A Review of MAX Series Materials: From Diversity, Synthesis, Prediction, Properties Oriented to Functions
Corresponding Author: Ming Lu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 173
Abstract
MAX series materials, as non-van der Waals layered multi-element compounds, contribute remarkable regulated properties and functional dimension, combining the features of metal and ceramic materials due to their inherently laminated crystal structure that Mn+1Xn slabs are intercalated with A element layers. Oriented to the functional requirements of information, intelligence, electrification, and aerospace in the new era, how to accelerate MAX series materials into new quality productive forces? The systematic enhancement of knowledge about MAX series materials is intrinsic to understanding its low-dimensional geometric structure characteristics, and physical and chemical properties, revealing the correlation of composition, structure, and function and further realizing rational design based on simulation and prediction. Diversity also brings complexity to MAX materials research. This review provides substantial tabular information on (I) MAX’s research timeline from 1960 to the present, (II) structure diversity and classification convention, (III) synthesis route exploration, (IV) prediction based on theory and machine learning, (V) properties, and (VI) functional applications. Herein, the researchers can quickly locate research content and recognize connections and differences of MAX series materials. In addition, the research challenges for the future development of MAX series materials are highlighted.
Highlights:
1 Oriented to the understanding of MAX series materials, the research timeline, structure diversity, and synthesis are systematically reviewed.
2 The prediction, properties, and functional applications of MAX series materials are summarized.
3 This review emphasizes research challenges for the future development of MAX series materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.W. Barsoum, The MN+1AXN phases: a new class of solids. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/s0079-6786(00)00006-6
- E. Drouelle, V. Gauthier-Brunet, J. Cormier, P. Villechaise, P. Sallot et al., Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase. J. Alloys Compd. 826, 154062 (2020). https://doi.org/10.1016/j.jallcom.2020.154062
- Z.H. Tian, P.G. Zhang, W.W. Sun, B.Z. Yan, Z.M. Sun, Vegard’s law deviating Ti2(SnxAl1−x)C solid solution with enhanced properties. J. Adv. Ceram. 12, 1655–1669 (2023). https://doi.org/10.26599/jac.2023.9220779
- M.W. Barsoum, T. ElRaghy, L. Ogbuji, Oxidation of Ti3SiC2 in air J. Electrochem. Soc. 144, 2508–2516 (1997). https://doi.org/10.1149/1.1837846
- S. Kuchida, T. Muranaka, K. Kawashima, K. Inoue, M. Yoshikawa et al., Superconductivity in Lu2SnC. Phys. C 494, 77–79 (2013). https://doi.org/10.1016/j.physc.2013.04.050
- K. Chen, X. Bai, X. Mu, P. Yan, N. Qiu et al., MAX phase Zr2SeC and its thermal conduction behavior. J. Eur. Ceram. Soc. 41, 4447–4451 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.013
- Z.M. Sun, Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev. 56, 143–166 (2011). https://doi.org/10.1179/1743280410y.0000000001
- M.W. Barsoum, T. ElRaghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08018.x
- C. Magnus, J. Sharp, W.M. Rainforth, The lubricating properties of spark plasma sintered (SPS) Ti3SiC2 MAX phase compound and composite. Tribol. Trans. 63, 38–51 (2020). https://doi.org/10.1080/10402004.2019.1657534
- N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002). https://doi.org/10.1126/science.1068609
- D.D. Wang, W.B. Tian, J.X. Ding, A.B. Ma, Y.F. Zhu et al., Anisotropic arc erosion resistance of Ag/Ti3AlC2 composites induced by the alignment of Ti3AlC2. Corros. Sci. 171, 108633 (2020). https://doi.org/10.1016/j.corsci.2020.108633
- X.C. Huang, Y. Feng, J.L. Ge, L. Li, Z.Q. Li et al., Arc erosion mechanism of Ag-Ti3SiC2 material. J. Alloys Compd. 817, 152741 (2020). https://doi.org/10.1016/j.jallcom.2019.152741
- P.W. Bai, S. Wang, B. Zhao, X.H. Wang, J.B. Ma et al., Electrically conductive and corrosion resistant MAX phases with superior electromagnetic wave shielding performance. J. Eur. Ceram. Soc. 42, 7414–7420 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.09.009
- P. Yao, Y.H. Qian, W.C. Li, C.S. Li, J. Zuo et al., Exploration of dielectric and microwave absorption properties of quaternary MAX phase ceramic (Cr2/3Ti1/3)3AlC2. Ceram. Int. 46, 22919–22926 (2020). https://doi.org/10.1016/j.ceramint.2020.06.065
- C.X. Wang, C.L. Tracy, R.C. Ewing, Radiation effects in Mn+1AXn phases. Appl. Phys. Rev. 7, 041311 (2020). https://doi.org/10.1063/5.0019284
- X.Q. Xu, D.W. Sha, Z.H. Tian, F.S. Wu, W. Zheng et al., Lithium storage performance and mechanism of nano-sized Ti2InC MAX phase. Nanoscale Horizons 8, 331–337 (2023). https://doi.org/10.1039/d2nh00489e
- Y.B. Li, G.L. Ma, H. Shao, P. Xiao, J. Lu et al., Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Lett. 13, 158 (2021). https://doi.org/10.1007/s40820-021-00684-6
- X. Liu, M. Du, S. Zheng, T. Kar Ban, Z. Cuimei et al., Understand the effect of the confined trifluoromethane sulfonate (OTf−) anions by the adjacent MXene nanosheets on oriented design of Zn ion storage. Carbon 219, 118828 (2024). https://doi.org/10.1016/j.carbon.2024.118828
- C. Zhou, K.B. Tan, W. Han, L. Wang, M. Lu, A review of MXene derived quantum dots: synthesis, characterization, properties and applications. Particuology 91, 50–71 (2024). https://doi.org/10.1016/j.partic.2023.12.016
- Q.H. Gu, Y.Q. Cao, J.N. Chen, Y.J. Qi, Z.F. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium-sulfur battery. Nano-Micro Lett. 16, 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
- A.V. Mohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1165 (2021). https://doi.org/10.1126/science.abf1581
- H. Rohde, H. Kudielka, Strukturuntersuchungen an carbosulfiden von titan und zirkon. Z. Krist. Cryst. Mater. 114, 447–456 (1960). https://doi.org/10.1524/zkri.1960.114.16.447
- W. Jeitschko, H. Nowotny, F. Benesovsky, Carbides of formula T2MC*. Monatsh. Chem. 95, 33–38 (1963). https://doi.org/10.1016/0022-5088(64)90055-4
- W. Jeitschko, H. Nowotny, F. Benesovsky, Kohlenstoffhaltige ternäre Verbindungen (H-Phase). Monatsh. Chem. 94, 672–676 (1963). https://doi.org/10.1007/BF00913068
- W. Jeitschko, H. Nowotny, F. Benesovsky, Kohlenstoffhaltige ternare Verbindungen (V-GeC, Nb-Ga-C, Ta-Ga-C, Ta-Ge-C, Cr-Ga-C und Cr-Ge-C). Monatsh. Chem. 94, 844–850 (1963). https://doi.org/10.1007/bf00902358
- W. Jeitschko, H. Nowotny, F. Benesovsky, Die H-Phasen Ti2InC, Zr2InC Hf2InC und Ti2GeC. Monatsh. Chem. 94, 1201–1205 (1963). https://doi.org/10.1007/bf00905711
- J.J. Nickl, K.K. Schweitzer, P. Luxenberg, Gasphasenabscheidung im system Ti-Si-C. J. Less-Common Met. 26, 335–353 (1972). https://doi.org/10.1016/0022-5088(72)90083-5
- M.A. Pietzka, J.C. Schuster, Summary of constitutional data on the aluminum-carbon-titanium system. J. Phase Equilib. 15, 392–400 (1994). https://doi.org/10.1007/BF02647559
- J.P. Palmquist, S. Li, P. Persson, J. Emmerlich, O. Wilhelmsson et al., Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations. Phys. Rev. B 70, 165401 (2004). https://doi.org/10.1103/PhysRevB.70.165401
- Z. Lin, M. Zhuo, Y. Zhou, M. Li, J. Wang, Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides. J. Am. Ceram. Soc. 89, 3765–3769 (2006). https://doi.org/10.1111/j.1551-2916.2006.01303.x
- W.B. Tian, P.L. Wang, Y.M. Kan, G.J. Zhang, Cr2AlC powders prepared by molten salt method. J. Alloys Compd. 461, L5–L10 (2008). https://doi.org/10.1016/j.jallcom.2007.06.094
