Metal–Organic Framework-Based Photodetectors
Corresponding Author: Zhi‑Gang Gu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 253
Abstract
The unique and interesting physical and chemical properties of metal–organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Highlights:
1 The methods of preparing metal–organic framework (MOF)-based photodetectors and various types of MOFs are introduced.
2 The applications of MOF photodetectors in the detection of X-ray, ultraviolet, and infrared radiation, biosensing, and circularly polarized light detection are summarized.
3 Challenges in developing practical MOF photodetector and concepts to solve those critical challenges are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15, 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
- C.L. Tan, H. Mohseni, Emerging technologies for high performance infrared detectors. Nanophotonics 7, 169–197 (2018). https://doi.org/10.1515/nanoph-2017-0061
- K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63–68 (2017). https://doi.org/10.1038/nphoton.2016.230
- M. Ding, K. Liang, S. Yu, X. Zhao, H. Ren et al., Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater. 10, 2200512 (2022). https://doi.org/10.1002/adom.202200512
- J. Xu, W. Zheng, F. Huang, Gallium oxide solar-blind ultraviolet photodetectors: a review. J. Mater. Chem. C 7, 8753–8770 (2019). https://doi.org/10.1039/C9TC02055A
- C.-Y. Li, J. He, Y. Zhou, D.-X. Qi, H. Jing et al., Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Appl. Phys. Lett. 119, 251105 (2021). https://doi.org/10.1063/5.0073706
- T. Ouyang, X. Zhao, X. Xun, F. Gao, B. Zhao et al., Boosting charge utilization in self-powered photodetector for real-time high-throughput ultraviolet communication. Adv. Sci. 10, e2301585 (2023). https://doi.org/10.1002/advs.202301585
- T. Agostinelli, M. Campoy-Quiles, J.C. Blakesley, R. Speller, D.D.C. Bradley et al., A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications. Appl. Phys. Lett. 93, 203305 (2008). https://doi.org/10.1063/1.3028640
- D. Palaferri, Y. Todorov, A. Bigioli, A. Mottaghizadeh, D. Gacemi et al., Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 556, 85–88 (2018). https://doi.org/10.1038/nature25790
- J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R.D. Rodriguez et al., Indirect X-ray detectors based on inkjet-printed photodetectors with a screen-printed scintillator layer. ACS Appl. Mater. Interfaces 10, 12904–12912 (2018). https://doi.org/10.1021/acsami.8b00828
- C. Xie, F. Yan, Flexible photodetectors based on novel functional materials. Small 13, 1701822 (2017). https://doi.org/10.1002/smll.201701822
- D. Yang, D. Ma, Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7, 1800522 (2019). https://doi.org/10.1002/adom.201800522
- X. Zhu, F. Lin, Z. Zhang, X. Chen, H. Huang et al., Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure. Nano Lett. 20, 2654–2659 (2020). https://doi.org/10.1021/acs.nanolett.0c00232
- F. Teng, K. Hu, W. Ouyang, X. Fang, Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 30, e1706262 (2018). https://doi.org/10.1002/adma.201706262
- J. Zheng, H. Chong, L. Wang, S. Chen, W. Yang et al., A robust SiC nanoarray blue-light photodetector. J. Mater. Chem. C 8, 6072–6078 (2020). https://doi.org/10.1039/D0TC00552E
- Q. Gao, Z. Jin, L. Qu, Z. Shao, X. Liu et al., CuO Nanosheets for Use in Photoelectrochemical Photodetectors. ACS Appl. Nano Mater. 6, 784–791 (2023). https://doi.org/10.1021/acsanm.2c05270
- Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14, 215 (2022). https://doi.org/10.1007/s40820-022-00964-9
- J. Pan, W. Deng, X. Xu, T. Jiang, X. Zhang et al., Photodetectors based on small-molecule organic semiconductor crystals. Chin. Phys. B 28, 038102 (2019). https://doi.org/10.1088/1674-1056/28/3/038102
- Z. Zhao, C. Xu, L. Niu, X. Zhang, F. Zhang, Recent progress on broadband organic photodetectors and their applications. Laser Photonics Rev. 14, 2000262 (2020). https://doi.org/10.1002/lpor.202000262
- Y.-q Zheng, Y.-j Chen, X.-z Zhu, Research progress of near-infrared organic photovoltaic photodetectors. Acta Polym Sin. 53, 354–373 (2022). https://doi.org/10.11777/j.issn1000-3304.2021.21338
- L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li et al., Research progress in organic photomultiplication photodetectors. Nanomaterials 8, 713 (2018). https://doi.org/10.3390/nano8090713
- D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257–1283 (2009). https://doi.org/10.1039/B817735J
- M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012). https://doi.org/10.1021/cr200205j
- S. Natarajan, P. Mahata, Metal–organic framework structures–how closely are they related to classical inorganic structures? Chem. Soc. Rev. 38, 2304–2318 (2009). https://doi.org/10.1039/B815106G
- Z. Wang, S.M. Cohen, Postsynthetic covalent modification of a neutral metal−organic framework. J. Am. Chem. Soc. 129, 12368–12369 (2007). https://doi.org/10.1021/ja074366o
- K.K. Tanabe, Z. Wang, S.M. Cohen, Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 130, 8508–8517 (2008). https://doi.org/10.1021/ja801848j
- M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). https://doi.org/10.1126/science.1067208
- P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013). https://doi.org/10.1038/nature11893
- J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/B802426J
- Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
- L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129–8176 (2017). https://doi.org/10.1021/acs.chemrev.7b00091
- Q. Yang, Q. Xu, H.-L. Jiang, Metal–organic frameworks meet metal nanops: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 46, 4774–4808 (2017). https://doi.org/10.1039/C6CS00724D
- M.J. Katz, S.-Y. Moon, J.E. Mondloch, M.H. Beyzavi, C.J. Stephenson et al., Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem. Sci. 6, 2286–2291 (2015). https://doi.org/10.1039/C4SC03613A
- F. He, Y. Liu, X. Yang, Y. Chen, C.-C. Yang et al., Accelerating oxygen electrocatalysis kinetics on metal-organic frameworks via bond length optimization. Nano-Micro Lett. 16, 175 (2024). https://doi.org/10.1007/s40820-024-01382-9
- L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne et al., Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t
- B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011). https://doi.org/10.1038/nrc3110
- R. Li, T. Chen, X. Pan, Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 15, 3808–3848 (2021). https://doi.org/10.1021/acsnano.0c09617
- P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle et al., Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
- A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- L.-X. Shao, S.-J. Li, L. Feng, X.-L. Pei, X.-J. Yu et al., Layer-by-layer growth of ferrocene decorated metal–organic framework thin films and studies of their electrochemical properties. Appl. Surf. Sci. 596, 153525 (2022). https://doi.org/10.1016/j.apsusc.2022.153525
- W. Xie, W. Deng, J. Hu, D. Li, Y. Gai et al., Construction of Ferrocene-based bimetallic CoFe-FcDA nanosheets for efficient oxygen evolution reaction. Mol. Catal. 528, 112502 (2022). https://doi.org/10.1016/j.mcat.2022.112502
- S.G.F. de Assis, G.C. Santos, A.B.S. Santos, E.H.L. Falcão, R. da Silva Viana et al., Design of new europium-doped luminescent MOFs for UV radiation dosimetric sensing. J. Solid State Chem. 276, 309–318 (2019). https://doi.org/10.1016/j.jssc.2019.05.008
- X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- W. Zhuge, Y. Liu, W. Huang, C. Zhang, L. Wei et al., Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection. Sens. Actuat. B Chem. 367, 132028 (2022). https://doi.org/10.1016/j.snb.2022.132028
- M.-J. Li, H.-J. Wang, R. Yuan, Y.-Q. Chai, A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem. Commun. 55, 10772–10775 (2019). https://doi.org/10.1039/c9cc05086h
- H. Liu, C. Xu, D. Li, H.-L. Jiang, Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. Int. Ed. Engl. 57, 5379–5383 (2018). https://doi.org/10.1002/anie.201800320
