung, K. Amine, S.M. Lee, Y.K. Sun, Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. J. Power Sources 195(7), 2023–2028 (2010). doi:10.1016/j.jpowsour.2009.10.068
J. Arrebola, A. Caballero, L. Hernan, J. Morales, E.R. Castellon, J.R.R. Barrado, Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J. Electrochem. Soc. 154(3), A178–A184 (2007). doi:10.1149/1.2426799
H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J. Power Sources 195(9), 2909–2913 (2010). doi:10.1016/j.jpowsour.2009.11.029
X. Fang, M. Ge, J. Rong, C. Zhou, Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life. J. Mater. Chem. A 1(12), 4083–4088 (2013). doi:10.1039/C3TA01534C
J.H. Park, J.H. Cho, E.H. Lee, J.M. Kim, S.Y. Lee, Thickness-tunable polyimide nanoencapsulating layers and their influence on cell performance/thermal stability of high-voltage LiCoO2 cathode materials for lithium-ion batteries. J. Power Sources 244, 442–449 (2013). doi:10.1016/j.jpowsour.2012.11.111
M.C. Kim, S.H. Kim, V. Aravindan, W.S. Kim, S.Y. Lee, Y.S. Lee, Ultrathin polyimide coating for a spinel LiNi0.5Mn1.5O4 cathode and its superior lithium storage properties under elevated temperature conditions. J. Electrochem. Soc. 160(8), A1003–A1008 (2013). doi:10.1149/2.013308jes
J.H. Cho, J.H. Park, M.H. Lee, H.K. Song, S.Y. Lee, A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case. Energy Environ. Sci. 5(5), 7124–7131 (2012). doi:10.1039/C2EE03389E
J. Guo, H. Gu, H. Wei, Q. Zhang, N. Haldolaarachchige, Y. Li, D.P. Young, S. Wei, Z. Guo, Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J. Phys. Chem. C 117(19), 10191–10202 (2013). doi:10.1021/jp402236n
K. Ding, H. Jia, S. Wei, Z. Guo, Electrocatalysis of sandwich-structured Pd/Polypyrrole/Pd composites toward formic acid oxidation. Ind. Eng. Chem. Res. 50(11), 7077–7082 (2011). doi:10.1021/ie102392n
P.P. Deshpande, N.G. Jadhav, V.J. Gelling, D. Sazou, Conducting polymers for corrosion protection: a review. J. Coat. Technol. Res. 11(4), 473–494 (2014). doi:10.1007/s11998-014-9586-7
M. Sevilla, P.V. Vign, A.B. Fuertes, N-Doped polypyrrole-based porous carbons for CO2 capture. Adv. Funct. Mater. 21(14), 2781–2787 (2011). doi:10.1002/adfm.201100291
Z.W. Seh, H. Wang, P.C. Hsu, Q. Zhang, W. Li, G. Zheng, H. Yao, Y. Cui, Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 7(2), 672–676 (2014). doi:10.1039/C3EE43395A
Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2(17), 6086–6091 (2014). doi:10.1039/C4TA00484A
J.F. Zhao, S.C. Zhang, W.B. Liu, Z.J. Du, H. Fang, Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim. Acta 121, 428–433 (2014). doi:10.1016/j.electacta.2013.12.105
J.L. Liu, W.W. Zhou, L.F. Lai, H.P. Yang, S.H. Lim, Y.D. Zhen, T. Yu, Z.X. Shen, J.Y. Lin, Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries. Nano Energy 2(5), 726–732 (2013). doi:10.1016/j.nanoen.2012.12.008
A.D. Pasquier, F. Orsini, A.S. Gozdz, J.M. Tarascon, Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region. J. Power Sources 81, 607–611 (1999). doi:10.1016/S0378-7753(99)00230-X
S.Y. Chew, C.Q. Feng, S.H. Ng, J.Z. Wang, Z.P. Guo, H.K. Liu, Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties. J. Electrochem. Soc. 154(7), A633–A637 (2007). doi:10.1149/1.2734778
F.H. Tian, L. Liu, Z.H. Yang, X.Y. Wang, Q.Q. Chen, X.Y. Wang, Electrochemical characterization of a LiV3O8-polypyrrole composite as a cathode material for lithium ion batteries. Mater. Chem. Phys. 127(1), 151–155 (2011). doi:10.1016/j.matchemphys.2011.01.051
Z.J. Zhang, J.Z. Wang, S.L. Chou, H.K. Liu, K. Ozawa, H.J. Li, Polypyrrole-coated α-LiFeO2 nanocomposite with enhanced electrochemical properties for lithium-ion batteries. Electrochim. Acta 108, 820–826 (2013). doi:10.1016/j.electacta.2013.06.130
Y. Yang, X.Z. Liao, Z.F. Ma, B.F. Wang, L. He, Y.S. He, Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55 C. Electrochem. Commun. 11(6), 1277–1280 (2009). doi:10.1016/j.elecom.2009.04.021