- J. Zhang, B. Liu, J.Y. Wang, Y.C. Zhou, Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and x-ray diffraction investigations. J. Mater. Res. 24, 39–49 (2009). https://doi.org/10.1557/jmr.2009.0012
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Z.M. Liu, E.D. Wu, J.M. Wang, Y.H. Qian, H.M. Xiang et al., Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater. 73, 186–193 (2014). https://doi.org/10.1016/j.actamat.2014.04.006
- Q.Z. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017). https://doi.org/10.1038/ncomms14949
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- Y.B. Li, M. Li, J. Lu, B.K. Ma, Z.P. Wang et al., Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1–x)C2 and its artificial enzyme behavior. ACS Nano 13, 9198–9205 (2019). https://doi.org/10.1021/acsnano.9b03530
- Y.B. Li, J. Lu, M. Li, K.K. Chang, X.H. Zha et al., Multielemental single–atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. U.S.A. 117, 820–825 (2020). https://doi.org/10.1073/pnas.1916256117
- Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33, 2101473 (2021). https://doi.org/10.1002/adma.202101473
- H.M. Ding, Y.B. Li, M. Li, K. Chen, K. Liang et al., Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023). https://doi.org/10.1126/science.add5901
- Y. Li, S. Zhu, J.-B. Le, J. Lu, X. Wang et al., A-site alloying-guided universal design of noble metal-based MAX phases. Matter 7, 1–16 (2024). https://doi.org/10.1016/j.matt.2023.12.006
- Q.Z. Tao, J. Lu, M. Dahlqvist, A. Mockute, S. Calder et al., Atomically layered and ordered rare-earth i-MAX Phases: a new class of magnetic quaternary compounds. Chem. Mater. 31, 2476–2485 (2019). https://doi.org/10.1021/acs.chemmater.8b05298
- R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim et al., W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 30, 1706409 (2018). https://doi.org/10.1002/adma.201706409
- J. Yang, R. Liu, N. Jia, K. Wu, X. Fu et al., Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon 183, 76–83 (2021). https://doi.org/10.1016/j.carbon.2021.07.010
- Z.X. Zhang, W.L. Wang, J.T. Zhang, J.Q. Chen, X.N. Sun et al., Influence of elements (Zr, Mo, Cr, Fe, and Ni) doping on the electromagnetic wave absorption performance of Ti3AlC2-based ceramics. Ceram. Int. 49, 28660–28673 (2023). https://doi.org/10.1016/j.ceramint.2023.06.121
- G.W. Bentzel, M. Sokol, J. Griggs, A.C. Lang, M.W. Barsoum, On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with palladium at 900 °C. J. Alloys Compd. 771, 1103–1110 (2019). https://doi.org/10.1016/j.jallcom.2018.08.127
- M. Nechiche, V. Gauthier-Brunet, V. Mauchamp, A. Joulain, T. Cabioc’h et al., Synthesis and characterization of a new (Ti1-ε, Cuε)3(Al, Cu)C2 MAX phase solid solution. J. Eur. Ceram. Soc. 37, 459–466 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.09.028
- L. Zheng, Q. Hua, X. Li, M. Li, Y. Qian et al., Exploring a novel ceramic (Ti, W)3SiC2 for interconnect of intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy 43, 7483–7491 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.162
- L. Chen, Y.B. Li, B. Zhao, S.S. Liu, H.B. Zhang et al., Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss. Adv. Sci. 10, 2206877 (2023). https://doi.org/10.1002/advs.202206877
- L. Chen, Y. Li, K. Chen, X. Bai, M. Li et al., Synthesis and characterization of medium-/high-entropy M2SnC (M=Ti/V/Nb/Zr/Hf) MAX phases. Small Struct. 4, 2200161 (2022). https://doi.org/10.1002/sstr.202200161
- C.-C. Lai, Q. Tao, H. Fashandi, U. Wiedwald, R. Salikhov et al., Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC. APL Mater. 6, 026104 (2018). https://doi.org/10.1063/1.5006304
- J. Lu, A. Thore, R. Meshkian, Q. Tao, L. Hultman et al., Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3)2AlC i-MAX Phase with M = Sc and Y. Cryst. Growth Des. 17, 5704–5711 (2017). https://doi.org/10.1021/acs.cgd.7b00642
- K. Chen, Y. Chen, J. Zhang, Y. Song, X. Zhou et al., Medium-entropy (Ti, Zr, Hf)2SC MAX phase. Ceram. Int. 47, 7582–7587 (2020). https://doi.org/10.1016/j.ceramint.2020.11.096
- H. Fashandi, M. Dahlqvist, J. Lu, J. Palisaitis, S.I. Simak et al., Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 16, 814–818 (2017). https://doi.org/10.1038/nmat4896
- Q.Q. Zhang, Y.C. Zhou, X.Y. San, D.T. Wan, Y.W. Bao et al., Thermal explosion synthesis of first Te-containing layered ternary Hf2TeB MAX phase. J. Eur. Ceram. Soc. 43, 173–176 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.09.051
- H. Boller, H. Nowotny, Röntgenographische untersuchungen im system: Vanadin-Arsen-Kohlenstoff. Monatsh. Chem. 97, 1053–1058 (1966). https://doi.org/10.1007/BF00903553
- O. Beckmann, H. Boller, H. Nowotny, Neue H-phasen. Monatsh. Chem. 99, 1580–1583 (1968). https://doi.org/10.1007/bf00902709
- Y.B. Li, J.H. Liang, H.M. Ding, J. Lu, X.L. Mu et al., Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Appl. Phys. Rev. 8, 031418 (2021). https://doi.org/10.1063/5.0059078
- Z.Q. Li, E.X. Wu, K. Chen, X.D. Wang, G.X. Chen et al., Chalcogenide MAX phases Zr2Se(B1-xSex) (x = 0–0.97) and their conduction behaviors. Acta Mater. 237, 118183 (2022). https://doi.org/10.1016/j.actamat.2022.118183
- J. Rosen, P.O.A. Persson, M. Ionescu, A. Kondyurin, D.R. McKenzie et al., Oxygen incorporation in Ti2AlC thin films. Appl. Phys. Lett. 92, 064102 (2008). https://doi.org/10.1063/1.2838456
- P.P. Michalowski, M. Anayee, T.S. is, S. Kozdra, A. Wójcik et al., Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192 (2022). https://doi.org/10.1038/s41565-022-01214-0
- B.K. Zhang, J. Zhou, Z.M. Sun, MBenes: progress, challenges and future. J. Mater. Chem. A 10, 15865–15880 (2022). https://doi.org/10.1039/d2ta03482d
- T. Rackl, L. Eisenburger, R. Niklaus, D. Johrendt, Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x (x = 0–1). Phys. Rev. Mater. 3, 054001 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054001
- M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54, 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
- V.I. Ivchenko, M.I. Lesnaya, V.F. Nemchenko, T.Y. Kosolapova, Preparation and some properties of the ternary compound Ti2AlN. Sov. Powder Metall. Met. Ceram. 15, 293–295 (1976). https://doi.org/10.1007/bf01178200
- C.F. Hu, L.F. He, M.Y. Liu, X.H. Wang, J.Y. Wang et al., In situ reaction synthesis and mechanical properties of V2AlC. J. Am. Ceram. Soc. 91, 4029–4035 (2008). https://doi.org/10.1111/j.1551-2916.2008.02774.x
- G.B. Ying, X.D. He, M.W. Li, W.B. Han, F. He et al., Synthesis and mechanical properties of high-purity Cr2AlC ceramic. Mater. Sci. Eng. A 528, 2635–2640 (2011). https://doi.org/10.1016/j.msea.2010.12.039
- T. Lapauw, K. Lambrinou, T. Cabioc’h, J. Halim, J. Lu et al., Synthesis of the new MAX phase Zr2AlC. J. Eur. Ceram. Soc. 36, 1847–1853 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.044
- W. Zhang, N. Travitzky, C.F. Hu, Y.C. Zhou, P. Greil, Reactive hot pressing and properties of Nb2AlC. J. Am. Ceram. Soc. 92, 2396–2399 (2009). https://doi.org/10.1111/j.1551-2916.2009.03187.x
- C.F. Hu, L.F. He, J. Zhang, Y.W. Bao, J.Y. Wang et al., Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method. J. Eur. Ceram. Soc. 28, 1679–1685 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.10.006
- T. Lapauw, B. Tunca, T. Cabioc’h, J. Lu, P. Persson et al., Synthesis of MAX phases in the Hf-Al-C system. Inorg. Chem. 55, 10922–10927 (2016). https://doi.org/10.1021/acs.inorgchem.6b01398
- H. Boller, H. Nowotny, Die kristallstruktur von V2PC und V5P3N. Monatsh. Chem. 99, 672–675 (1968). https://doi.org/10.1007/bf00901220
- T. Rackl, D. Johrendt, The MAX phase borides Zr2SB and Hf2SB. Solid State Sci. 106, 106316 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106316
