Heterojunction Incorporating Perovskite and Microporous Metal–Organic Framework Nanocrystals for Efficient and Stable Solar Cells
Corresponding Author: Yulin Yang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 80
Abstract
In this paper, we present a facile approach to enhance the efficiency and stability of perovskite solar cells (PSCs) by incorporating perovskite with microporous indium-based metal–organic framework [In12O(OH)16(H2O)5(btc)6]n (In-BTC) nanocrystals and forming heterojunction light-harvesting layer. The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities, endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects. Consequently, the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency (PCE) of 20.87%, surpassing the pristine device (0.76 and 19.52%, respectively). More importantly, over 80% of the original PCE is retained after 12 days of exposure to ambient environment (25 °C and relative humidity of ~ 65%) without encapsulation, while only about 35% is left to the pristine device.
Highlights:
1 Microporous indium-based metal–organic framework (In-BTC) nanocrystals are synthesized under an extremely mild condition.
2 Perovskite/In-BTC heterojunction films possess improved morphology/crystallinity and reduced grain boundaries/defects.
3 In-BTC-modified perovskite solar cells exhibit significantly enhanced efficiency of 20.87% and long-term stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- M. Kim, S. Jang, J. Choi, S.M. Kang, M. Choi, Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano Micro Lett. 11, 53 (2019). https://doi.org/10.1007/s40820-019-0284-y
- X.L. Yang, J. Xi, Y.H. Sun, Y.D. Zhang, G.J. Zhou, W.Y. Wong, A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy 64, 103946–103955 (2019). https://doi.org/10.1016/j.nanoen.2019.103946
- J. Liu, Y.Z. Wu, C.J. Qin, X.D. Yang, T. Yasuda et al., A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967 (2014). https://doi.org/10.1039/c4ee01589d
- X. Li, D.Q. Bi, C.Y. Yi, J.D. Décoppet, J.S. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016). https://doi.org/10.1126/science.aaf8060
- Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
- M.R. Li, D.B. Xia, Y.L. Yang, X. Du, G.H. Dong, A.F. Jiang, R.Q. Fan, Doping of [In2(phen)3Cl6]·CH3CN·2H2O indium-based metal-organic framework into hole transport layer for enhancing perovskite solar cell efficiencies. Adv. Energy Mater. 8, 1702052–1702058 (2018). https://doi.org/10.1002/aenm.201702052
- L.L. Qiu, X.B. Zheng, Y.L. Yang, Y.Y. Dong, G.H. Dong et al., A copper coordination polymer with matching energy level for modifying hole transport layers to improve the performance of perovskite solar cells. Chemsuschem 12, 2763–2772 (2019). https://doi.org/10.1002/cssc.201900509
- Y. Dong, J. Zhang, Y. Yang, L. Qiu, D. Xia et al., Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells. Angew. Chem. Int. Ed. 58, 1–7 (2019). https://doi.org/10.1002/anie.201909291
- J. He, E. Bi, W. Tang, Y. Wang, X. Yang, H. Chen, L. Han, Low-temperature soft-cover-assisted hydrolysis deposition of large-scale TiO2 layer for efficient perovskite solar modules. Nano-Micro Lett. 10, 49 (2018). https://doi.org/10.1007/s40820-018-0203-7
- NREL, Best Research-Cell Efficiencies. http://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 7 Jan 2020
- M. Yue, J. Su, P. Zhao, Z.H. Lin, J.C. Zhang, J.J. Chang, Y. Hao, Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
- T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963–1500985 (2015). https://doi.org/10.1002/aenm.201500963
- Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727 (2016). https://doi.org/10.1002/anie.201607375
- G.D. Niu, X.D. Guo, L.D. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015). https://doi.org/10.1039/c4ta04994b
- Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma et al., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4
- E.L. Lim, C.C. Yap, M.H.H. Jumali, M.A.M. Teridi, C.H. Teh, A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett. 10, 27 (2018). https://doi.org/10.1007/s40820-017-0182-0