- P. Sippel, D. Denysenko, A. Loidl, P. Lunkenheimer, G. Sastre et al., Dielectric relaxation processes, electronic structure, and band gap engineering of MFU-4-type metal-organic frameworks: towards a rational design of semiconducting microporous materials. Adv. Funct. Mater. 24, 3885–3896 (2014). https://doi.org/10.1002/adfm.201400083
- C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D’arras et al., Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J. Am. Chem. Soc. 135, 10942–10945 (2013). https://doi.org/10.1021/ja405350u
- X. Ma, J. Kang, Y. Wu, C. Pang, S. Li et al., Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac Trends Anal. Chem. 157, 116793 (2022). https://doi.org/10.1016/j.trac.2022.116793
- X. Shang, I. Song, G.Y. Jung, W. Choi, H. Ohtsu et al., Micro-/ nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. J. Mater. Chem. C 9, 7310–7318 (2021). https://doi.org/10.1039/D1TC01333E
- M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi et al., A review on metal-organic frameworks: synthesis and applications. Trac Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007
- Y. Sun, H.-C. Zhou, Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater. 16, 3450–3458 (2015). https://doi.org/10.1088/1468-6996/16/5/054202
- Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song et al., Metal–organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 14, 181 (2022). https://doi.org/10.1007/s40820-022-00910-9
- F. Yu, T. Du, Y. Wang, C. Li, Z. Qin et al., Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sens. Actuat. B Chem. 353, 131032 (2022). https://doi.org/10.1016/j.snb.2021.131032
- Y.-F. Han, X.-M. Xu, S.-H. Wang, W.-F. Wang, M.-S. Wang et al., Reusable radiochromic semiconductive MOF for dual-mode X-ray detection using color change and electric signal. Chem. Eng. J. 437, 135468 (2022). https://doi.org/10.1016/j.cej.2022.135468
- C. Liang, L. Cheng, S. Zhang, S. Yang, W. Liu et al., Boosting the optoelectronic performance by regulating exciton behaviors in a porous semiconductive metal-organic framework. J. Am. Chem. Soc. 144, 2189–2196 (2022). https://doi.org/10.1021/jacs.1c11150
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
- D. Adekoya, M. Li, M. Hankel, C. Lai, M.-S. Balogun et al., Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage. Energy Storage Mater. 25, 495–501 (2020). https://doi.org/10.1016/j.ensm.2019.09.033
- R. Seetharaj, P.V. Vandana, P. Arya, S. Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian J. Chem. 12, 295–315 (2019). https://doi.org/10.1016/j.arabjc.2016.01.003
- O.M. Yaghi, Reticular chemistry—construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138, 15507–15509 (2016). https://doi.org/10.1021/jacs.6b11821
- K. Otsubo, H. Kitagawa, Metal–organic framework thin films with well-controlled growth directions confirmed by X-ray study. APL Mater. 2, 124105 (2014). https://doi.org/10.1063/1.4899295
- V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014). https://doi.org/10.1039/c4cs00096j
- M.D. Allendorf, A. Schwartzberg, V. Stavila, A.A. Talin, A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry 17, 11372–11388 (2011). https://doi.org/10.1002/chem.201101595
- I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf et al., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017). https://doi.org/10.1039/C7CS00122C
- M. Usman, S. Mendiratta, K.-L. Lu, Semiconductor metal-organic frameworks: future low-bandgap materials. Adv. Mater. 29, 1605071 (2017). https://doi.org/10.1002/adma.201605071
- H. Liu, Y. Wang, Z. Qin, D. Liu, H. Xu et al., Electrically conductive coordination polymers for electronic and optoelectronic device applications. J. Phys. Chem. Lett. 12, 1612–1630 (2021). https://doi.org/10.1021/acs.jpclett.0c02988
- M. Zhao, Q. Lu, Q. Ma, H. Zhang, Two-dimensional metal–organic framework nanosheets. Small Meth. 1, 1600030 (2017). https://doi.org/10.1002/smtd.201600030
- M. Wang, X. Dong, Z. Meng, Z. Hu, Y.-G. Lin et al., An efficient interfacial synthesis of two-dimensional metal–organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 11190–11195 (2021). https://doi.org/10.1002/anie.202100897
- Y.-B. Tian, N. Vankova, P. Weidler, A. Kuc, T. Heine et al., Oriented growth of In-oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 8, 2100548 (2021). https://doi.org/10.1002/advs.202100548
- S. Ghafari, N. Naderi, M.J. Eshraghi, M. Kazemzad, Temperature-dependent photonic properties of porous-shaped metal-organic frameworks on porous silicon substrates. Sens. Actuat. A Phys. 337, 113443 (2022). https://doi.org/10.1016/j.sna.2022.113443
- J. Peng, X. Sun, Y. Li, C. Huang, J. Jin et al., Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous Mesoporous Mater. 268, 268–275 (2018). https://doi.org/10.1016/j.micromeso.2018.04.005
- S. Wannapaiboon, K. Sumida, K. Dilchert, M. Tu, S. Kitagawa et al., Enhanced properties of metal-organic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process. J. Mater. Chem. A 5(26), 13665–13673 (2017). https://doi.org/10.1039/c7ta02848b
- R. Zheng, Z.-H. Fu, W.-H. Deng, Y. Wen, A.-Q. Wu et al., The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy. Angew. Chem. Int. Ed. 61, e202212797 (2022). https://doi.org/10.1002/anie.202212797
- A.L. Semrau, R.A. Fischer, High-quality thin films of UiO-66-NH2 by coordination modulated layer-by-layer liquid phase epitaxy. Chemistry 27, 8509–8516 (2021). https://doi.org/10.1002/chem.202005416
- M. Usman, M. Ali, B.A. Al-Maythalony, A.S. Ghanem, O.W. Saadi et al., Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels. ACS Appl. Mater. Interfaces 12(44), 49992–50001 (2020). https://doi.org/10.1021/acsami.0c13715
- A.L. Semrau, S. Wannapaiboon, S.P. Pujari, P. Vervoorts, B. Albada et al., Highly porous nanocrystalline UiO-66 thin films via coordination modulation controlled step-by-step liquid-phase growth. Cryst. Growth Des. 19, 1738–1747 (2019). https://doi.org/10.1021/acs.cgd.8b01719
- W. Guo, M. Zha, Z. Wang, E. Redel, Z. Xu et al., Improving the loading capacity of metal-organic framework thin films using optimized linkers. ACS Appl. Mater. Interfaces 8, 24699–24702 (2016). https://doi.org/10.1021/acsami.6b08622
- B. Liu, R.A. Fischer, Liquid-phase epitaxy of metal organic framework thin films. Sci. China Chem. 54, 1851–1866 (2011). https://doi.org/10.1007/s11426-011-4406-8
- L.-A. Cao, M.-S. Yao, H.-J. Jiang, S. Kitagawa, X.-L. Ye et al., A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 8, 9085–9090 (2020). https://doi.org/10.1039/D0TA01379J
- C.-K. Liu, V. Piradi, J. Song, Z. Wang, L.-W. Wong et al., 2D metal-organic framework Cu3 (HHTT)2 films for broadband photodetectors from ultraviolet to mid-infrared. Adv. Mater. 34, e2204140 (2022). https://doi.org/10.1002/adma.202204140
- S. Han, C.B. Mullins, Current progress and future directions in gas-phase metal-organic framework thin-film growth. Chemsuschem 13, 5433–5442 (2020). https://doi.org/10.1002/cssc.202001504
- M. Choe, J.Y. Koo, I. Park, H. Ohtsu, J.H. Shim et al., Chemical vapor deposition of edge-on oriented 2D conductive metal–organic framework thin films. J. Am. Chem. Soc. 144, 16726–16731 (2022). https://doi.org/10.1021/jacs.2c07135
- K.P. Bera, Y.-G. Lee, M. Usman, R. Ghosh, K.-L. Lu et al., Dirac point modulated self-powered ultrasensitive photoresponse and color-tunable electroluminescence from flexible graphene/metal–organic frameworks/graphene vertical phototransistor. ACS Appl. Electron. Mater. 4, 2337–2345 (2022). https://doi.org/10.1021/acsaelm.2c00173
- K.P. Bera, G. Haider, M. Usman, P.K. Roy, H.-I. Lin et al., Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal-organic framework broadband wearable photodetectors. Adv. Funct. Mater. 28, 1804802 (2018). https://doi.org/10.1002/adfm.201804802
- C. Kang, M. Ahsan Iqbal, S. Zhang, X. Weng, Y. Sun et al., Cu3 (HHTP)2 c-MOF/ZnO ultrafast ultraviolet photodetector for wearable optoelectronics. Chemistry 28, e202201705 (2022). https://doi.org/10.1002/chem.202201705