- X. Wang, K. Chen, Z. Li, H. Ding, Y. Song et al., MAX phases Hf2(SexS1−x)C (x = 0–1) and their thermal expansion behaviors. J. Eur. Ceram. Soc. 43, 1874–1879 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.12.026
- Y.B. Li, S.R. Zhu, E.R. Wu, H.M. Ding, J. Lu et al., Nanolaminated ternary transition metal carbide (MAX phase)-derived core-shell structure electrocatalysts for hydrogen evolution and oxygen evolution reactions in alkaline electrolytes. J. Phys. Chem. Lett. 14, 481–488 (2023). https://doi.org/10.1021/acs.jpclett.2c03230
- H.M. Ding, Y.B. Li, J. Lu, K. Luo, K. Chen et al., Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Mater. Res. Lett. 7, 510–516 (2019). https://doi.org/10.1080/21663831.2019.1672822
- W. Jeitschko, H. Nowotny, Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC Monatsh. Chem. 95, 178–179 (1963). https://doi.org/10.1007/BF00909264
- N. Kubitza, A. Reitz, A.-M. Zieschang, H. Pazniak, B. Albert et al., From MAX phase carbides to nitrides: synthesis of V2GaC, V2GaN, and the carbonitride V2GaC1–xNx. Inorg. Chem. 61, 10634–10641 (2022). https://doi.org/10.1021/acs.inorgchem.2c00200
- O. Beckmann, H. Boller, H. Nowotny, Einige Komplexcarbide und-nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N} und Cr-Ga-N. Monatsh. Chem. 100, 1465–1470 (1969). https://doi.org/10.1007/BF00900159
- A.S. Ingason, A. Petruhins, M. Dahlqvist, F. Magnus, A. Mockute et al., A nanolaminated magnetic phase: Mn2GaC. Mater. Res. Lett. 2, 89–93 (2014). https://doi.org/10.1080/21663831.2013.865105
- W. Jeitschko, H. Nowotny, F. Benesovsky, Die H-phasen Ti2TIC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC. Monatsh. Chem. 95, 431–435 (1964). https://doi.org/10.1007/BF00901306
- W. Jeitschko, H. Nowotny, F. Benesovsky, Ternäre carbide und nitride in systemen: Übergangsmetall-Metametall-Kohlenstoff (Stickstoff). Monatsh. Chem. 95, 156–157 (1964). https://doi.org/10.1007/BF00909261
- S.H. Li, Z.N. Yang, R. Khaledialidusti, S. Lin, J. Yu et al., High-throughput study and machine learning on MAX and MAB phases: new materials and fingerprints of superior lattice thermal conductivities. Acta Mater. 254, 119001 (2023). https://doi.org/10.1016/j.actamat.2023.119001
- A. Bouhemadou, Calculated structural, electronic and elastic properties of M2GeC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). Appl. Phys. A Mater. Sci. Process. 96, 959–967 (2009). https://doi.org/10.1007/s00339-009-5106-5
- Q.Q. Zhang, Y.C. Zhou, X.Y. San, W.B. Li, Y.W. Bao et al., Zr2SeB and Hf2SeB: Two new MAB phase compounds with the Cr2AlC-type MAX phase (211 phase) crystal structures. J. Adv. Ceram. 11, 1764–1776 (2022). https://doi.org/10.1007/s40145-022-0646-7
- X.D. Wang, K. Chen, E.X. Wang, Y.M. Zhang, H.M. Ding et al., Synthesis and thermal expansion of chalcogenide MAX phase Hf2SeC. J. Eur. Ceram. Soc. 42, 2084–2088 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.12.062
- Y.B. Li, Y.Q. Qin, K. Chen, L. Chen, X. Zhang et al., Molten salt synthesis of nanolaminated Sc2SnC MAX phase. J. Inorg. Mater. 36, 773–778 (2021). https://doi.org/10.15541/jim20200529
- M.W. Barsoum, G. Yaroschuk, S. Tyagi, Fabrication and characterization of M2SnC (M = Ti, Zr, Hf and Nb). Scr. Mater. 37, 1583–1591 (1997). https://doi.org/10.1016/S1359-6462(97)00288-1
- Q. Xu, Y.C. Zhou, H.M. Zhang, A.N. Jiang, Q.Z. Tao et al., Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. J. Adv. Ceram. 9, 481–492 (2020). https://doi.org/10.1007/s40145-020-0391-8
- A. Roumili, Y. Medkour, D. Maouch, Elastic and electronic properties of Hf2SnC and Hf2SnN. Int. J. Mod. Phys. B 26, 5155–5161 (2009). https://doi.org/10.1142/s0217979209053370
- H. Boller, Gemischte Pnictide mit geordnetem TiP-Typ (Ti2SC-Typ)*. Monatsh. Chem. 104, 166–171 (1973). https://doi.org/10.1007/BF00911157
- C.-C. Lai, H. Fashandi, J. Lu, J. Palisaitis, P.O.Å. Persson et al., Phase formation of nanolaminated Mo2AuC and Mo2(Au1–xGax)2C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films. Nanoscale 9, 17681–17687 (2017). https://doi.org/10.1039/c7nr03663a
- Q.Q. Zhang, B. Wen, J. Luo, Y.C. Zhou, X.Y. San et al., Synthesis of new rare earth containing ternary laminar Sc2PbC ceramic. J. Eur. Ceram. Soc. 43, 1735–1739 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.056
- J.C. Schuster, H. Nowotny, C. Vaccaro, The ternary systems: Cr-Al-C, V-Al-C, and Ti-Al-C and the behavior of H-phases (M2AlC). J. Solid State Chem. 32, 213–219 (1980). https://doi.org/10.1016/0022-4596(80)90569-1
- B. Tunca, T. Lapauw, O.M. Karakulina, M. Batuk, T. Cabioc’h et al., Synthesis of MAX phases in the Zr-Ti-Al-C system. Inorg. Chem. 56, 3489–3498 (2017). https://doi.org/10.1021/acs.inorgchem.6b03057
- I. Salama, T. El-Raghy, M.W. Barsoum, Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC. J. Alloys Compd. 347, 271–278 (2002). https://doi.org/10.1016/s0925-8388(02)00756-9
- R. Pan, J. Zhu, Y. Liu, Synthesis, microstructure and properties of (Ti1–x, Mox)2AlC phases. Mater. Sci. Technol. 34, 1064–1069 (2018). https://doi.org/10.1080/02670836.2017.1419614
- S. Sridharan, H. Nowotny, Studies in the ternary system Ti-Ta-Al and in the quaternary system Ti-Ta-Al-C. Z. Metallkd. 74, 468–472 (1983). https://doi.org/10.1515/ijmr-1983-740711
- L. Wei, L. Yi, W. Chuangye, Z. Dan, Y. Xiaoyan et al., Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption. J. Mater. Sci. Technol. 111, 236–244 (2021). https://doi.org/10.1016/j.jmst.2021.10.018
- G.Q. He, Y. Zhang, P. Yao, X.C. Li, K. Ma et al., A novel medium-entropy (TiVNb)2AlC MAX phase: Fabrication, microstructure, and properties. J. Mater. Sci. Technol. 137, 91–99 (2022). https://doi.org/10.1016/j.jmst.2022.07.037
- H.W. Seong, M.S. Lee, H.J. Ryu, First-principles study for discovery of novel synthesizable 2D high-entropy transition metal carbides (MXenes). J. Mater. Chem. A 11, 5681–5695 (2023). https://doi.org/10.1039/d2ta09996a
- L. Bo, L.G. Zu, X.L. Liu, D.Z. Wang, A multicomponent porous MAX phase (Ti0.25Zr0.25Nb0.25Ta0.25)2AlC: reaction process, microstructure and pore formation mechanism. Ceram. Int. 49, 2167–2173 (2023). https://doi.org/10.1016/j.ceramint.2022.09.183
- C. Liu, Y.Y. Yang, Z.F. Zhou, C.W. Nan, Y.H. Lin, (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC–(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 105, 2764–2771 (2021). https://doi.org/10.1111/jace.18252
- W.C. Bao, X.G. Wang, H.J. Ding, P. Lu, C.X. Zhu et al., High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: synthesis and microstructures. Scr. Mater. 183, 33–38 (2020). https://doi.org/10.1016/j.scriptamat.2020.03.015
- C.M. Hamm, M. Dürrschnabel, L. Molina-Luna, R. Salikhov, D. Spoddig et al., Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC. Mater. Chem. Front. 2, 483–490 (2018). https://doi.org/10.1039/c7qm00488e
- M. Naguib, G.W. Bentzel, J. Shah, J. Halim, E.N. Caspi et al., New solid solution MAX phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC. Mater. Res. Lett. 2, 233–240 (2014). https://doi.org/10.1080/21663831.2014.932858
- H. Nowotny, P. Rogl, J.C. Schuster, Structural chemistry of complex carbides and related compounds. J. Solid State Chem. 60, 850–850 (1981). https://doi.org/10.1016/0022-4596(82)90409-1
- H.L. Li, S.B. Li, H. Mao, Y. Zhou, Synthesis and mechanical and thermal properties of (Cr, Mn)2AlC solid solutions. Adv. Appl. Ceram. 116, 165–172 (2017). https://doi.org/10.1080/17436753.2016.1278511
- C.M. Hamm, J.D. Bocarsly, G. Seward, U.I. Kramm, C.S. Birkel, Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC. J. Mater. Chem. C 5, 5700–5708 (2017). https://doi.org/10.1039/c7tc00112f
- J. Halim, J. Palisaitis, J. Lu, J. Thörnberg, E.J. Moon et al., Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Appl. Energy Mater. 1, 2455–2460 (2018). https://doi.org/10.1021/acsanm.8b00332