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081–7088 (2015). https://doi.org/10.1038/ncomms8081
- Y. Zhang, P. Gao, E. Oveisi, Y. Lee, Q. Jeangros et al., PbI2-HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells. J. Am. Chem. Soc. 138, 14380–14387 (2016). https://doi.org/10.1021/jacs.6b08347
- Q.W. Han, Y.S. Bai, J. Liu, K.Z. Du, T.Y. Li et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/c7ee02272g
- C.B. Fei, B. Li, R. Zhang, H.Y. Fu, J.J. Tian, G.Z. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv. Funct. Mater. 7, 1602017–1602026 (2017). https://doi.org/10.1002/aenm.201602017
- Z.Q. Li, J.J. Dong, C.Y. Liu, J.X. Guo, L. Shen, W.B. Guo, Surface passivation of perovskite solar cells toward improved efficiency and stability. Nano-Micro Lett. 11, 50 (2019). https://doi.org/10.1007/s40820-019-0282-0
- D.S. Lee, J.S. Yun, J. Kim, A.M. Soufiani, S. Chen et al., Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells. ACS Energy Lett. 3, 647–654 (2018). https://doi.org/10.1021/acsenergylett.8b00121
- S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018). https://doi.org/10.1007/s40820-018-0205-5
- D. Luo, W. Yang, Z. Wang, A. Sadhanala, R.S.Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
- Z.L. Zhu, D.B. Zhao, C.C. Chueh, X.L. Shi, Z.G. Li, A.K.Y. Jen, Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2, 168–183 (2018). https://doi.org/10.1016/j.joule.2017.11.006
- H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9, 39–49 (2017). https://doi.org/10.1007/s40820-017-0140-x
- L. Sun, M.G. Campbell, M. Dinca, Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
- R. Kaur, K.H. Kim, A.K. Paul, A. Deep, Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. J. Mater. Chem. A 4, 3991–4002 (2016). https://doi.org/10.1039/c5ta09668e
- S. Lin, P.M. Usov, A.J. Morris, The role of redox hopping in metal-organic framework electrocatalysis. Chem. Commun. 54, 6965–6974 (2018). https://doi.org/10.1039/c8cc01664j
- W. Xing, P. Ye, J. Lu, X.X. Wu, Y.S. Chen, T. Zhu, A.D. Peng, H. Huang, Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. J. Power Sour. 401, 13–19 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.078
- X. Hou, L. Pan, S. Huang, O.Y. Wei, X. Chen, Enhanced efficiency and stability of perovskite solar cells using porous hierarchical TiO2 nanostructures of scattered distribution as scaffold. Electrochim. Acta 236, 351–358 (2017). https://doi.org/10.1016/j.electacta.2017.03.192
- U. Ryu, S. Jee, J.S. Park, I.K. Han, J.H. Lee, M. Park, K.M. Choi, Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12, 4968–4975 (2018). https://doi.org/10.1021/acsnano.8b02079
- C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, K.C.W. Wu, Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079–17095 (2019). https://doi.org/10.1039/c9ta03595h
- T.H. Chang, C.W. Kung, H.W. Chen, T.Y. Huang, S.Y. Kao et al., Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals. Adv. Mater. 27, 7229–7235 (2015). https://doi.org/10.1002/adma.201502537
- C.C. Lee, C.I. Chen, Y.T. Liao, K.C. Wu, C.C. Chueh, Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 6, 1801715–1801723 (2019). https://doi.org/10.1002/advs.201801715
- H. Furukawa, F. Gandara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014). https://doi.org/10.1021/ja500330a
- L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011). https://doi.org/10.1021/cm1022882
- S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440–450 (2018). https://doi.org/10.1021/acscentsci.8b00073
- Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016). https://doi.org/10.1039/c5cs00837a
- J.W. Lee, H.S. Kim, N.G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
- S. Yoon, S.J. Kim, H.S. Kim, J.S. Park, I.K. Han, J.W. Jung, M. Park, Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells. Nanoscale 9, 16305–16312 (2017). https://doi.org/10.1039/c7nr05695h