- T. Guo, C. Ling, X. Li, X. Qiao, X. Li et al., A ZIF-8@H: ZnO core–shell nanorod arrays/Si heterojunction self-powered photodetector with ultrahigh performance. J. Mater. Chem. C 7, 5172–5183 (2019). https://doi.org/10.1039/C9TC00290A
- H. Kim, W. Kim, J. Park, N. Lim, R. Lee et al., Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector. Nanoscale 10, 21168–21177 (2018). https://doi.org/10.1039/c8nr06701e
- B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, Radiation detector materials: an overview. J. Mater. Res. 23, 2561–2581 (2008). https://doi.org/10.1557/JMR.2008.0319
- A. Sakdinawat, D. Attwood, Nanoscale X-ray imaging. Nat. Photonics 4, 840–848 (2010). https://doi.org/10.1038/nphoton.2010.267
- L. Cheng, C. Liang, B. Li, H. Qin, P. Mi et al., Millimeter-scale semiconductive metal-organic framework single crystal for X-ray imaging. Cell Rep. Phys. Sci. 3, 101004 (2022). https://doi.org/10.1016/j.xcrp.2022.101004
- A.B. de González, S. Darby, Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363, 345–351 (2004). https://doi.org/10.1016/S0140-6736(04)15433-0
- H. Chen, J. Chen, M. Li, M. You, Q. Chen et al., Recent advances in metal-organic frameworks for X-ray detection. Sci. China Chem. 65, 2338–2350 (2022). https://doi.org/10.1007/s11426-022-1334-0
- S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani et al., Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011). https://doi.org/10.3390/s110505112
- C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun et al., Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171–6174 (2014). https://doi.org/10.1021/ja500671h
- J. Perego, I. Villa, A. Pedrini, E.C. Padovani, R. Crapanzano et al., Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics 15, 393–400 (2021). https://doi.org/10.1038/s41566-021-00769-z
- W.-F. Wang, J. Lu, X.-M. Xu, B.-Y. Li, J. Gao et al., Sensitive X-ray detection and imaging by a scintillating Lead(II)-based Metal-Organic framework. Chem. Eng. J. 430, 133010 (2022). https://doi.org/10.1016/j.cej.2021.133010
- J. Lu, X.-H. Xin, Y.-J. Lin, S.-H. Wang, J.-G. Xu et al., Efficient X-ray scintillating lead(II)-based MOFs derived from rigid luminescent naphthalene motifs. Dalton Trans. 48, 1722–1731 (2019). https://doi.org/10.1039/c8dt04587a
- J. Lu, J. Gao, W.-F. Wang, B.-Y. Li, P.-X. Li et al., Barium-based scintillating MOFs for X-ray dosage detection with intrinsic energy resolution via luminescent multidentate naphthalene disulfonate moieties. J. Mater. Chem. C 9, 5615–5620 (2021). https://doi.org/10.1039/D1TC00671A
- J. Lu, S.-H. Wang, Y. Li, W.-F. Wang, C. Sun et al., Heat-resistant Pb(II)-based X-ray scintillating metal-organic frameworks for sensitive dosage detection via an aggregation-induced luminescent chromophore. Dalton Trans. 49, 7309–7314 (2020). https://doi.org/10.1039/d0dt00974a
- Y. Wang, X. Liu, X. Li, F. Zhai, S. Yan et al., Direct radiation detection by a semiconductive metal-organic framework. J. Am. Chem. Soc. 141, 8030–8034 (2019). https://doi.org/10.1021/jacs.9b01270
- C. Liang, S. Zhang, L. Cheng, J. Xie, F. Zhai et al., Thermoplastic membranes incorporating semiconductive metal-organic frameworks: an advance on flexible X-ray detectors. Angew. Chem. Int. Ed. 59, 11856–11860 (2020). https://doi.org/10.1002/anie.202004006
- Z. Li, S. Chang, H. Zhang, Y. Hu, Y. Huang et al., Flexible lead-free X-ray detector from metal-organic frameworks. Nano Lett. 21, 6983–6989 (2021). https://doi.org/10.1021/acs.nanolett.1c02336
- J. Yu, R. Anderson, X. Li, W. Xu, S. Goswami et al., Improving energy transfer within metal-organic frameworks by aligning linker transition dipoles along the framework axis. J. Am. Chem. Soc. 142, 11192–11202 (2020). https://doi.org/10.1021/jacs.0c03949
- S. Li, Y. Zhang, W. Yang, H. Liu, X. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020). https://doi.org/10.1002/adma.201905443
- M.A. Abu Talip, N.S. Khairir, R. Ab Kadir, M.H. Mamat, R.A. Rani et al., Nanotubular Ta2O5 as ultraviolet (UV) photodetector. J. Mater. Sci. Mater. Electron. 30(5), 4953–4966 (2019). https://doi.org/10.1007/s10854-019-00792-5
- S.M. Hatch, J. Briscoe, S. Dunn, A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 25, 867–871 (2013). https://doi.org/10.1002/adma.201204488
- K.E. Smedby, H. Hjalgrim, M. Melbye, A. Torrång, K. Rostgaard et al., Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst. 97, 199–209 (2005). https://doi.org/10.1093/jnci/dji022
- L.M. Henao, J.J. Mendez, M.H. Bernal, UVB radiation enhances the toxic effects of three organophosphorus insecticides on tadpoles from tropical anurans. Hydrobiologia 849, 141–153 (2022). https://doi.org/10.1007/s10750-021-04717-4
- X. Li, Y. Wang, J. Xie, X. Yin, M.A. Silver et al., Monitoring ultraviolet radiation dosage based on a luminescent lanthanide metal-organic framework. Inorg. Chem. 57, 8714–8717 (2018). https://doi.org/10.1021/acs.inorgchem.8b01193
- T.M.H. Nguyen, C.W. Bark, Self-powered UVC photodetector based on europium metal–organic framework for facile monitoring invisible fire. ACS Appl. Mater. Interfaces 14, 45573–45581 (2022). https://doi.org/10.1021/acsami.2c13231
- S. Ying, Z. Ma, Z. Zhou, R. Tao, K. Yan et al., Device based on polymer Schottky junctions and their applications: a review. IEEE Access 8, 189646–189660 (2020). https://doi.org/10.1109/ACCESS.2020.3030644
- B. Ezhilmaran, A. Patra, S. Benny, M.R. Sreelakshmi, V.V. Akshay et al., Recent developments in the photodetector applications of Schottky diodes based on 2D materials. J. Mater. Chem. C 9, 6122–6150 (2021). https://doi.org/10.1039/D1TC00949D
- Y. Tang, J. Chen, High responsivity of Gr/n-Si Schottky junction near-infrared photodetector. Superlattices Microstruct. 150, 106803 (2021). https://doi.org/10.1016/j.spmi.2021.106803
- K.P. Bera, G. Haider, Y.T. Huang, P.K. Roy, C.R. Paul Inbaraj et al., Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano 13, 12540–12552 (2019). https://doi.org/10.1021/acsnano.9b03165
- G. Haider, R. Ravindranath, T.P. Chen, P. Roy, P.K. Roy et al., Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions. Nat. Commun. 8, 256 (2017). https://doi.org/10.1038/s41467-017-00345-6
- W. Tu, Y. Dong, J. Lei, H. Ju, Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanops. Anal. Chem. 82, 8711–8716 (2010). https://doi.org/10.1021/ac102070f
- Y. Wang, R. Tu, C. Hou, Z. Wang, Zn–porphyrin metal–organic framework–based photoelectrochemical enzymatic biosensor for hypoxanthine. J. Solid State Electrochem. 26, 565–572 (2022). https://doi.org/10.1007/s10008-021-05111-9
- D.-J. Li, Y.-B. Tian, Q. Lin, J. Zhang, Z.-G. Gu, Optimizing photodetectors in two-dimensional metal-metalloporphyrinic framework thin films. ACS Appl. Mater. Interfaces 14, 33548–33554 (2022). https://doi.org/10.1021/acsami.2c07686
- M. Cui, Z. Shao, L. Qu, X. Liu, H. Yu et al., MOF-derived In2O3 microrods for high-performance photoelectrochemical ultraviolet photodetectors. ACS Appl. Mater. Interfaces 14, 39046–39052 (2022). https://doi.org/10.1021/acsami.2c09968
- H.-R. Wang, X.-K. Tian, J.-R. Zhang, M.-Y. Wen, X.-G. Yang, Acridine based metal-organic framework host-guest featuring efficient photoelectrochemical-type photodetector and white LED. Dalton Trans. 51, 11231–11235 (2022). https://doi.org/10.1039/d2dt01649d
- M. Yang, Q. Han, X. Liu, J. Han, Y. Zhao et al., Photodetectors: ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 30, 2070078 (2020). https://doi.org/10.1002/adfm.202070078
- C. Tan, M. Amani, C. Zhao, M. Hettick, X. Song et al., Evaporated Sex Te1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32, e2001329 (2020). https://doi.org/10.1002/adma.202001329
- F. Wang, Y. Zhang, Y. Gao, P. Luo, J. Su et al., 2D metal chalcogenides for IR photodetection. Small 15, 1901347 (2019). https://doi.org/10.1002/smll.201901347
- F. Wang, K. Pei, Y. Li, H. Li, T. Zhai, 2D homojunctions for electronics and optoelectronics. Adv. Mater. 33, 2005303 (2021). https://doi.org/10.1002/adma.202005303
- Z. Guo, R. Cao, H. Wang, X. Zhang, F. Meng et al., High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl. Sci. Rev. 9, nwa098 (2021). https://doi.org/10.1093/nsr/nwab098