- M. Griseri, B. Tunca, S.G. Huang, M. Dahlqvist, J. Rosén et al., Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb. J. Eur. Ceram. Soc. 40, 1829–1838 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.052
- N. Kubitza, R.W. Xie, I. Tarasov, C. Shen, H.B. Zhang et al., Microwave-assisted synthesis of the new solid-solution (V1−xCrx)2GaC (0 ≤ x ≤ 1), a pauli paramagnet almost matching the stoner criterion for x=0.80. Chem. Mater. 35, 4427–4434 (2023). https://doi.org/10.1021/acs.chemmater.3c00591
- A. Petruhins, A.S. Ingason, J. Lu, F. Magnus, S. Olafsson et al., Synthesis and characterization of magnetic (Cr0.5Mn0.5)2GaC thin films. J. Mater. Sci. 50, 4495–4502 (2015). https://doi.org/10.1007/s10853-015-8999-8
- S. Lin, P. Tong, B.S. Wang, Y.N. Huang, W.J. Lu et al., Magnetic and electrical/thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2–xMnxGaC (0 ≤ x ≤ 1). J. Appl. Phys. 113, 053502 (2013). https://doi.org/10.1063/1.4789954
- R. Meshkian, A.S. Ingason, U.B. Arnalds, F. Magnus, J. Lu et al., A magnetic atomic laminate from thin film synthesis: (Mo0.5Mn0.5)2GaC. APL Mater. 3, 076102 (2015). https://doi.org/10.1063/1.4926611
- L. Chen, Y. Li, K. Liang, K. Chen, M. Li et al., Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance. Small Methods 7, 2300054 (2023). https://doi.org/10.1002/smtd.202300054
- S. Kerdsongpanya, K. Buchholt, O. Tengstrand, J. Lu, J. Jensen et al., Phase-stabilization and substrate effects on nucleation and growth of (Ti, V)n+1GeCn thin films. J. Appl. Phys. 110, 053516 (2011). https://doi.org/10.1063/1.3631087
- S. Lin, Y.A. Huang, L. Zu, X.C. Kan, J.C. Lin et al., Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2-xMxGeC (M= Ti, V, Mn, Fe, and Mo). J. Alloys Compd. 680, 452–461 (2016). https://doi.org/10.1016/j.jallcom.2016.04.197
- B. Manoun, O.D. Leaffer, S. Gupta, E.N. Hoffman, S.K. Saxena et al., On the compression behavior of Ti2InC, (Ti0.5, Zr0.5)2InC, and M2SnC (M = Ti, Nb, Hf) to quasi-hydrostatic pressures up to 50 GPa. Solid State Commun. 149, 1978–1983 (2009). https://doi.org/10.1016/j.ssc.2009.05.043
- M.W. Barsoum, J. Golczewski, H.J. Seifert, F. Aldinger, Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC. J. Alloys Compd. 340, 173–179 (2002). https://doi.org/10.1016/s0925-8388(02)00107-x
- J. Thörnberg, J. Halim, J. Lu, R. Meshkian, J. Palisaitis et al., Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2–xC MXene scrolls. Nanoscale 11, 14720–14726 (2019). https://doi.org/10.1039/c9nr02354b
- M. Dahlqvist, J. Lu, R. Meshkian, Q.Z. Tao, L. Hultman et al., Prediction and synthesis of a family of atomic laminate phases with Kagome-like and in-plane chemical ordering. Sci. Adv. 3, e1700642 (2017). https://doi.org/10.1126/sciadv.1700642
- L. Chen, M. Dahlqvist, T. Lapauw, B. Tunca, F. Wang et al., Theoretical prediction and synthesis of (Cr2/3Zr1/3)2AlC i-MAX phase. Inorg. Chem. 57, 6237–6244 (2018). https://doi.org/10.1021/acs.inorgchem.8b00021
- S. Sun, Z. Ma, Z. Chen, P. Liu, Y. Song et al., The crystallographic structure and properties of novel quaternary nanolaminated rare-earth-Cr-based i-MAX phases. Acta Mater. 242, 118479 (2022). https://doi.org/10.1016/j.actamat.2022.118479
- Z. Chen, H. Chong, S. Sun, J. Yang, G. Yao et al., Synthesis and characterizations of solid-solution i-MAX phase (W1/3Mo1/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) and derivated i-MXene with improved electrochemical properties. Scr. Mater. 213, 114596 (2022). https://doi.org/10.1016/j.scriptamat.2022.114596
- A. Petruhins, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Theoretical prediction and experimental verification of the chemically ordered atomiclaminate i-MAX phases (Cr2/3Sc1/3)2GaC and (Mn2/3Sc1/3)2GaC. Cryst. Growth Des. 20, 55–61 (2020). https://doi.org/10.1021/acs.cgd.9b00449
- M. Dahlqvist, A. Petruhins, J. Lu, L. Hultman, J. Rosen, Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano 12, 7761–7770 (2018). https://doi.org/10.1021/acsnano.8b01774
- A. Petruhins, J. Lu, L. Hultman, J. Rosen, Synthesis of atomically layered and chemically ordered rare-earth (RE) i-MAX phases; (Mo2/3RE1/3)2GaC with RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Mater. Res. Lett. 7, 446–452 (2019). https://doi.org/10.1080/21663831.2019.1644684
- Z.H. Tian, B.Z. Yan, F.S. Wu, J.W. Tang, X.Q. Xu et al., Synthesis of Ti2(InxAl1–x)C (x = 0−1) solid solutions with high-purity and their properties. J. Eur. Ceram. Soc. 43, 5915–5924 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.06.060
- L. Yushuang, L. Chengjie, C. Yue, H. Miaoyan, L. Ying et al., Mitigation of metal whisker growth from MAX phases by A-site alloying strategy. Appl. Surf. Sci. 632, 157486 (2023). https://doi.org/10.1016/j.apsusc.2023.157486
- J. Etzkorn, M. Ade, D. Kotzott, M. Kleczek, H. Hillebrecht, Ti2GaC, Ti4GaC3 and Cr2GaC—Synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M = Ti, Cr and n = 1, 3. J. Solid State Chem. 182, 995–1002 (2009). https://doi.org/10.1016/j.jssc.2009.01.003
- W. Yu, S. Li, W.G. Sloof, Microstructure and mechanical properties of a Cr2Al(Si)C solid solution. Mater. Sci. Eng. A 527, 5997–6001 (2010). https://doi.org/10.1016/j.msea.2010.05.093
- T. Cabioch, P. Eklund, V. Mauchamp, M. Jaouen, M.W. Barsoum, Tailoring of the thermal expansion of Cr2(Alx, Ge1–x)C phases. J. Eur. Ceram. Soc. 33, 897–904 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.10.008
- D. Horlait, S. Grasso, A. Chroneos, W.E. Lee, Attempts to synthesise quaternary MAX phases (Zr, M)2AlC and Zr2(Al, A)C as a way to approach Zr2AlC. Mater. Res. Lett. 4, 137–144 (2016). https://doi.org/10.1080/21663831.2016.1143053
- D. Horlait, S.C. Middleburgh, A. Chroneos, W.E. Lee, Synthesis and DFT investigation of new bismuth-containing MAX phases. Sci. Rep. 6, 18829 (2016). https://doi.org/10.1038/srep18829
- B. Tunca, T. Lapauw, C. Callaert, J. Hadermann, R. Delville et al., Compatibility of Zr2AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic. Corros. Sci. 171, 32067 (2020). https://doi.org/10.1016/j.corsci.2020.108704
- C.-C. Lai, A. Petruhins, J. Lu, M. Farle, L. Hultman et al., Thermally induced substitutional reaction of Fe into Mo2GaC thin films. Mater. Res. Lett. 5, 533–539 (2017). https://doi.org/10.1080/21663831.2017.1343207
- M.A. Pietzka, J.C. Schuster, Phase equilibria in the quaternary system Ti-Al-C-N. J. Am. Ceram. Soc. 79, 2321–2330 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08979.x
- B. Tunca, T. Lapauw, R. Delville, D.R. Neuville, L. Hennet et al., Synthesis and characterization of double solid solution (Zr, Ti)2(Al, Sn)C MAX phase ceramics. Inorg. Chem. 58, 6669–6683 (2019). https://doi.org/10.1021/acs.inorgchem.9b00065
- T. Lapauw, B. Tunca, D. Potashnikov, A. Pesach, O. Ozeri et al., The double solid solution (Zr, Nb)2(Al, Sn)C MAX phase: a steric stability approach. Sci. Rep. 8, 12801 (2018). https://doi.org/10.1038/s41598-018-31271-2
- B. Tunca, S. Huang, N. Goossens, K. Lambrinou, J. Vleugels, Chemically complex double solid solution MAX phase-based ceramics in the (Ti, Zr, Hf, V, Nb)-(Al, Sn)-C system. Mater. Res. Lett. 10, 52–61 (2022). https://doi.org/10.1080/21663831.2021.2017043
- X. Zhang, Y.B. Li, K. Chen, H.M. Ding, L. Chen et al., Tailoring MAX phase magnetic property based on M-site and A-site double solid solution. J. Inorg. Mater. 36, 1247–1255 (2021). https://doi.org/10.15541/jim20210126
- Z. Du, C. Wu, Y. Chen, Q. Zhu, Y. Cui et al., High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 12, 2103228 (2021). https://doi.org/10.1002/aenm.202103228
- T. Lapauw, J. Halim, J. Lu, T. Cabioc’h, L. Hultman et al., Synthesis of the novel Zr3AlC2 MAX phase. J. Eur. Ceram. Soc. 36, 943–947 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.011