- C.H. Tsai, N. Li, C.C. Lee, H.C. Wu, Z.L. Zhu et al., Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. J. Mater. Chem. A 6, 12999–13004 (2018). https://doi.org/10.1039/c8ta03608j
- C. Cetin, P. Chen, M.M. Hao, D.X. He, Y. Bai, M.Q. Lyu, J.H. Yun, L.Z. Wang, Inorganic p-type semiconductors as hole conductor building blocks for robust perovskite solar cells. Adv. Sustain. Syst. 2, 1800032–1800053 (2018). https://doi.org/10.1002/adsu.201800032
- C.M. Cardona, W. Li, A.E. Kaifer, D. Stockdale, G.C. Bazan, Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371 (2011). https://doi.org/10.1002/adma.201004554
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
M. Kim, S. Jang, J. Choi, S.M. Kang, M. Choi, Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano Micro Lett. 11, 53 (2019). https://doi.org/10.1007/s40820-019-0284-y
X.L. Yang, J. Xi, Y.H. Sun, Y.D. Zhang, G.J. Zhou, W.Y. Wong, A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy 64, 103946–103955 (2019). https://doi.org/10.1016/j.nanoen.2019.103946
J. Liu, Y.Z. Wu, C.J. Qin, X.D. Yang, T. Yasuda et al., A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967 (2014). https://doi.org/10.1039/c4ee01589d
X. Li, D.Q. Bi, C.Y. Yi, J.D. Décoppet, J.S. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016). https://doi.org/10.1126/science.aaf8060
Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
M.R. Li, D.B. Xia, Y.L. Yang, X. Du, G.H. Dong, A.F. Jiang, R.Q. Fan, Doping of [In2(phen)3Cl6]·CH3CN·2H2O indium-based metal-organic framework into hole transport layer for enhancing perovskite solar cell efficiencies. Adv. Energy Mater. 8, 1702052–1702058 (2018). https://doi.org/10.1002/aenm.201702052
L.L. Qiu, X.B. Zheng, Y.L. Yang, Y.Y. Dong, G.H. Dong et al., A copper coordination polymer with matching energy level for modifying hole transport layers to improve the performance of perovskite solar cells. Chemsuschem 12, 2763–2772 (2019). https://doi.org/10.1002/cssc.201900509
Y. Dong, J. Zhang, Y. Yang, L. Qiu, D. Xia et al., Self-assembly of hybrid oxidant POM@Cu-BTC for enhanced efficiency and long-term stability of perovskite solar cells. Angew. Chem. Int. Ed. 58, 1–7 (2019). https://doi.org/10.1002/anie.201909291
J. He, E. Bi, W. Tang, Y. Wang, X. Yang, H. Chen, L. Han, Low-temperature soft-cover-assisted hydrolysis deposition of large-scale TiO2 layer for efficient perovskite solar modules. Nano-Micro Lett. 10, 49 (2018). https://doi.org/10.1007/s40820-018-0203-7
NREL, Best Research-Cell Efficiencies. http://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 7 Jan 2020
M. Yue, J. Su, P. Zhao, Z.H. Lin, J.C. Zhang, J.J. Chang, Y. Hao, Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963–1500985 (2015). https://doi.org/10.1002/aenm.201500963
Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727 (2016). https://doi.org/10.1002/anie.201607375
G.D. Niu, X.D. Guo, L.D. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015). https://doi.org/10.1039/c4ta04994b
Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma et al., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4
E.L. Lim, C.C. Yap, M.H.H. Jumali, M.A.M. Teridi, C.H. Teh, A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett. 10, 27 (2018). https://doi.org/10.1007/s40820-017-0182-0
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy et al., Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081–7088 (2015). https://doi.org/10.1038/ncomms8081
Y. Zhang, P. Gao, E. Oveisi, Y. Lee, Q. Jeangros et al., PbI2-HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells. J. Am. Chem. Soc. 138, 14380–14387 (2016). https://doi.org/10.1021/jacs.6b08347
Q.W. Han, Y.S. Bai, J. Liu, K.Z. Du, T.Y. Li et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/c7ee02272g
C.B. Fei, B. Li, R. Zhang, H.Y. Fu, J.J. Tian, G.Z. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv. Funct. Mater. 7, 1602017–1602026 (2017). https://doi.org/10.1002/aenm.201602017
Z.Q. Li, J.J. Dong, C.Y. Liu, J.X. Guo, L. Shen, W.B. Guo, Surface passivation of perovskite solar cells toward improved efficiency and stability. Nano-Micro Lett. 11, 50 (2019). https://doi.org/10.1007/s40820-019-0282-0