P.X. Zhang, L. Zhang, X.Z. Ren, Q.H. Yuan, J.H. Liu, Q.L. Zhang, Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery. Synth. Met. 161(11), 1092–1097 (2011). doi:10.1016/j.synthmet.2011.03.021
X.W. Gao, Y.F. Deng, D. Wexler, G.H. Chen, S.L. Chou, H.K. Liu, Z.C. Shi, J.Z. Wang, Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J. Mater. Chem. A 3(1), 404–411 (2015). doi:10.1039/C4TA04018J
M. Kunduraciz, G.G. Amatucci, Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J. Electrochem. Soc. 153(7), A1345–A1352 (2006). doi:10.1149/1.2198110
J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142(1), 389–390 (2005). doi:10.1016/j.jpowsour.2004.11.024
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10(9), 682–686 (2011). doi:10.1038/nmat3066
Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu et al., Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135(3), 975–978 (2013). doi:10.1021/ja3110895
G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney, C. Liang, Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7(3), 1053–1058 (2014). doi:10.1039/C3EE43357A
E. Rangasamy, G. Sahu, J. Keum, A. Rondinone, N. Dudney, C. Liang, A high conductivity oxide–sulfide composite lithium superionic conductor. J. Mater. Chem. A 2(12), 4111–4116 (2014). doi:10.1039/C3TA15223E
N.J. Dudney, Solid-state thin-film rechargeable batteries. Mater. Sci. Eng. B 116(3), 245–249 (2005). doi:10.1016/j.mseb.2004.05.045
J.J. Xu, D. Xu, Z.L. Wang, H.G. Wang, L.L. Zhang, X.B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angew. Chem. Int. Ed. 52(14), 3887–3890 (2013). doi:10.1002/anie.201210057
B. Fleutot, B. Pecquenard, H. Martinez, M. Letellier, A. Levasseur, Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 186(1), 29–36 (2011). doi:10.1016/j.ssi.2011.01.006
C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato, T. Saito, F. Sagane, Y. Iriyama, Dielectric modification of 5 V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). doi:10.1002/aenm.201301416
J.C. Li, C. Ma, M.F. Chi, C.D. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). doi:10.1002/aenm.201401408
K. Takada, Progress, prospective of solid-state lithium batteries. Acta Mater. 61(3), 759–770 (2013). doi:10.1016/j.actamat.2012.10.034
A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8), 1913–1942 (2008). doi:10.1016/j.materresbull.2007.08.031
K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, T. Sasaki, Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179(27), 1333–1337 (2008). doi:10.1016/j.ssi.2008.02.017
A. Brazier, L. Dupont, L.D. Laffont, N. Kuwata, J. Kawamura, J.M. Tarascon, First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem. Mater. 20(6), 2352–2359 (2008). doi:10.1021/cm7033933
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004). doi:10.1021/cr030203g
N. Shao, X.G. Sun, S. Dai, D. Jiang, Electrochemical windows of sulfone-based electrolytes for high-voltage li-ion batteries. J. Phys. Chem. B 115(42), 12120–12125 (2011). doi:10.1021/jp204401t
R. McMillan, H. Slegr, Z.X. Shu, W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 81, 20–26 (1999). doi:10.1016/S0378-7753(98)00201-8
N. Nanbu, K. Takimoto, M. Takehara, M. Ue, Y. Sasaki, Electrochemical properties of fluoropropylene carbonate and its application to lithium-ion batteries. Electrochem. Commun. 10(5), 783–786 (2008). doi:10.1016/j.elecom.2008.02.031
N. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161(2), 1254–1259 (2006). doi:10.1016/j.jpowsour.2006.05.049
M.C. Smart, B.V. Ratnakumar, V.S.R. Mowrey, S. Surampudi, G.K.S. Prakash, J. Hu, I. Cheung, Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes. J. Power Sources 119, 359–367 (2003). doi:10.1016/S0378-7753(03)00266-0
L. Hu, Z. Zhang, K. Amine, Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem. Commun. 35, 76–79 (2013). doi:10.1016/j.elecom.2013.08.009
Z.C. Zhang, L.B. Hu, H.M. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6(6), 1806–1810 (2013). doi:10.1039/C3EE24414H