- D.T. Cuskelly, E.R. Richards, E.H. Kisi, V.J. Keast, Ti3GaC2 and Ti3InC2: First bulk synthesis, DFT stability calculations and structural systematics. J. Solid State Chem. 230, 418–425 (2015). https://doi.org/10.1016/j.jssc.2015.07.028
- H. Wolfsgruber, H. Nowotny, F. Benesovsky, Die Kristallstruktur von Ti3GeC2. Monatsh. Chem. 98, 2403–2405 (1967). https://doi.org/10.1007/bf00902438
- Q.Q. Zhang, J. Luo, B. Wen, Y.C. Zhou, L.S. Chu et al., Determination of new a-312 MAX phases of Zr3InC2 and Hf3InC2. J. Eur. Ceram. Soc. 43, 7228–7233 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.07.015
- T. Lapauw, B. Tunca, T. Cabioc’h, J. Vleugels, K. Lambrinou, Reactive spark plasma sintering of Ti3SnC2, Zr3SnC2 and Hf3SnC2 using Fe, Co or Ni additives. J. Eur. Ceram. Soc. 37, 4539–4545 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.041
- Q.Q. Zhang, B. Wen, J. Luo, Y.C. Zhou, X.Y. San et al., Synthesis ofnew lead-containing MAX phases of Zr3PbC2 and Hf3PbC2. J. Am. Ceram. Soc. 106, 6390–6397 (2023). https://doi.org/10.1111/jace.19332
- Z.M. Liu, L.Y. Zheng, L.C. Sun, Y.H. Qian, J.Y. Wang et al., (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: New MAX-phase compounds in Ti–Cr–Al–C system. J. Am. Ceram. Soc. 97, 67–69 (2014). https://doi.org/10.1111/jace.12731
- E. Zapata-Solvas, M.A. Hadi, D. Horlait, D.C. Parfitt, A. Thibaud et al., Synthesis and physical properties of (Zr1–x, Tix)3AlC2 MAX phases. J. Am. Ceram. Soc. 100, 3393–3401 (2017). https://doi.org/10.1111/jace.14870
- H. Zhang, Z.J. Li, C. Zhang, J.L. Li, X.H. Wang et al., Nb doping in Ti3AlC2: Effects on phase stability, high-temperature compressive properties, and oxidation resistance. J. Eur. Ceram. Soc. 37, 3641–3645 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.026
- M.T.P. Rigby, V. Natu, M. Sokol, D.J. Kelly, D.G. Hopkinson et al., Synthesis of new M-layer solid-solution 312 MAX phases (Ta1–xTix)3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes. RSC Adv. 11, 3110–3114 (2021). https://doi.org/10.1039/d0ra09761f
- Y.C. Zhou, F.L. Meng, J. Zhang, New MAX-phase compounds in the V-Cr–Al–C system. J. Am. Ceram. Soc. 91, 1357–1360 (2008). https://doi.org/10.1111/j.1551-2916.2008.02279.x
- W.S. Ma, M. Wang, Q.J. Yi, D.J. Huang, J. Dang et al., A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 96, 107129 (2022). https://doi.org/10.1016/j.nanoen.2022.107129
- C.F. Du, Y.Q. Xue, C.C. Wang, Q.Y. Zeng, J.J. Wang et al., Synthesis of a high-entropy (TiVCrMo)3AlC2 MAX and its tribological properties in a wide temperature range. J. Eur. Ceram. Soc. 43, 4684–4695 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.04.027
- L. Qu, G. Bei, B. Stelzer, H. Ruess, J.M. Schneider et al., Synthesis, crystal structure, microstructure and mechanical properties of (Ti1–xZrx)3SiC2 MAX phase solid solutions. Ceram. Int. 45, 1400–1408 (2019). https://doi.org/10.1016/j.ceramint.2018.10.030
- P.V. Istomin, E.I. Istomina, A.V. Nadutkin, V.E. Grass, I.A. Karateev et al., Synthesis of novel Zr-rich 312-type solid-solution MAX phase in the Zr-Ti-Si-C system. J. Eur. Ceram. Soc. 43, 3122–3130 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.02.049
- L.-L. Zheng, X.-C. Li, Q.-S. Hua, Z.-Q. Dai, T.-Z. Zhang et al., Long-term oxidation and electrical behavior of Nb-doped Ti3SiC2 as solid oxide fuel cell interconnects. J. Am. Ceram. Soc. 100, 3155–3164 (2017). https://doi.org/10.1111/jace.14843
- L. Zheng, Q. Hua, X. Li, M. Li, Y. Qian et al., Investigation on the properties of Ta doped Ti3SiC2 as solid oxide fuel cell interconnects. RSC Adv. 7, 42350–42356 (2017). https://doi.org/10.1039/c7ra07215e
- A.H. Lashkari, A.O. Moghaddam, M. Naseri, A. Shokuhfar, Synthesis and characterization of high entropy carbide-MAX two-phase composites. J. Mater. Res. Technol. 24, 5024–5031 (2023). https://doi.org/10.1016/j.jmrt.2023.04.125
- Q. Tao, R. Salikhov, A. Mockute, J. Lu, M. Farle et al., Thin film synthesis and characterization of a chemically ordered magnetic nanolaminate (V, Mn)3GaC2. APL Mater. 4, 086109 (2016). https://doi.org/10.1063/1.4961502
- E.N. Caspi, P. Chartier, F. Porcher, F. Damay, T. Cabioc’h, Ordering of (Cr, V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds. Mater. Res. Lett. 3, 100–106 (2015). https://doi.org/10.1080/21663831.2014.975294
- B. Anasori, M. Dahlqvist, J. Halim, E.J. Moon, J. Lu et al., Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 118, 094304 (2015). https://doi.org/10.1063/1.4929640
- R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman et al., Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 125, 476–480 (2017). https://doi.org/10.1016/j.actamat.2016.12.008
- C.F. Du, Y.Q. Xue, Q.Y. Zeng, J.J. Wang, X.Y. Zhao et al., Mo-doped Cr-Ti-Mo ternary o-MAX with ultra-low wear at elevated temperatures. J. Eur. Ceram. Soc. 42, 7403–7413 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.09.020
- C.F. Du, C.C. Wang, H.W. Liang, L.L. Xue, Y.Q. Xue et al., In-situ liquid lubrication with bearing effect on a semi-out-of-plane ordered ternary (TiVCr)3AlC2 MAX at 800 °C. J. Eur. Ceram. Soc. 43, 7341–7353 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.08.020
- B.B. Gou, L.L. Wang, B. Ye, C.M. Meng, X.H. Li et al., Low-temperature synthesis of pure-phase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction. J. Mater. Sci.: Mater Electron. 32, 13081–13088 (2021). https://doi.org/10.1007/s10854-021-05761-5
- Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1–xSixC2 solid solutions. Acta Mater. 54, 1317–1322 (2006). https://doi.org/10.1016/j.actamat.2005.10.057
- E. Zapata-Solvas, S.R.G. Christopoulos, N. Ni, D.C. Parfitt, D. Horlait et al., Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2 MAX phases. J. Am. Ceram. Soc. 100, 1377–1387 (2017). https://doi.org/10.1111/jace.14742
- B. Manoun, S.K. Saxena, G. Hug, A. Ganguly, E.N. Hoffman et al., Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2733644
- J.H. Han, K.D. Nam, S.W. Park, Y.D. Kim, Synthesis and characterization of Ti3(Al1–n Gen)C2 by a reactive hot pressing of TiCx, Al, and Ge powder mixture. Solid State Phenom. 124–126, 751–754 (2007). https://doi.org/10.4028/www.scientific.net/SSP.124-126.751
- J. Etzkorn, M. Ade, H. Hillebrecht, Ta3AlC2 and Ta4AlC3−single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique. Inorg. Chem. 46, 1410–1418 (2007). https://doi.org/10.1021/ic062231y
- A. Ganguly, T. Zhen, M.W. Barsoum, Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1−x)C2 (x = 0.5, 0.75) solid solutions. J. Alloys. Compd. 376, 287–295 (2004). https://doi.org/10.1016/j.jallcom.2004.01.011
- Z.X. Liu, Y.P. Tian, S.Q. Li, L. Wang, B.X. Han et al., Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes. Adv. Funct. Mater. 33, 2301994 (2023). https://doi.org/10.1002/adfm.202301994
- L.F. Marion, I. Monnet, Saturation of irradiation damage in (Ti, Zr)3(Si, Al)C2 compounds. J. Nucl. Mater. 433, 534–537 (2013). https://doi.org/10.1016/j.jnucmat.2012.07.042
- M.W. Barsoum, L. Farber, I. Levin, A. Procopio, T. El-Raghy et al., High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited. J. Am. Ceram. Soc. 82, 2545–2547 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02117.x
- C. Hu, J. Zhang, J. Wang, F. Li, J. Wang et al., Crystal structure of V4AlC3: a new layered ternary carbide. J. Am. Ceram. Soc. 92, 636–639 (2008). https://doi.org/10.1111/j.1551-2916.2007.02136.x
- J. Etzkorn, M. Ade, H. Hillebrecht, V2AlC, V4AlC3–x (x ≈ 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure. Inorg. Chem. 46, 7646–7653 (2007). https://doi.org/10.1021/ic700382y
- C. Hu, F. Li, J. Zhang, J. Wang, J. Wang et al., Nb4AlC3: a new compound belonging to the MAX phases. Scr. Mater. 57, 893–896 (2007). https://doi.org/10.1016/j.scriptamat.2007.07.038
- Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang, Structural characterization of a new layered-ternary Ta4AlC3 ceramic. J. Mater. Res. 21, 2587–2592 (2006). https://doi.org/10.1557/jmr.2006.0310
- X.B. Liu, Y.B. Li, H.M. Ding, L. Chen, S.Y. Du et al., Topotactic transition of Ti4AlN3 MAX phase in Lewis acid molten salt. J. Materiomics 9, 1032–1038 (2023). https://doi.org/10.1016/j.jmat.2023.03.012
- H. Högberg, P. Eklund, J. Emmerlich, J. Birch, L. Hultman, Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering. J. Mater. Res. 20, 779–782 (2005). https://doi.org/10.1557/jmr.2005.0105
- J. Gu, L.M. Pan, J. Yang, L. Yu, H.B. Zhang et al., Mechanical properties and oxidation behavior of Ti-doped Nb4AlC3. J. Eur. Ceram. Soc. 36, 1001–1008 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.023
- R. Syamsai, J.R. Rodriguez, V.G. Pol, Q. Van Le, K.M. Batoo et al., Double transition metal MXene (TixTa4–xC3) 2D materials as anodes for Li-ion batteries. Sci. Rep. 11, 688 (2021). https://doi.org/10.1038/s41598-020-79991-8
- D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides - solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
- J. Yang, M. Naguib, M. Ghidiu, L.M. Pan, J. Gu et al., Two-dimensional Nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 99, 660–666 (2016). https://doi.org/10.1111/jace.13922
- P. Cai, Q.M. He, L.J. Wang, X.J. Liu, J. Yin et al., Two-dimensional Nb-based M4C3Tx MXenes and their sodium storage performances. Ceram. Int. 45, 5761–5767 (2019). https://doi.org/10.1016/j.ceramint.2018.12.042
- P.V. Istomin, E.I. Istomina, A.V. Nadutkin, V.E. Grass, Synthesis and crystal structure of a novel quaternary Zr3TiSiC3 MAX phase. Ceram. Int. 49, 37034–37039 (2023). https://doi.org/10.1016/j.ceramint.2023.08.261
- Y.Q. Tan, Y.H. Xia, Z. Teng, C. Chen, X.S. Zhou et al., Synthesis and enhanced mechanical properties of compositionally complex MAX phases. J. Eur. Ceram. Soc. 41, 4658–4665 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.027
- S.K. Nemani, B.W. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
- J. Zhou, Q.Z. Tao, B. Ahmed, J. Palisaitis, I. Persson et al., High-entropy laminate metal carbide (MAX Phase) and its two-dimensional derivative MXene. Chem. Mater. 34, 2098–2106 (2022). https://doi.org/10.1021/acs.chemmater.1c03348
- B.C. Wyatt, A. Thakur, K. Nykiel, Z.D. Hood, S.P. Adhikari et al., Design of atomic ordering in Mo2Nb2C3TX MXenes for hydrogen evolution electrocatalysis. Nano Lett. 23, 931–938 (2023). https://doi.org/10.1021/acs.nanolett.2c04287
- N.J. Lane, M. Naguib, J. Lu, L. Hultman, M.W. Barsoum, Structure of a new bulk Ti5Al2C3 MAX phase produced by the topotactic transformation of Ti2AlC. J. Eur. Ceram. Soc. 32, 3485–3491 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.03.035
- H. Boller, K. Hiebl, Quaternary pseudo-intercalation phases Tx [Nb2S2C] (T=V, Cr, Mn, Fe Co, Ni, Cu) and metastable Nb2S2C formed by topochemical synthesis. J. Alloys Compd. 183, 438–443 (1992). https://doi.org/10.1016/0925-8388(92)90765-2
- C. Hu, C.C. Lai, Q.Z. Tao, J. Lu, J. Halim et al., Mo2Ga2C: a new ternary nanolaminated carbide. Chem. Commun. 51, 6560–6563 (2015). https://doi.org/10.1039/c5cc00980d
- H. Fashandi, C.C. Lai, M. Dahlqvist, J. Lu, J. Rosen et al., Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem. Commun. 53, 9554–9557 (2017). https://doi.org/10.1039/c7cc04701k
- M. Downes, C.E. Shuck, R.W. Lord, M. Anayee, M. Shekhirev et al., M5X4: a family of MXenes. ACS Nano 17, 17158–17168 (2023). https://doi.org/10.1021/acsnano.3c04967
- R.M. Snyder, M. Juelsholt, C. Kalha, J. Holm, E. Mansfield et al., Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4. ACS Nano 17, 12693–12705 (2023). https://doi.org/10.1021/acsnano.3c03395
- G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of MoVAlC MAX phase and two-dimensional MoVC MXene with 5 atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
- W.S. Ma, Z.M. Qiu, M. Wang, C.W. Tan, L.W. Hu et al., A novel high-entropy MXene Ti1.1V1.2Cr0.8Nb1.0Mo0.9C4Tx for high-performance supercapacitor. Scr. Mater. 235, 115596 (2023). https://doi.org/10.1016/j.scriptamat.2023.115596
- M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1, 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
- C.M. Hamm, T. Schäfer, H.B. Zhang, C.S. Birkel, Non-conventional synthesis of the 413 MAX phase V4AlC3. Z. Anorg. Allg. Chem. 642, 1397–1401 (2016). https://doi.org/10.1002/zaac.201600370
- C.C. Lai, R. Meshkian, M. Dahlqvist, J. Lu, L. Näslund et al., Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis. Acta Mater. 99, 157–164 (2015). https://doi.org/10.1016/j.actamat.2015.07.063
- J. Björk, J. Halim, J. Zhou, J. Rosen, Predicting chemical exfoliation: fundamental insights into the synthesis of MXenes. npj 2D Mater. Appl. 7, 5 (2023). https://doi.org/10.1038/s41699-023-00370-8
- X.D. He, Y.L. Bai, C.C. Zhu, M.W. Barsoum, Polymorphism of newly discovered Ti4GaC3: a first-principles study. Acta Mater. 59, 5523–5533 (2011). https://doi.org/10.1016/j.actamat.2011.05.025
- M.W. Barsoum, MAX Phases: Properties of machinable Ternary Carbides and Nitrides. (Wiley-VCH, Hoboken, 2013), pp.13–64
- D. Martin, W.B. Michel, R. Johanna, MAX phases – Past, present, and future. Mater. Today 72, 1–24 (2023). https://doi.org/10.1016/j.mattod.2023.11.010
- M. Dahlqvist, J. Rosen, Order and disorder in quaternary atomic laminates from first-principles calculations. Phys. Chem. Chem. Phys. 17, 31810–31821 (2015). https://doi.org/10.1039/c5cp06021d
- M. Dahlqvist, J. Rosen, Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale 12, 785–794 (2020). https://doi.org/10.1039/c9nr08675g
- V. Gauthier-Brunet, T. Cabioc’h, P. Chartier, M. Jaouen, S. Dubois, Reaction synthesis of layered ternary Ti2AlC ceramic. J. Eur. Ceram. Soc. 29, 187–194 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.05.039
- D.T. Cuskelly, E.H. Kisi, Single-step carbothermal synthesis of high-purity MAX phase powders. J. Am. Ceram. Soc. 99, 1137–1140 (2016). https://doi.org/10.1111/jace.14170
- S. Cetinkaya, S. Eroglu, Synthesis and reaction mechanism of Ti3SiC2 ternary compound by carbothermal reduction of TiO2 and SiO2 powder mixtures. Ceram. Int. 38, 6445–6453 (2012). https://doi.org/10.1016/j.ceramint.2012.05.020
- A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas et al., Synthesis of high-purity polycrystalline MAX phases in Ti-Al-C system through mechanically activated self-propagating high-temperature synthesis. J. Eur. Ceram. Soc. 30, 1049–1057 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.10.001
- M. Lopacinski, J. Puszynski, J. Lis, Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Am. Ceram. Soc. 84, 3051–3053 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01138.x
- Z.M. Sun, H. Hashimoto, W.B. Tian, Y. Zou, Synthesis of the MAX phases by pulse discharge sintering. Int. J. Appl. Ceram. Technol. 7, 704–718 (2010). https://doi.org/10.1111/j.1744-7402.2010.02555.x
- X. Guo, J.X. Wang, S.Y. Yang, L. Gao, B. Qian, Preparation of Ti3SiC2 powders by the molten salt method. Mater. Lett. 111, 211–213 (2013). https://doi.org/10.1016/j.matlet.2013.08.077
- L. Feng, M.Q. Lv, Q. Qian, R.X. Luo, B. Huang, The synthesis of high purity Ti3AlC2 MAX phase via molten salt method. Adv. Powder Technol. 34, 103920 (2023). https://doi.org/10.1016/j.apt.2022.103920
- A.M. Abdelkader, Molten salts electrochemical synthesis of Cr2AlC. J. Eur. Ceram. Soc. 36, 33–42 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.003
- J.L. Smialek, Oxidation of Al2O3 scale-forming MAX phases in turbine environments. Metall. Mater. Trans. A 49A, 782–792 (2018). https://doi.org/10.1007/s11661-017-4346-9
- J.P. Palmquist, U. Jansson, T. Seppänen, P. Persson, J. Birch et al., Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl. Phys. Lett. 81, 835–837 (2002). https://doi.org/10.1063/1.1494865