- F. Wang, J. Wu, Y. Zhang, S. Yang, N. Zhang et al., High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci. China Mater. 65, 451–459 (2022). https://doi.org/10.1007/s40843-021-1781-y
- H. Arora, R. Dong, T. Venanzi, J. Zscharschuch, H. Schneider et al., Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 32, e1907063 (2020). https://doi.org/10.1002/adma.201907063
- M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach et al., Stability of quantum dot solar cells: a matter of (life)time. Adv. Energy Mater. 11, 2003457 (2021). https://doi.org/10.1002/aenm.202003457
- P.-Y. Huang, Y.-Y. Zhang, P.-C. Tsai, R.-J. Chung, Y.-T. Tsai et al., Interfacial engineering of quantum dots–metal–organic framework composite toward efficient charge transport for a short-wave infrared photodetector. Adv. Opt. Mater. 12, 2302062 (2024). https://doi.org/10.1002/adom.202302062
- C. Liu, J. Wang, J. Wan, Y. Cheng, R. Huang et al., Amorphous metal–organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem. Int. Ed. 59, 3630–3637 (2020). https://doi.org/10.1002/anie.201914587
- T.D. Bennett, S. Horike, Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018). https://doi.org/10.1038/s41578-018-0054-3
- S. Gao, Y. Huang, J. Tan, J. Xu, L. Zhao et al., Self-powered infrared photodetectors with ultra-high speed and detectivity based on amorphous Cu-based MOF films. ACS Appl. Mater. Interfaces 15, 32637–32646 (2023). https://doi.org/10.1021/acsami.3c05121
- S. Bachinin, A. Marunchenko, N. Zhestkij, E. Gunina, V.A. Milichko, Metal-organic framework single crystal infrared photodetector. Photonics Nanostruct. Fundam. Appl. 55, 101145 (2023). https://doi.org/10.1016/j.photonics.2023.101145
- Y. Fu, K. Zou, M. Liu, X. Zhang, C. Du et al., Highly selective and sensitive photoelectrochemical sensing platform for VEGF165 assay based on the switching of photocurrent polarity of CdS QDs by porous Cu2O-CuO flower. Anal. Chem. 92, 1189–1196 (2020). https://doi.org/10.1021/acs.analchem.9b04319
- W.-W. Zhan, Q. Kuang, J.-Z. Zhou, X.-J. Kong, Z.-X. Xie et al., Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 135, 1926–1933 (2013). https://doi.org/10.1021/ja311085e
- W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Photoelectrochemical DNA biosensors. Chem. Rev. 114, 7421–7441 (2014). https://doi.org/10.1021/cr500100j
- H. Li, M. Han, X. Weng, Y. Zhang, J. Li, DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 15, 1710–1717 (2021). https://doi.org/10.1021/acsnano.0c09374
- S. Liu, Y. Jia, H. Dong, X. Yu, D.-P. Zhang et al., Intramolecular photoelectrochemical system using tyrosine-modified antibody-targeted peptide as electron donor for detection of biomarkers. Anal. Chem. 92, 10935–10939 (2020). https://doi.org/10.1021/acs.analchem.0c02804
- F.-Z. Chen, Z. Li, X.-N. Liu, Y.-C. Zhu, D.-M. Han et al., Target-dependent gating of nanopores integrated with H-cell: toward a general platform for photoelectrochemical bioanalysis. Anal. Chem. 93, 5001–5004 (2021). https://doi.org/10.1021/acs.analchem.1c00444
- B. Fu, Z. Zhang, Rationally engineered photonic-plasmonic synergistic resonators in second near-infrared window for in vivo photoelectrochemical biodetection. Nano Lett. 19, 9069–9074 (2019). https://doi.org/10.1021/acs.nanolett.9b04172
- Y. Qin, J. Wen, L. Zheng, H. Yan, L. Jiao et al., Single-atom-based heterojunction coupling with ion-exchange reaction for sensitive photoelectrochemical immunoassay. Nano Lett. 21, 1879–1887 (2021). https://doi.org/10.1021/acs.nanolett.1c00076
- X. Chen, W. Zhang, L. Zhang, L. Feng, C. Zhang et al., Turning on the photoelectrochemical responses of Cd probe-deposited g-C3N4 nanosheets by nitrogen plasma treatment toward a selective sensor for H2S. ACS Appl. Mater. Interfaces 13(1), 2052–2061 (2021). https://doi.org/10.1021/acsami.0c19572
- T. Hang, C. Li, D. Liang, S. Li, H. Zhou et al., Metal-organic frameworks-based hierarchical heterojunction coupling with plasmonic nanoshells for self-powered photoelectrochemical immunoassay. Chem. Eng. J. 431, 133465 (2022). https://doi.org/10.1016/j.cej.2021.133465
- C. Hou, J. Peng, Q. Xu, Z. Ji, X. Hu, Elaborate fabrication of MOF-5 thin films on a glassy carbon electrode (GCE) for photoelectrochemical sensors. RSC Adv. 2, 12696–12698 (2012). https://doi.org/10.1039/C2RA21848H
- G.-Y. Zhang, Y.-H. Zhuang, D. Shan, G.-F. Su, S. Cosnier et al., Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal. Chem. 88, 11207–11212 (2016). https://doi.org/10.1021/acs.analchem.6b03484
- G. Zhang, D. Shan, H. Dong, S. Cosnier, K.A. Al-Ghanim et al., DNA-mediated nanoscale metal-organic frameworks for ultrasensitive photoelectrochemical enzyme-free immunoassay. Anal. Chem. 90, 12284–12291 (2018). https://doi.org/10.1021/acs.analchem.8b03762
- F.-Z. Chen, Y. Gao, Y.-J. Li, W. Li, X.-Y. Wu et al., Photoelectrochemical detection of tetracycline with exceptional speediness, ultralow detection limit, and high selectivity. Sens. Actuat. B Chem. 361, 131651 (2022). https://doi.org/10.1016/j.snb.2022.131651
- W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
- C. Chen, Y. Tuo, Q. Lu, H. Lu, S. Zhang et al., Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 287, 119953 (2021). https://doi.org/10.1016/j.apcatb.2021.119953
- X. Li, S. Liu, K. Fan, Z. Liu, B. Song et al., MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv. Energy Mater. 8, 1800101 (2018). https://doi.org/10.1002/aenm.201800101
- W. Kong, M.-H. Xiang, L. Xia, M. Zhang, R.-M. Kong et al., In-situ synthesis of 3D Cu2O@Cu-based MOF nanobelt arrays with improved conductivity for sensitive photoelectrochemical detection of vascular endothelial growth factor 165. Biosens. Bioelectron. 167, 112481 (2020). https://doi.org/10.1016/j.bios.2020.112481
- S. Zhou, J. Guo, Z. Dai, C. Liu, J. Zhao et al., Engineering homochiral MOFs in TiO2 nanotubes as enantioselective photoelectrochemical electrode for chiral recognition. Anal. Chem. 93, 12067–12074 (2021). https://doi.org/10.1021/acs.analchem.1c02326
- Y. Gao, X. Fan, X. Zhang, Q. Guan, Y. Xing et al., Switchable multiplex photoelectrochemical immunoassay of Aβ42 and Aβ40 based on a pH-responsive i-motif probe and Pyrene-based MOF photocathode. Anal. Chem. 94, 6621–6627 (2022). https://doi.org/10.1021/acs.analchem.2c01142
- M. Peng, G. Guan, H. Deng, B. Han, C. Tian et al., PCN-224/rGO nanocomposite based photoelectrochemical sensor with intrinsic recognition ability for efficient p-arsanilic acid detection. Environ. Sci. Nano 6, 207–215 (2019). https://doi.org/10.1039/C8EN00913A
- Q. Wei, C. Wang, P. Li, T. Wu, N. Yang et al., ZnS/C/MoS2 nanocomposite derived from metal-organic framework for high-performance photo-electrochemical immunosensing of carcinoembryonic antigen. Small 15, e1902086 (2019). https://doi.org/10.1002/smll.201902086
- Y. Yu, S. Zhao, B. Zhang, S. Han, M. Li et al., Cellulose nanocrystal/TiO2 nanotube composites for circularly polarized light detection. ACS Appl. Nano Mater. 5, 899–907 (2021). https://doi.org/10.1021/acsanm.1c03578
- J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15, 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
- L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59, 6442–6450 (2020). https://doi.org/10.1002/anie.201915912
- M. Mustaqeem, S. Kamal, N. Ahmad, P.-T. Chou, K.-H. Lin et al., Chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity. Mater. Today Nano 21, 100303 (2023). https://doi.org/10.1016/j.mtnano.2023.100303
- C. Li, H. Schopmans, L. Langer, S. Marschner, A. Chandresh et al., Twisting of porphyrin by assembly in a metal-organic framework yielding chiral photoconducting films for circularly-polarized-light detection. Angew. Chem. Int. Ed. 62, e202217377 (2023). https://doi.org/10.1002/anie.202217377
- Y.-B. Tian, K. Tanaka, L.-M. Chang, C. Wöll, Z.-G. Gu et al., Highly efficient light helicity detection of enantiomers by chiral metal-organic framework thin films. Nano Lett. 23, 5794–5801 (2023). https://doi.org/10.1021/acs.nanolett.3c01717
References
Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15, 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
C.L. Tan, H. Mohseni, Emerging technologies for high performance infrared detectors. Nanophotonics 7, 169–197 (2018). https://doi.org/10.1515/nanoph-2017-0061
K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu et al., Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 11, 63–68 (2017). https://doi.org/10.1038/nphoton.2016.230
M. Ding, K. Liang, S. Yu, X. Zhao, H. Ren et al., Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv. Opt. Mater. 10, 2200512 (2022). https://doi.org/10.1002/adom.202200512
J. Xu, W. Zheng, F. Huang, Gallium oxide solar-blind ultraviolet photodetectors: a review. J. Mater. Chem. C 7, 8753–8770 (2019). https://doi.org/10.1039/C9TC02055A
C.-Y. Li, J. He, Y. Zhou, D.-X. Qi, H. Jing et al., Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Appl. Phys. Lett. 119, 251105 (2021). https://doi.org/10.1063/5.0073706
T. Ouyang, X. Zhao, X. Xun, F. Gao, B. Zhao et al., Boosting charge utilization in self-powered photodetector for real-time high-throughput ultraviolet communication. Adv. Sci. 10, e2301585 (2023). https://doi.org/10.1002/advs.202301585
T. Agostinelli, M. Campoy-Quiles, J.C. Blakesley, R. Speller, D.D.C. Bradley et al., A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications. Appl. Phys. Lett. 93, 203305 (2008). https://doi.org/10.1063/1.3028640
D. Palaferri, Y. Todorov, A. Bigioli, A. Mottaghizadeh, D. Gacemi et al., Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 556, 85–88 (2018). https://doi.org/10.1038/nature25790
J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R.D. Rodriguez et al., Indirect X-ray detectors based on inkjet-printed photodetectors with a screen-printed scintillator layer. ACS Appl. Mater. Interfaces 10, 12904–12912 (2018). https://doi.org/10.1021/acsami.8b00828
C. Xie, F. Yan, Flexible photodetectors based on novel functional materials. Small 13, 1701822 (2017). https://doi.org/10.1002/smll.201701822
D. Yang, D. Ma, Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7, 1800522 (2019). https://doi.org/10.1002/adom.201800522
X. Zhu, F. Lin, Z. Zhang, X. Chen, H. Huang et al., Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure. Nano Lett. 20, 2654–2659 (2020). https://doi.org/10.1021/acs.nanolett.0c00232
F. Teng, K. Hu, W. Ouyang, X. Fang, Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 30, e1706262 (2018). https://doi.org/10.1002/adma.201706262
J. Zheng, H. Chong, L. Wang, S. Chen, W. Yang et al., A robust SiC nanoarray blue-light photodetector. J. Mater. Chem. C 8, 6072–6078 (2020). https://doi.org/10.1039/D0TC00552E
Q. Gao, Z. Jin, L. Qu, Z. Shao, X. Liu et al., CuO Nanosheets for Use in Photoelectrochemical Photodetectors. ACS Appl. Nano Mater. 6, 784–791 (2023). https://doi.org/10.1021/acsanm.2c05270
Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei et al., Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability. Nano-Micro Lett. 14, 215 (2022). https://doi.org/10.1007/s40820-022-00964-9
J. Pan, W. Deng, X. Xu, T. Jiang, X. Zhang et al., Photodetectors based on small-molecule organic semiconductor crystals. Chin. Phys. B 28, 038102 (2019). https://doi.org/10.1088/1674-1056/28/3/038102
Z. Zhao, C. Xu, L. Niu, X. Zhang, F. Zhang, Recent progress on broadband organic photodetectors and their applications. Laser Photonics Rev. 14, 2000262 (2020). https://doi.org/10.1002/lpor.202000262
Y.-q Zheng, Y.-j Chen, X.-z Zhu, Research progress of near-infrared organic photovoltaic photodetectors. Acta Polym Sin. 53, 354–373 (2022). https://doi.org/10.11777/j.issn1000-3304.2021.21338
L. Shi, Q. Liang, W. Wang, Y. Zhang, G. Li et al., Research progress in organic photomultiplication photodetectors. Nanomaterials 8, 713 (2018). https://doi.org/10.3390/nano8090713
D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257–1283 (2009). https://doi.org/10.1039/B817735J
M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012). https://doi.org/10.1021/cr200205j
S. Natarajan, P. Mahata, Metal–organic framework structures–how closely are they related to classical inorganic structures? Chem. Soc. Rev. 38, 2304–2318 (2009). https://doi.org/10.1039/B815106G
Z. Wang, S.M. Cohen, Postsynthetic covalent modification of a neutral metal−organic framework. J. Am. Chem. Soc. 129, 12368–12369 (2007). https://doi.org/10.1021/ja074366o
K.K. Tanabe, Z. Wang, S.M. Cohen, Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 130, 8508–8517 (2008). https://doi.org/10.1021/ja801848j
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). https://doi.org/10.1126/science.1067208
P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013). https://doi.org/10.1038/nature11893
J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009). https://doi.org/10.1039/B802426J
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev. 117, 8129–8176 (2017). https://doi.org/10.1021/acs.chemrev.7b00091
Q. Yang, Q. Xu, H.-L. Jiang, Metal–organic frameworks meet metal nanops: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 46, 4774–4808 (2017). https://doi.org/10.1039/C6CS00724D
M.J. Katz, S.-Y. Moon, J.E. Mondloch, M.H. Beyzavi, C.J. Stephenson et al., Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem. Sci. 6, 2286–2291 (2015). https://doi.org/10.1039/C4SC03613A
F. He, Y. Liu, X. Yang, Y. Chen, C.-C. Yang et al., Accelerating oxygen electrocatalysis kinetics on metal-organic frameworks via bond length optimization. Nano-Micro Lett. 16, 175 (2024). https://doi.org/10.1007/s40820-024-01382-9
L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne et al., Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012). https://doi.org/10.1021/cr200324t
B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011). https://doi.org/10.1038/nrc3110
R. Li, T. Chen, X. Pan, Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 15, 3808–3848 (2021). https://doi.org/10.1021/acsnano.0c09617
P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle et al., Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006). https://doi.org/10.1002/anie.200601878
A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang et al., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
L.-X. Shao, S.-J. Li, L. Feng, X.-L. Pei, X.-J. Yu et al., Layer-by-layer growth of ferrocene decorated metal–organic framework thin films and studies of their electrochemical properties. Appl. Surf. Sci. 596, 153525 (2022). https://doi.org/10.1016/j.apsusc.2022.153525
W. Xie, W. Deng, J. Hu, D. Li, Y. Gai et al., Construction of Ferrocene-based bimetallic CoFe-FcDA nanosheets for efficient oxygen evolution reaction. Mol. Catal. 528, 112502 (2022). https://doi.org/10.1016/j.mcat.2022.112502
S.G.F. de Assis, G.C. Santos, A.B.S. Santos, E.H.L. Falcão, R. da Silva Viana et al., Design of new europium-doped luminescent MOFs for UV radiation dosimetric sensing. J. Solid State Chem. 276, 309–318 (2019). https://doi.org/10.1016/j.jssc.2019.05.008
X. He, Fundamental perspectives on the electrochemical water applications of metal-organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
W. Zhuge, Y. Liu, W. Huang, C. Zhang, L. Wei et al., Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection. Sens. Actuat. B Chem. 367, 132028 (2022). https://doi.org/10.1016/j.snb.2022.132028
M.-J. Li, H.-J. Wang, R. Yuan, Y.-Q. Chai, A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem. Commun. 55, 10772–10775 (2019). https://doi.org/10.1039/c9cc05086h
H. Liu, C. Xu, D. Li, H.-L. Jiang, Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. Int. Ed. Engl. 57, 5379–5383 (2018). https://doi.org/10.1002/anie.201800320
P. Sippel, D. Denysenko, A. Loidl, P. Lunkenheimer, G. Sastre et al., Dielectric relaxation processes, electronic structure, and band gap engineering of MFU-4-type metal-organic frameworks: towards a rational design of semiconducting microporous materials. Adv. Funct. Mater. 24, 3885–3896 (2014). https://doi.org/10.1002/adfm.201400083
C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D’arras et al., Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J. Am. Chem. Soc. 135, 10942–10945 (2013). https://doi.org/10.1021/ja405350u