D.S. Lee, J.S. Yun, J. Kim, A.M. Soufiani, S. Chen et al., Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells. ACS Energy Lett. 3, 647–654 (2018). https://doi.org/10.1021/acsenergylett.8b00121
S. Sajid, A.M. Elseman, J. Ji, S. Dou, D. Wei et al., Computational study of ternary devices: stable, low-cost, and efficient planar perovskite solar cells. Nano-Micro Lett. 10, 51 (2018). https://doi.org/10.1007/s40820-018-0205-5
D. Luo, W. Yang, Z. Wang, A. Sadhanala, R.S.Q. Hu et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018). https://doi.org/10.1126/science.aap9282
Z.L. Zhu, D.B. Zhao, C.C. Chueh, X.L. Shi, Z.G. Li, A.K.Y. Jen, Highly efficient and stable perovskite solar cells enabled by all-crosslinked charge-transporting layers. Joule 2, 168–183 (2018). https://doi.org/10.1016/j.joule.2017.11.006
H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9, 39–49 (2017). https://doi.org/10.1007/s40820-017-0140-x
L. Sun, M.G. Campbell, M. Dinca, Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
R. Kaur, K.H. Kim, A.K. Paul, A. Deep, Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. J. Mater. Chem. A 4, 3991–4002 (2016). https://doi.org/10.1039/c5ta09668e
S. Lin, P.M. Usov, A.J. Morris, The role of redox hopping in metal-organic framework electrocatalysis. Chem. Commun. 54, 6965–6974 (2018). https://doi.org/10.1039/c8cc01664j
W. Xing, P. Ye, J. Lu, X.X. Wu, Y.S. Chen, T. Zhu, A.D. Peng, H. Huang, Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. J. Power Sour. 401, 13–19 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.078
X. Hou, L. Pan, S. Huang, O.Y. Wei, X. Chen, Enhanced efficiency and stability of perovskite solar cells using porous hierarchical TiO2 nanostructures of scattered distribution as scaffold. Electrochim. Acta 236, 351–358 (2017). https://doi.org/10.1016/j.electacta.2017.03.192
U. Ryu, S. Jee, J.S. Park, I.K. Han, J.H. Lee, M. Park, K.M. Choi, Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12, 4968–4975 (2018). https://doi.org/10.1021/acsnano.8b02079
C.C. Chueh, C.I. Chen, Y.A. Su, H. Konnerth, Y.J. Gu, C.W. Kung, K.C.W. Wu, Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079–17095 (2019). https://doi.org/10.1039/c9ta03595h
T.H. Chang, C.W. Kung, H.W. Chen, T.Y. Huang, S.Y. Kao et al., Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals. Adv. Mater. 27, 7229–7235 (2015). https://doi.org/10.1002/adma.201502537
C.C. Lee, C.I. Chen, Y.T. Liao, K.C. Wu, C.C. Chueh, Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 6, 1801715–1801723 (2019). https://doi.org/10.1002/advs.201801715
H. Furukawa, F. Gandara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014). https://doi.org/10.1021/ja500330a
L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011). https://doi.org/10.1021/cm1022882
S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable metal-organic frameworks with group 4 metals: current status and trends. ACS Cent. Sci. 4, 440–450 (2018). https://doi.org/10.1021/acscentsci.8b00073
Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016). https://doi.org/10.1039/c5cs00837a
J.W. Lee, H.S. Kim, N.G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
S. Yoon, S.J. Kim, H.S. Kim, J.S. Park, I.K. Han, J.W. Jung, M. Park, Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells. Nanoscale 9, 16305–16312 (2017). https://doi.org/10.1039/c7nr05695h
C.H. Tsai, N. Li, C.C. Lee, H.C. Wu, Z.L. Zhu et al., Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. J. Mater. Chem. A 6, 12999–13004 (2018). https://doi.org/10.1039/c8ta03608j
C. Cetin, P. Chen, M.M. Hao, D.X. He, Y. Bai, M.Q. Lyu, J.H. Yun, L.Z. Wang, Inorganic p-type semiconductors as hole conductor building blocks for robust perovskite solar cells. Adv. Sustain. Syst. 2, 1800032–1800053 (2018). https://doi.org/10.1002/adsu.201800032
C.M. Cardona, W. Li, A.E. Kaifer, D. Stockdale, G.C. Bazan, Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371 (2011). https://doi.org/10.1002/adma.201004554