- S. Bakardjieva, P. Horak, J. Vacik, A. Cannavò, V. Lavrentiev et al., Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences. Surf. Coat. Technol. 394, 125834 (2020). https://doi.org/10.1016/j.surfcoat.2020.125834
- G.Y. Yang, G.D. Li, X. Xiong, Y.L. Wang, J. Wang, Effect of temperature on the formation law of Ti3SiC2 in CVD prepared Ti-Si-C codeposited coating. Mater. Sci. Eng. Powder Metall. 19, 797–804 (2014). https://doi.org/10.3969/j.issn.1673-0224.2014.05.020
- M. Dahlqvist, B. Alling, J. Rosén, Stability trends of MAX phases from first principles. Phys. Rev. B 81, 220102(R) (2010). https://doi.org/10.1103/PhysRevB.81.220102
- S. Aryal, R. Sakidja, M.W. Barsoum, W.Y. Ching, A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys. Status Solidi B 251, 1480–1497 (2014). https://doi.org/10.1002/pssb.201451226
- M. Ashton, R.G. Hennig, S.R. Broderick, K. Rajan, S.B. Sinnott, Computational discovery of stable M2AX phases. Phys. Rev. B 94, 054116 (2016). https://doi.org/10.1103/PhysRevB.94.054116
- N.C. Frey, J. Wang, G.I.V. Bellido, B. Anasori, Y. Gogotsi et al., Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13, 3031–3041 (2019). https://doi.org/10.1021/acsnano.8b08014
- R. Khaledialidusti, M. Khazaei, S. Khazaei, K. Ohno, High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13, 7294–7307 (2021). https://doi.org/10.1039/d0nr08791b
- M. Dahlqvist, J. Rosen, The rise of MAX phase alloys - large-scale theoretical screening for the prediction of chemical order and disorder. Nanoscale 14, 10958–10971 (2022). https://doi.org/10.1039/d2nr02414d
- X.F. Wang, J.J. Ma, Z.Y. Jiao, X.Z. Zhang, Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1–x)C2 solid solutions. Acta Phys. Sin. 65, 206201 (2016). https://doi.org/10.7498/aps.65.206201
- S.T. Ahams, A. Shaari, R. Ahmed, N.F.A. Pattah, M.C. Idris et al., Theoretical investigation of Zr2PbC, (V0.25Zr0.75)2PbC, (V0.5Zr0.5)2PbC, V0.75Zr0.25)2PbC, and V2PbC MAX phases: a DFT based study. Mater. Today Commun. 27, 102397 (2021). https://doi.org/10.1016/j.mtcomm.2021.102397
- F.W. Zeng, H.Z. Zheng, G.F. Li, Y.X. Geng, P. Peng, Study on the structural, mechanical, and dynamical stabilities and properties of Nb2AN (A = Si, Ge, and Sn) MAX phases by first principle. J. Am. Ceram. Soc. 105, 5285–5298 (2022). https://doi.org/10.1111/jace.18442
- H. Tian, X. He, J. Wang, M. Haiyan, S. Longhai et al., Theoretical insights into the physical properties of a new 211 MAX phase V2ZnC under high pressure. Comput. Mater. Sci. 232, 112649 (2023). https://doi.org/10.1016/j.commatsci.2023.112649
- T.H. Scabarozi, S. Amini, P. Finkel, O.D. Leaffer, J.E. Spanier et al., Electrical, thermal, and elastic properties of the MAX-phase Ti2SC. J. Appl. Phys (2008). https://doi.org/10.1063/1.2959738
- Y.L. Bai, X.D. He, C.C. Zhu, G.Q. Chen, Microstructures, electrical, thermal, and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing. J. Am. Ceram. Soc. 95, 358–364 (2012). https://doi.org/10.1111/j.1551-2916.2011.04934.x
- T. El-Raghy, S. Chakraborty, M.W. Barsoum, Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr). J. Eur. Ceram. Soc. 20, 2619–2625 (2000). https://doi.org/10.1016/s0955-2219(00)00127-8
- M. Radovic, A. Ganguly, M.W. Barsoum, Elastic properties and phonon conductivities of Ti3Al(C0.5, N0.5)2 and Ti2Al(C0.5, N0.5) solid solutions. J. Mater. Res. 23, 1517–1521 (2008). https://doi.org/10.1557/jmr.2008.0200
- Z.J. Lin, Y.C. Zhou, M.S. Li, J.Y. Wang, In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC. Z. Metallkd. 96, 291–296 (2005). https://doi.org/10.3139/146.101033
- S. Amini, A. Zhou, S. Gupta, A. DeVillier, P. Finkel et al., Synthesis and elastic and mechanical properties of Cr2GeC. J. Mater. Res. 23, 2157–2165 (2008). https://doi.org/10.1557/jmr.2008.0262
- M.W. Barsoum, D. Brodkin, T. ElRaghy, Layered machinable ceramics for high temperature applications. Scr. Mater. 36, 535–541 (1997). https://doi.org/10.1016/s1359-6462(96)00418-6
- P. Finkel, B. Seaman, K. Harrell, J. Palma, J.D. Hettinger et al., Electronic, thermal, and elastic properties of Ti3Si1–xGexC2 solid solutions. Phys. Rev. B 70, 085104 (2004). https://doi.org/10.1103/PhysRevB.70.085104
- C.F. Hu, F.Z. Li, L.F. He, M.Y. Liu, J. Zhang et al., In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 91, 2258–2263 (2008). https://doi.org/10.1111/j.1551-2916.2008.02424.x
- C.F. Hu, Z.J. Lin, L.F. He, Y.W. Bao, J.Y. Wang et al., Physical and mechanical properties of bulk Ta4AIC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method. J. Am. Ceram. Soc. 90, 2542–2548 (2007). https://doi.org/10.1111/j.1551-2916.2007.01804.x
- Y.L. Bai, X.D. He, R.G. Wang, Y. Sun, C.C. Zhu et al., High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing. J. Eur. Ceram. Soc. 33, 2435–2445 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.04.014
- T. Scabarozi, A. Ganguly, J.D. Hettinger, S.E. Lofland, S. Amini et al., Electronic and thermal properties of Ti3Al(C0.5, N0.5)2, Ti2Al(C0.5, N0.5) and Ti2AlN. J. Appl. Phys 104, 073713 (2008). https://doi.org/10.1063/1.2979326
- M.W. Barsoum, MAX Phases: Properties of machinable Ternary Carbides and Nitrides. (Wiley-VCH, Hoboken, 2013), pp.107–153
- T.H. Scabarozi, S. Benjamin, B. Adamson, J. Applegate, J. Roche et al., Combinatorial investigation of the stoichiometry, electronic transport and elastic properties of (Cr1–xVx)2GeC thin films. Scr. Mater. 66, 85–88 (2012). https://doi.org/10.1016/j.scriptamat.2011.10.001
- T.H. Scabarozi, P. Eklund, J. Emmerlich, H. Högberg, T. Meehan et al., Weak electronic anisotropy in the layered nanolaminate Ti2GeC. Solid State Commun. 146, 498–501 (2008). https://doi.org/10.1016/j.ssc.2008.03.026
- L.E. Toth, High superconducting transition temperatures in the molybdenum carbide family of compounds. J. Less-common Met. 13, 129 (1967). https://doi.org/10.1016/0022-5088(67)90055-0
- I.R. Shein, V.G. Bamburov, A.L. Ivanovskii, Ab initio calculations of the electronic properties of new superconducting nanolaminates: Nb2SnC and Nb2SC1–x. Dokl. Phys. Chem. 411, 317–321 (2006). https://doi.org/10.1134/s001250160611008x
- W. Zhou, L. Liu, P. Wu et al., First-principles study of structural, thermodynamic, elastic, and magnetic properties of Cr2GeC under pressure and temperature. J. Appl. Phys. 106, 33501–33501 (2009). https://doi.org/10.1063/1.3187912
- A.S. Ingason, A. Mockute, M. Dahlqvist, F. Magnus, S. Olafsson et al., Magnetic self-organized atomic laminate from first principles and thin film synthesis. Phys. Rev. Lett. 110, 195502 (2013). https://doi.org/10.1103/PhysRevLett.110.195502
- A. Mockute, J. Lu, E.J. Moon, M. Yan, B. Anasori et al., Solid solubility and magnetism upon Mn incorporation in the bulk ternary carbides Cr2AlC and Cr2GaC. Mater. Res. Lett. 3, 16–22 (2015). https://doi.org/10.1080/21663831.2014.944676
- E. Drouelle, V. Brunet, J. Cormier, P. Villechaise, P. Sallot et al., Oxidation resistance of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: a comparison. J. Am. Ceram. Soc. 103, 1270–1280 (2020). https://doi.org/10.1111/jace.16780
- W.B. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, S. Dubois, Oxidation mechanisms in bulk Ti2AlC: Influence of the grain size. J. Eur. Ceram. Soc. 40, 1820–1828 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.042
- G.P. Bei, B.J. Pedimonte, T. Fey, P. Greil, Oxidation behavior of MAX phase Ti2Al(1–x)SnxC solid solution. J. Am. Ceram. Soc. 96, 1359–1362 (2013). https://doi.org/10.1111/jace.12358
- S. Badie, D. Sebold, R. Vassen, O. Guillon, J. Gonzalez-Julian, Mechanism for breakaway oxidation of the Ti2AlC MAX phase. Acta Mater. 215, 117025 (2021). https://doi.org/10.1016/j.actamat.2021.117025