X. Ma, J. Kang, Y. Wu, C. Pang, S. Li et al., Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac Trends Anal. Chem. 157, 116793 (2022). https://doi.org/10.1016/j.trac.2022.116793
X. Shang, I. Song, G.Y. Jung, W. Choi, H. Ohtsu et al., Micro-/ nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. J. Mater. Chem. C 9, 7310–7318 (2021). https://doi.org/10.1039/D1TC01333E
M. Safaei, M.M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi et al., A review on metal-organic frameworks: synthesis and applications. Trac Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007
Y. Sun, H.-C. Zhou, Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater. 16, 3450–3458 (2015). https://doi.org/10.1088/1468-6996/16/5/054202
Z. Cao, R. Momen, S. Tao, D. Xiong, Z. Song et al., Metal–organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 14, 181 (2022). https://doi.org/10.1007/s40820-022-00910-9
F. Yu, T. Du, Y. Wang, C. Li, Z. Qin et al., Ratiometric fluorescence sensing of UiO-66-NH2 toward hypochlorite with novel dual emission in vitro and in vivo. Sens. Actuat. B Chem. 353, 131032 (2022). https://doi.org/10.1016/j.snb.2021.131032
Y.-F. Han, X.-M. Xu, S.-H. Wang, W.-F. Wang, M.-S. Wang et al., Reusable radiochromic semiconductive MOF for dual-mode X-ray detection using color change and electric signal. Chem. Eng. J. 437, 135468 (2022). https://doi.org/10.1016/j.cej.2022.135468
C. Liang, L. Cheng, S. Zhang, S. Yang, W. Liu et al., Boosting the optoelectronic performance by regulating exciton behaviors in a porous semiconductive metal-organic framework. J. Am. Chem. Soc. 144, 2189–2196 (2022). https://doi.org/10.1021/jacs.1c11150
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 13 (2020). https://doi.org/10.1007/s40820-020-00522-1
D. Adekoya, M. Li, M. Hankel, C. Lai, M.-S. Balogun et al., Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage. Energy Storage Mater. 25, 495–501 (2020). https://doi.org/10.1016/j.ensm.2019.09.033
R. Seetharaj, P.V. Vandana, P. Arya, S. Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian J. Chem. 12, 295–315 (2019). https://doi.org/10.1016/j.arabjc.2016.01.003
O.M. Yaghi, Reticular chemistry—construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138, 15507–15509 (2016). https://doi.org/10.1021/jacs.6b11821
K. Otsubo, H. Kitagawa, Metal–organic framework thin films with well-controlled growth directions confirmed by X-ray study. APL Mater. 2, 124105 (2014). https://doi.org/10.1063/1.4899295
V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014). https://doi.org/10.1039/c4cs00096j
M.D. Allendorf, A. Schwartzberg, V. Stavila, A.A. Talin, A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry 17, 11372–11388 (2011). https://doi.org/10.1002/chem.201101595
I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf et al., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017). https://doi.org/10.1039/C7CS00122C
M. Usman, S. Mendiratta, K.-L. Lu, Semiconductor metal-organic frameworks: future low-bandgap materials. Adv. Mater. 29, 1605071 (2017). https://doi.org/10.1002/adma.201605071
H. Liu, Y. Wang, Z. Qin, D. Liu, H. Xu et al., Electrically conductive coordination polymers for electronic and optoelectronic device applications. J. Phys. Chem. Lett. 12, 1612–1630 (2021). https://doi.org/10.1021/acs.jpclett.0c02988
M. Zhao, Q. Lu, Q. Ma, H. Zhang, Two-dimensional metal–organic framework nanosheets. Small Meth. 1, 1600030 (2017). https://doi.org/10.1002/smtd.201600030
M. Wang, X. Dong, Z. Meng, Z. Hu, Y.-G. Lin et al., An efficient interfacial synthesis of two-dimensional metal–organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 11190–11195 (2021). https://doi.org/10.1002/anie.202100897
Y.-B. Tian, N. Vankova, P. Weidler, A. Kuc, T. Heine et al., Oriented growth of In-oxo chain based metal-porphyrin framework thin film for high-sensitive photodetector. Adv. Sci. 8, 2100548 (2021). https://doi.org/10.1002/advs.202100548
S. Ghafari, N. Naderi, M.J. Eshraghi, M. Kazemzad, Temperature-dependent photonic properties of porous-shaped metal-organic frameworks on porous silicon substrates. Sens. Actuat. A Phys. 337, 113443 (2022). https://doi.org/10.1016/j.sna.2022.113443
J. Peng, X. Sun, Y. Li, C. Huang, J. Jin et al., Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous Mesoporous Mater. 268, 268–275 (2018). https://doi.org/10.1016/j.micromeso.2018.04.005
S. Wannapaiboon, K. Sumida, K. Dilchert, M. Tu, S. Kitagawa et al., Enhanced properties of metal-organic framework thin films fabricated via a coordination modulation-controlled layer-by-layer process. J. Mater. Chem. A 5(26), 13665–13673 (2017). https://doi.org/10.1039/c7ta02848b
R. Zheng, Z.-H. Fu, W.-H. Deng, Y. Wen, A.-Q. Wu et al., The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy. Angew. Chem. Int. Ed. 61, e202212797 (2022). https://doi.org/10.1002/anie.202212797
A.L. Semrau, R.A. Fischer, High-quality thin films of UiO-66-NH2 by coordination modulated layer-by-layer liquid phase epitaxy. Chemistry 27, 8509–8516 (2021). https://doi.org/10.1002/chem.202005416
M. Usman, M. Ali, B.A. Al-Maythalony, A.S. Ghanem, O.W. Saadi et al., Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels. ACS Appl. Mater. Interfaces 12(44), 49992–50001 (2020). https://doi.org/10.1021/acsami.0c13715
A.L. Semrau, S. Wannapaiboon, S.P. Pujari, P. Vervoorts, B. Albada et al., Highly porous nanocrystalline UiO-66 thin films via coordination modulation controlled step-by-step liquid-phase growth. Cryst. Growth Des. 19, 1738–1747 (2019). https://doi.org/10.1021/acs.cgd.8b01719
W. Guo, M. Zha, Z. Wang, E. Redel, Z. Xu et al., Improving the loading capacity of metal-organic framework thin films using optimized linkers. ACS Appl. Mater. Interfaces 8, 24699–24702 (2016). https://doi.org/10.1021/acsami.6b08622
B. Liu, R.A. Fischer, Liquid-phase epitaxy of metal organic framework thin films. Sci. China Chem. 54, 1851–1866 (2011). https://doi.org/10.1007/s11426-011-4406-8
L.-A. Cao, M.-S. Yao, H.-J. Jiang, S. Kitagawa, X.-L. Ye et al., A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 8, 9085–9090 (2020). https://doi.org/10.1039/D0TA01379J
C.-K. Liu, V. Piradi, J. Song, Z. Wang, L.-W. Wong et al., 2D metal-organic framework Cu3 (HHTT)2 films for broadband photodetectors from ultraviolet to mid-infrared. Adv. Mater. 34, e2204140 (2022). https://doi.org/10.1002/adma.202204140
S. Han, C.B. Mullins, Current progress and future directions in gas-phase metal-organic framework thin-film growth. Chemsuschem 13, 5433–5442 (2020). https://doi.org/10.1002/cssc.202001504
M. Choe, J.Y. Koo, I. Park, H. Ohtsu, J.H. Shim et al., Chemical vapor deposition of edge-on oriented 2D conductive metal–organic framework thin films. J. Am. Chem. Soc. 144, 16726–16731 (2022). https://doi.org/10.1021/jacs.2c07135
K.P. Bera, Y.-G. Lee, M. Usman, R. Ghosh, K.-L. Lu et al., Dirac point modulated self-powered ultrasensitive photoresponse and color-tunable electroluminescence from flexible graphene/metal–organic frameworks/graphene vertical phototransistor. ACS Appl. Electron. Mater. 4, 2337–2345 (2022). https://doi.org/10.1021/acsaelm.2c00173
K.P. Bera, G. Haider, M. Usman, P.K. Roy, H.-I. Lin et al., Trapped photons induced ultrahigh external quantum efficiency and photoresponsivity in hybrid graphene/metal-organic framework broadband wearable photodetectors. Adv. Funct. Mater. 28, 1804802 (2018). https://doi.org/10.1002/adfm.201804802
C. Kang, M. Ahsan Iqbal, S. Zhang, X. Weng, Y. Sun et al., Cu3 (HHTP)2 c-MOF/ZnO ultrafast ultraviolet photodetector for wearable optoelectronics. Chemistry 28, e202201705 (2022). https://doi.org/10.1002/chem.202201705
T. Guo, C. Ling, X. Li, X. Qiao, X. Li et al., A ZIF-8@H: ZnO core–shell nanorod arrays/Si heterojunction self-powered photodetector with ultrahigh performance. J. Mater. Chem. C 7, 5172–5183 (2019). https://doi.org/10.1039/C9TC00290A