T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J. Electrochem. Soc. 157(6), A707–A712 (2010). doi:10.1149/1.3377084
A. Cresce, K. Xu, Electrolyte additive in support of 5 V Li ion chemistry. J. Electrochem. Soc. 158(3), A337–A342 (2011). doi:10.1149/1.3532047
S. Dalavi, M. Xu, B. Knight, B.L. Lucht, Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochem. Solid-State Lett. 15(2), A28–A31 (2011). doi:10.1149/2.015202esl
S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F.L. Cras, S. Jouanneau, S. Martinet, High voltage spinel oxides for Li-ion batteries: from the material research to the application. J. Power Sources 189(1), 344–352 (2009). doi:10.1016/j.jpowsour.2008.08.043
L. Xia, Y.G. Xia, Z.P. Liu, Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. Electrochim. Acta 151, 429–436 (2015). doi:10.1016/j.electacta.2014.11.062
J.P. Yang, Y.F. Zhang, P. Zhao, Y.M. Shang, L. Wang, X.M. He, J.L. Wang, In-situ coating of cathode by electrolyte additive for high-voltage performance of lithium-ion batteries. Electrochim. Acta 158, 202–208 (2015). doi:10.1016/j.electacta.2014.12.143
G.C. Yan, X.H. Li, Z.X. Wang, H.J. Guo, J.X. Wang, W.J. Peng, Q.Y. Hu, Effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the high voltage cycling performance of graphite/LiNi0.5Co0.2Mn0.3O2 battery. Electrochim. Acta 166, 190–196 (2015). doi:10.1016/j.electacta.2015.03.111
X.S. Wang, L.D. Xing, X.L. Liao, X.F. Chen, W.N. Huang, Q.P. Yu, M.Q. Xu, Q.M. Huang, W.S. Li, Improving cyclic stability of lithium cobalt oxide based lithium ion battery at high voltage by using trimethylboroxine as an electrolyte additive. Electrochim. Acta 173, 804–811 (2015). doi:10.1016/j.electacta.2015.05.110
Z. Wang, N. Dupré, L. Lajaunie, P. Moreau, J.F. Martin, L. Boutafa, S. Patoux, D. Guyomard, Effect of glutaric anhydride additive on the LiNi0.4Mn1.6O4 electrode/electrolyte interface evolution: a MAS NMR and TEM/EELS study. J. Power Sources 215, 170–178 (2012). doi:10.1016/j.jpowsour.2012.05.027
S. Mai, M. Xu, X. Liao, L. Xing, W. Li, Improving cyclic stability of lithium nickel manganese oxide cathode at elevated temperature by using dimethyl phenylphosphonite as electrolyte additive. J. Power Sources 273, 816–822 (2015). doi:10.1016/j.jpowsour.2014.09.171
G. Yan, X. Li, Z. Wang, H. Guo, C. Wang, Tris(trimethylsilyl)phosphate: a film-forming additive for high voltage cathode material in lithium-ion batteries. J. Power Sources 248, 1306–1311 (2014). doi:10.1016/j.jpowsour.2013.10.037
T. Takeuchi, T. Kyuna, H. Morimoto, S.I. Tobishima, Influence of surface modification of LiCoO2 by organic compounds on electrochemical and thermal properties of Li/LiCoO2 rechargeable cells. J. Power Sources 196(5), 2790–2801 (2011). doi:10.1016/j.jpowsour.2010.11.064
H. Lee, S. Choi, S. Choi, H.J. Kim, Y. Choi, S. Yoon, J.J. Cho, SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries. Electrochem. Commun. 9(4), 801–806 (2007). doi:10.1016/j.elecom.2006.11.008
M. Xu, D. Lu, A. Garsuch, B.L. Lucht, Improved performance of LiNi0.5Mn1.5O4 cathodes with electrolytes containing dimethylmethylphosphonate (DMMP). J. Electrochem. Soc. 159(12), A2130–A2134 (2012). doi:10.1149/2.077212jes
V. Tarnopolskiy, J. Kalhoff, M. Nádherná, D. Bresser, L. Picard, F. Fabre, M. Rey, S. Passerini, Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes. J. Power Sources 236, 39–46 (2013). doi:10.1016/j.jpowsour.2013.02.030
W.N. Huang, L.D. Xing, Y.T. Wang, M.Q. Xu, W.S. Li, F.C. Xie, S.G. Xia, 4-(Trifluoromethyl)-benzonitrile: a novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery. J. Power Sources 267, 560–565 (2014). doi:10.1016/j.jpowsour.2014.05.124
X.L. Zhang, F.Y. Cheng, J.G. Yang, J. Chen, LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett. 13(6), 2822–2825 (2013). doi:10.1021/nl401072x
L. Zhou, D.Y. Zhao, X.W. Lou, LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem. 124(1), 242–245 (2012). doi:10.1002/ange.201106998