H. Kim, W. Kim, J. Park, N. Lim, R. Lee et al., Surface conversion of ZnO nanorods to ZIF-8 to suppress surface defects for a visible-blind UV photodetector. Nanoscale 10, 21168–21177 (2018). https://doi.org/10.1039/c8nr06701e
B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, Radiation detector materials: an overview. J. Mater. Res. 23, 2561–2581 (2008). https://doi.org/10.1557/JMR.2008.0319
A. Sakdinawat, D. Attwood, Nanoscale X-ray imaging. Nat. Photonics 4, 840–848 (2010). https://doi.org/10.1038/nphoton.2010.267
L. Cheng, C. Liang, B. Li, H. Qin, P. Mi et al., Millimeter-scale semiconductive metal-organic framework single crystal for X-ray imaging. Cell Rep. Phys. Sci. 3, 101004 (2022). https://doi.org/10.1016/j.xcrp.2022.101004
A.B. de González, S. Darby, Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363, 345–351 (2004). https://doi.org/10.1016/S0140-6736(04)15433-0
H. Chen, J. Chen, M. Li, M. You, Q. Chen et al., Recent advances in metal-organic frameworks for X-ray detection. Sci. China Chem. 65, 2338–2350 (2022). https://doi.org/10.1007/s11426-022-1334-0
S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani et al., Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011). https://doi.org/10.3390/s110505112
C. Wang, O. Volotskova, K. Lu, M. Ahmad, C. Sun et al., Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal-organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc. 136, 6171–6174 (2014). https://doi.org/10.1021/ja500671h
J. Perego, I. Villa, A. Pedrini, E.C. Padovani, R. Crapanzano et al., Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photonics 15, 393–400 (2021). https://doi.org/10.1038/s41566-021-00769-z
W.-F. Wang, J. Lu, X.-M. Xu, B.-Y. Li, J. Gao et al., Sensitive X-ray detection and imaging by a scintillating Lead(II)-based Metal-Organic framework. Chem. Eng. J. 430, 133010 (2022). https://doi.org/10.1016/j.cej.2021.133010
J. Lu, X.-H. Xin, Y.-J. Lin, S.-H. Wang, J.-G. Xu et al., Efficient X-ray scintillating lead(II)-based MOFs derived from rigid luminescent naphthalene motifs. Dalton Trans. 48, 1722–1731 (2019). https://doi.org/10.1039/c8dt04587a
J. Lu, J. Gao, W.-F. Wang, B.-Y. Li, P.-X. Li et al., Barium-based scintillating MOFs for X-ray dosage detection with intrinsic energy resolution via luminescent multidentate naphthalene disulfonate moieties. J. Mater. Chem. C 9, 5615–5620 (2021). https://doi.org/10.1039/D1TC00671A
J. Lu, S.-H. Wang, Y. Li, W.-F. Wang, C. Sun et al., Heat-resistant Pb(II)-based X-ray scintillating metal-organic frameworks for sensitive dosage detection via an aggregation-induced luminescent chromophore. Dalton Trans. 49, 7309–7314 (2020). https://doi.org/10.1039/d0dt00974a
Y. Wang, X. Liu, X. Li, F. Zhai, S. Yan et al., Direct radiation detection by a semiconductive metal-organic framework. J. Am. Chem. Soc. 141, 8030–8034 (2019). https://doi.org/10.1021/jacs.9b01270
C. Liang, S. Zhang, L. Cheng, J. Xie, F. Zhai et al., Thermoplastic membranes incorporating semiconductive metal-organic frameworks: an advance on flexible X-ray detectors. Angew. Chem. Int. Ed. 59, 11856–11860 (2020). https://doi.org/10.1002/anie.202004006
Z. Li, S. Chang, H. Zhang, Y. Hu, Y. Huang et al., Flexible lead-free X-ray detector from metal-organic frameworks. Nano Lett. 21, 6983–6989 (2021). https://doi.org/10.1021/acs.nanolett.1c02336
J. Yu, R. Anderson, X. Li, W. Xu, S. Goswami et al., Improving energy transfer within metal-organic frameworks by aligning linker transition dipoles along the framework axis. J. Am. Chem. Soc. 142, 11192–11202 (2020). https://doi.org/10.1021/jacs.0c03949
S. Li, Y. Zhang, W. Yang, H. Liu, X. Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020). https://doi.org/10.1002/adma.201905443
M.A. Abu Talip, N.S. Khairir, R. Ab Kadir, M.H. Mamat, R.A. Rani et al., Nanotubular Ta2O5 as ultraviolet (UV) photodetector. J. Mater. Sci. Mater. Electron. 30(5), 4953–4966 (2019). https://doi.org/10.1007/s10854-019-00792-5
S.M. Hatch, J. Briscoe, S. Dunn, A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 25, 867–871 (2013). https://doi.org/10.1002/adma.201204488
K.E. Smedby, H. Hjalgrim, M. Melbye, A. Torrång, K. Rostgaard et al., Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst. 97, 199–209 (2005). https://doi.org/10.1093/jnci/dji022
L.M. Henao, J.J. Mendez, M.H. Bernal, UVB radiation enhances the toxic effects of three organophosphorus insecticides on tadpoles from tropical anurans. Hydrobiologia 849, 141–153 (2022). https://doi.org/10.1007/s10750-021-04717-4
X. Li, Y. Wang, J. Xie, X. Yin, M.A. Silver et al., Monitoring ultraviolet radiation dosage based on a luminescent lanthanide metal-organic framework. Inorg. Chem. 57, 8714–8717 (2018). https://doi.org/10.1021/acs.inorgchem.8b01193
T.M.H. Nguyen, C.W. Bark, Self-powered UVC photodetector based on europium metal–organic framework for facile monitoring invisible fire. ACS Appl. Mater. Interfaces 14, 45573–45581 (2022). https://doi.org/10.1021/acsami.2c13231
S. Ying, Z. Ma, Z. Zhou, R. Tao, K. Yan et al., Device based on polymer Schottky junctions and their applications: a review. IEEE Access 8, 189646–189660 (2020). https://doi.org/10.1109/ACCESS.2020.3030644
B. Ezhilmaran, A. Patra, S. Benny, M.R. Sreelakshmi, V.V. Akshay et al., Recent developments in the photodetector applications of Schottky diodes based on 2D materials. J. Mater. Chem. C 9, 6122–6150 (2021). https://doi.org/10.1039/D1TC00949D
Y. Tang, J. Chen, High responsivity of Gr/n-Si Schottky junction near-infrared photodetector. Superlattices Microstruct. 150, 106803 (2021). https://doi.org/10.1016/j.spmi.2021.106803
K.P. Bera, G. Haider, Y.T. Huang, P.K. Roy, C.R. Paul Inbaraj et al., Graphene sandwich stable perovskite quantum-dot light-emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano 13, 12540–12552 (2019). https://doi.org/10.1021/acsnano.9b03165
G. Haider, R. Ravindranath, T.P. Chen, P. Roy, P.K. Roy et al., Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions. Nat. Commun. 8, 256 (2017). https://doi.org/10.1038/s41467-017-00345-6
W. Tu, Y. Dong, J. Lei, H. Ju, Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanops. Anal. Chem. 82, 8711–8716 (2010). https://doi.org/10.1021/ac102070f
Y. Wang, R. Tu, C. Hou, Z. Wang, Zn–porphyrin metal–organic framework–based photoelectrochemical enzymatic biosensor for hypoxanthine. J. Solid State Electrochem. 26, 565–572 (2022). https://doi.org/10.1007/s10008-021-05111-9
D.-J. Li, Y.-B. Tian, Q. Lin, J. Zhang, Z.-G. Gu, Optimizing photodetectors in two-dimensional metal-metalloporphyrinic framework thin films. ACS Appl. Mater. Interfaces 14, 33548–33554 (2022). https://doi.org/10.1021/acsami.2c07686
M. Cui, Z. Shao, L. Qu, X. Liu, H. Yu et al., MOF-derived In2O3 microrods for high-performance photoelectrochemical ultraviolet photodetectors. ACS Appl. Mater. Interfaces 14, 39046–39052 (2022). https://doi.org/10.1021/acsami.2c09968
H.-R. Wang, X.-K. Tian, J.-R. Zhang, M.-Y. Wen, X.-G. Yang, Acridine based metal-organic framework host-guest featuring efficient photoelectrochemical-type photodetector and white LED. Dalton Trans. 51, 11231–11235 (2022). https://doi.org/10.1039/d2dt01649d
M. Yang, Q. Han, X. Liu, J. Han, Y. Zhao et al., Photodetectors: ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 30, 2070078 (2020). https://doi.org/10.1002/adfm.202070078
C. Tan, M. Amani, C. Zhao, M. Hettick, X. Song et al., Evaporated Sex Te1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32, e2001329 (2020). https://doi.org/10.1002/adma.202001329
F. Wang, Y. Zhang, Y. Gao, P. Luo, J. Su et al., 2D metal chalcogenides for IR photodetection. Small 15, 1901347 (2019). https://doi.org/10.1002/smll.201901347
F. Wang, K. Pei, Y. Li, H. Li, T. Zhai, 2D homojunctions for electronics and optoelectronics. Adv. Mater. 33, 2005303 (2021). https://doi.org/10.1002/adma.202005303
Z. Guo, R. Cao, H. Wang, X. Zhang, F. Meng et al., High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl. Sci. Rev. 9, nwa098 (2021). https://doi.org/10.1093/nsr/nwab098
F. Wang, J. Wu, Y. Zhang, S. Yang, N. Zhang et al., High-sensitivity shortwave infrared photodetectors of metal-organic frameworks integrated on 2D layered materials. Sci. China Mater. 65, 451–459 (2022). https://doi.org/10.1007/s40843-021-1781-y
H. Arora, R. Dong, T. Venanzi, J. Zscharschuch, H. Schneider et al., Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 32, e1907063 (2020). https://doi.org/10.1002/adma.201907063
M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach et al., Stability of quantum dot solar cells: a matter of (life)time. Adv. Energy Mater. 11, 2003457 (2021). https://doi.org/10.1002/aenm.202003457
P.-Y. Huang, Y.-Y. Zhang, P.-C. Tsai, R.-J. Chung, Y.-T. Tsai et al., Interfacial engineering of quantum dots–metal–organic framework composite toward efficient charge transport for a short-wave infrared photodetector. Adv. Opt. Mater. 12, 2302062 (2024). https://doi.org/10.1002/adom.202302062
C. Liu, J. Wang, J. Wan, Y. Cheng, R. Huang et al., Amorphous metal–organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem. Int. Ed. 59, 3630–3637 (2020). https://doi.org/10.1002/anie.201914587
T.D. Bennett, S. Horike, Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018). https://doi.org/10.1038/s41578-018-0054-3
S. Gao, Y. Huang, J. Tan, J. Xu, L. Zhao et al., Self-powered infrared photodetectors with ultra-high speed and detectivity based on amorphous Cu-based MOF films. ACS Appl. Mater. Interfaces 15, 32637–32646 (2023). https://doi.org/10.1021/acsami.3c05121
S. Bachinin, A. Marunchenko, N. Zhestkij, E. Gunina, V.A. Milichko, Metal-organic framework single crystal infrared photodetector. Photonics Nanostruct. Fundam. Appl. 55, 101145 (2023). https://doi.org/10.1016/j.photonics.2023.101145
Y. Fu, K. Zou, M. Liu, X. Zhang, C. Du et al., Highly selective and sensitive photoelectrochemical sensing platform for VEGF165 assay based on the switching of photocurrent polarity of CdS QDs by porous Cu2O-CuO flower. Anal. Chem. 92, 1189–1196 (2020). https://doi.org/10.1021/acs.analchem.9b04319
W.-W. Zhan, Q. Kuang, J.-Z. Zhou, X.-J. Kong, Z.-X. Xie et al., Semiconductor@metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 135, 1926–1933 (2013). https://doi.org/10.1021/ja311085e
W.-W. Zhao, J.-J. Xu, H.-Y. Chen, Photoelectrochemical DNA biosensors. Chem. Rev. 114, 7421–7441 (2014). https://doi.org/10.1021/cr500100j
H. Li, M. Han, X. Weng, Y. Zhang, J. Li, DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 15, 1710–1717 (2021). https://doi.org/10.1021/acsnano.0c09374
S. Liu, Y. Jia, H. Dong, X. Yu, D.-P. Zhang et al., Intramolecular photoelectrochemical system using tyrosine-modified antibody-targeted peptide as electron donor for detection of biomarkers. Anal. Chem. 92, 10935–10939 (2020). https://doi.org/10.1021/acs.analchem.0c02804
F.-Z. Chen, Z. Li, X.-N. Liu, Y.-C. Zhu, D.-M. Han et al., Target-dependent gating of nanopores integrated with H-cell: toward a general platform for photoelectrochemical bioanalysis. Anal. Chem. 93, 5001–5004 (2021). https://doi.org/10.1021/acs.analchem.1c00444
B. Fu, Z. Zhang, Rationally engineered photonic-plasmonic synergistic resonators in second near-infrared window for in vivo photoelectrochemical biodetection. Nano Lett. 19, 9069–9074 (2019). https://doi.org/10.1021/acs.nanolett.9b04172
Y. Qin, J. Wen, L. Zheng, H. Yan, L. Jiao et al., Single-atom-based heterojunction coupling with ion-exchange reaction for sensitive photoelectrochemical immunoassay. Nano Lett. 21, 1879–1887 (2021). https://doi.org/10.1021/acs.nanolett.1c00076
X. Chen, W. Zhang, L. Zhang, L. Feng, C. Zhang et al., Turning on the photoelectrochemical responses of Cd probe-deposited g-C3N4 nanosheets by nitrogen plasma treatment toward a selective sensor for H2S. ACS Appl. Mater. Interfaces 13(1), 2052–2061 (2021). https://doi.org/10.1021/acsami.0c19572
T. Hang, C. Li, D. Liang, S. Li, H. Zhou et al., Metal-organic frameworks-based hierarchical heterojunction coupling with plasmonic nanoshells for self-powered photoelectrochemical immunoassay. Chem. Eng. J. 431, 133465 (2022). https://doi.org/10.1016/j.cej.2021.133465
C. Hou, J. Peng, Q. Xu, Z. Ji, X. Hu, Elaborate fabrication of MOF-5 thin films on a glassy carbon electrode (GCE) for photoelectrochemical sensors. RSC Adv. 2, 12696–12698 (2012). https://doi.org/10.1039/C2RA21848H
G.-Y. Zhang, Y.-H. Zhuang, D. Shan, G.-F. Su, S. Cosnier et al., Zirconium-based porphyrinic metal-organic framework (PCN-222): enhanced photoelectrochemical response and its application for label-free phosphoprotein detection. Anal. Chem. 88, 11207–11212 (2016). https://doi.org/10.1021/acs.analchem.6b03484
G. Zhang, D. Shan, H. Dong, S. Cosnier, K.A. Al-Ghanim et al., DNA-mediated nanoscale metal-organic frameworks for ultrasensitive photoelectrochemical enzyme-free immunoassay. Anal. Chem. 90, 12284–12291 (2018). https://doi.org/10.1021/acs.analchem.8b03762
F.-Z. Chen, Y. Gao, Y.-J. Li, W. Li, X.-Y. Wu et al., Photoelectrochemical detection of tetracycline with exceptional speediness, ultralow detection limit, and high selectivity. Sens. Actuat. B Chem. 361, 131651 (2022). https://doi.org/10.1016/j.snb.2022.131651
W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
C. Chen, Y. Tuo, Q. Lu, H. Lu, S. Zhang et al., Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl. Catal. B Environ. 287, 119953 (2021). https://doi.org/10.1016/j.apcatb.2021.119953
X. Li, S. Liu, K. Fan, Z. Liu, B. Song et al., MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv. Energy Mater. 8, 1800101 (2018). https://doi.org/10.1002/aenm.201800101
W. Kong, M.-H. Xiang, L. Xia, M. Zhang, R.-M. Kong et al., In-situ synthesis of 3D Cu2O@Cu-based MOF nanobelt arrays with improved conductivity for sensitive photoelectrochemical detection of vascular endothelial growth factor 165. Biosens. Bioelectron. 167, 112481 (2020). https://doi.org/10.1016/j.bios.2020.112481
S. Zhou, J. Guo, Z. Dai, C. Liu, J. Zhao et al., Engineering homochiral MOFs in TiO2 nanotubes as enantioselective photoelectrochemical electrode for chiral recognition. Anal. Chem. 93, 12067–12074 (2021). https://doi.org/10.1021/acs.analchem.1c02326
Y. Gao, X. Fan, X. Zhang, Q. Guan, Y. Xing et al., Switchable multiplex photoelectrochemical immunoassay of Aβ42 and Aβ40 based on a pH-responsive i-motif probe and Pyrene-based MOF photocathode. Anal. Chem. 94, 6621–6627 (2022). https://doi.org/10.1021/acs.analchem.2c01142
M. Peng, G. Guan, H. Deng, B. Han, C. Tian et al., PCN-224/rGO nanocomposite based photoelectrochemical sensor with intrinsic recognition ability for efficient p-arsanilic acid detection. Environ. Sci. Nano 6, 207–215 (2019). https://doi.org/10.1039/C8EN00913A
Q. Wei, C. Wang, P. Li, T. Wu, N. Yang et al., ZnS/C/MoS2 nanocomposite derived from metal-organic framework for high-performance photo-electrochemical immunosensing of carcinoembryonic antigen. Small 15, e1902086 (2019). https://doi.org/10.1002/smll.201902086
Y. Yu, S. Zhao, B. Zhang, S. Han, M. Li et al., Cellulose nanocrystal/TiO2 nanotube composites for circularly polarized light detection. ACS Appl. Nano Mater. 5, 899–907 (2021). https://doi.org/10.1021/acsanm.1c03578
J. Sun, L. Ding, Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 15, 90 (2023). https://doi.org/10.1007/s40820-023-01048-y
L. Wang, Y. Xue, M. Cui, Y. Huang, H. Xu et al., A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59, 6442–6450 (2020). https://doi.org/10.1002/anie.201915912
M. Mustaqeem, S. Kamal, N. Ahmad, P.-T. Chou, K.-H. Lin et al., Chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity. Mater. Today Nano 21, 100303 (2023). https://doi.org/10.1016/j.mtnano.2023.100303
C. Li, H. Schopmans, L. Langer, S. Marschner, A. Chandresh et al., Twisting of porphyrin by assembly in a metal-organic framework yielding chiral photoconducting films for circularly-polarized-light detection. Angew. Chem. Int. Ed. 62, e202217377 (2023). https://doi.org/10.1002/anie.202217377
Y.-B. Tian, K. Tanaka, L.-M. Chang, C. Wöll, Z.-G. Gu et al., Highly efficient light helicity detection of enantiomers by chiral metal-organic framework thin films. Nano Lett. 23, 5794–5801 (2023). https://doi.org/10.1021/acs.nanolett.3c01717