- J. Travaglini, M.W. Barsoum, V. Jovic, T. El-Raghy, The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH. Corros. Sci. 45, 1313–1327 (2003). https://doi.org/10.1016/s0010-938x(02)00227-5
- G.M. Liu, M.S. Li, Y.C. Zhou, Y.M. Zhang, Corrosion behavior and strength degradation of Ti3SiC2 exposed to a eutectic K2CO3 and Li2CO3 mixture. J. Eur. Ceram. Soc. 23, 1957–1962 (2003). https://doi.org/10.1016/s0955-2219(02)00419-3
- Y.Q. Tan, H. Luo, X.S. Zhou, S.M. Peng, H.B. Zhang, Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics. Sci. Rep. 8, 7935 (2018). https://doi.org/10.1038/s41598-018-26256-0
- Y. Liu, C.Y. Wang, W. Luo, L. Bai, Y. Xu et al., Facile synthesis of hollow Ti3AlC2 microrods in molten salts via Kirkendall effect. J. Adv. Ceram. 11, 1491–1497 (2022). https://doi.org/10.1007/s40145-022-0616-0
- Y.B. Li, H. Shao, Z.F. Lin, J. Lu, L.Y. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- A. Sengupta, B.V.B. Rao, N. Sharma, S. Parmar, V. Chavan et al., Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications. Nanoscale 12, 8466–8476 (2020). https://doi.org/10.1039/c9nr10980c
- J.G. Xu, M.Q. Zhao, Y.C. Wang, W. Yao, C. Chen et al., Demonstration of Li-ion capacity of MAX phases. ACS Energy Lett. 1, 1094–1099 (2016). https://doi.org/10.1021/acsenergylett.6b00488
- J. Carbajo, A. Quintanilla, A.L. Garcia-Costa, J. González-Julián, M. Belmonte et al., The influence of the catalyst on the CO formation during catalytic wet peroxide oxidation process. Catal. Today 361, 30–36 (2021). https://doi.org/10.1016/j.cattod.2019.12.020
- K. Wang, H.F. Du, Z.Y. Wang, M.X. Gao, H.G. Pan et al., Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 42, 4244–4251 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.073
- B. Anasori, E.N. Caspi, M.W. Barsoum, Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC ps. Mater. Sci. Eng. A 618, 511–522 (2014). https://doi.org/10.1016/j.msea.2014.09.039
- S. Amini, C.Y. Ni, M.W. Barsoum, Processing, microstructural characterization and mechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite. Compos. Sci. Technol. 69, 414–420 (2009). https://doi.org/10.1016/j.compscitech.2008.11.007
- W.T. Chen, W.B. Yu, C.S. Ma, G.Z. Ma, L.Q. Zhang et al., A review of novel ternary nano-layered MAX phases reinforced AZ91D magnesium composite. J. Magnes Alloy 10, 1457–1475 (2022). https://doi.org/10.1016/j.jma.2022.05.013
- L.X. Yang, Y.B. Mu, R.J. Liu, H.J. Liu, L. Zeng et al., A facile preparation of submicro-sized Ti2AlC precursor toward Ti2CTx MXene for lithium storage. Electrochim. Acta 432, 141152 (2022). https://doi.org/10.1016/j.electacta.2022.141152
- I. Roslyk, I. Baginskiy, V. Zahorodna, O. Gogotsi, S. Ippolito et al., Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene. Int. J. Appl. Ceram. Technol. 21, 2605–2612 (2024). https://doi.org/10.1111/ijac.14671
- M. Shekhirev, J. Busa, C.E. Shuck, A. Torres, S. Bagheri et al., Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 16, 13695–13703 (2022). https://doi.org/10.1021/acsnano.2c04506
- L.Z. Huang, S.Y. Chen, L. Ding, H.H. Wang, Lateral-size-dependent ion transport behavior of the MXene membrane facilitates efficient ion sieving. ACS Appl. Nano Mater. 7, 9482–9489 (2024). https://doi.org/10.1021/acsanm.4c00919
- J. Gonzalez-Julian, Processing of MAX phases: from synthesis to applications. J. Am. Ceram. Soc. 104, 659–690 (2021). https://doi.org/10.1111/jace.17544
- D.J. Tallman, E.N. Hoffman, E.N. Caspi, B.L. Garcia-Diaz, G. Kohse et al., Effect of neutron irradiation on select MAX phases. Acta Mater. 85, 132–143 (2015). https://doi.org/10.1016/j.actamat.2014.10.068
- S.S. Liu, C.X. Wang, T.F. Yang, Y. Fang, Q. Huang et al., High temperature effects on irradiation damage of Ti2AlC. Nucl. Instrum. Meth. B 406, 662–669 (2017). https://doi.org/10.1016/j.nimb.2017.01.040
- A. Sommers, Q. Wang, X. Han, C. T’Joen, Y. Park et al., Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-A review. Appl. Therm. Eng. 30, 1277–1291 (2010). https://doi.org/10.1016/j.applthermaleng.2010.02.018
- L. Bo, X. Liu, D. Wang, The corrosion behavior of multicomponent porous MAX phase (Ti0.25Zr0.25Nb0.25Ta0.25)2AlC in hydrochloric acid. Corros. Sci. 222, 111430 (2023). https://doi.org/10.1016/j.corsci.2023.111430
- Z. Li, Y. Zhang, K. Wang, Z. Wang, G. Ma et al., Highly dense passivation enhanced corrosion resistance of Ti2AlC MAX phase coating in 3.5 wt.% NaCl solution. Corros. Sci. 228, 111820 (2024). https://doi.org/10.1016/j.corsci.2024.111820
- F. Hu, H. Tang, F. Wu, P. Ding, P. Zhang et al., Sn Whiskers from Ti2SnC max phase: bridging dual-functionality in electromagnetic attenuation. Small Methods 8(9), 2301476 (2024). https://doi.org/10.1002/smtd.202301476
- Q. Tan, W. Zhuang, M. Attia, R. Djugum, M. Zhang, Recent progress in additive manufacturing of bulk MAX phase components: A review. J. Mater. Sci. Technol. 131, 30–47 (2022). https://doi.org/10.1016/j.jmst.2022.05.026
- Y. Liu, C. Ji, X.L. Su, J. Xu, X.H. He, Electromagnetic and microwave absorption properties of Ti3SiC2 powders decorated with Ag ps. J. Alloys Compd. 820, 153154 (2020). https://doi.org/10.1016/j.jallcom.2019.153154
- D.D. Wang, W.B. Tian, A.B. Ma, J.X. Ding, C.S. Wang et al., Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing. J. Alloys Compd. 784, 431–438 (2019). https://doi.org/10.1016/j.jallcom.2019.01.083
- J.X. Ding, W.B. Tian, D.D. Wang, P.G. Zhang, J. Chen et al., Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge. Corros. Sci. 156, 147–160 (2019). https://doi.org/10.1016/j.corsci.2019.05.005
- D.D. Wang, W.B. Tian, J.X. Ding, Y.F. Zhu, P.G. Zhang et al., The beauty and the deed of silver during arc erosion of Ag/Ti3AlC2 contacts. J. Alloys Compd. 820, 34382–34388 (2020). https://doi.org/10.1016/j.jallcom.2019.153136
- H.M. Ding, M. Li, Y.B. Li, K. Chen, Y.K. Xiao et al., Progress in structural tailoring and properties of ternary layered ceramics. J. Inorg. Mater. 38, 845–884 (2023). https://doi.org/10.15541/jim20230123
- X.H. Yin, M.S. Li, J.J. Xu, J. Zhang, Y.C. Zhou, Direct diffusion bonding of Ti3SiC2 and Ti3AlC2. Mater. Res. Bull. 44, 1379–1384 (2009). https://doi.org/10.1016/j.materresbull.2008.12.002
- L. Shen, J.M. Xue, M.W. Barsoum, Q. Huang, Rapid bonding of Ti3SiC2 and Ti3AlC2 by pulsed electrical current heating. J. Am. Ceram. Soc. 97, 3721–3724 (2014). https://doi.org/10.1111/jace.13323
- R. Jamshidi, O. Bayat, A. Heidarpour, Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel. Surf. Coat. Technol. 358, 1–10 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.087
- Z.Y. Wang, C.C. Wang, Y.P. Zhang, A.Y. Wang, P.L. Ke, M-site solid solution of vanadium enables the promising mechanical and high-temperature tribological properties of Cr2AlC coating. Mater. Des. 222, 111060 (2022). https://doi.org/10.1016/j.matdes.2022.111060
- S.H. Li, W.W. Sun, Y. Luo, J. Yu, L.T. Sun et al., Pushing the limit of thermal conductivity of MAX borides and MABs. J. Mater. Sci. Technol. 97, 79–88 (2022). https://doi.org/10.1016/j.jmst.2021.05.006
- X.L. Shi, W.Z. Zhai, Z.S. Xu, M. Wang, J. Yao et al., Synergetic lubricating effect of MoS2 and Ti3SiC2 on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range. Mater. Des. 55, 93–103 (2014). https://doi.org/10.1016/j.matdes.2013.09.072
- J.L. Zhou, D.J. Kong, Friction-wear performances and oxidation behaviors of Ti3AlC2 reinforced Co-based alloy coatings by laser cladding. Surf. Coat. Technol. 408, 126816 (2021). https://doi.org/10.1016/j.surfcoat.2020.126816
- Y.A. Elizarova, A.I. Zakharov, High-temperature functional protective coating
References
M.W. Barsoum, The MN+1AXN phases: a new class of solids. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/s0079-6786(00)00006-6
E. Drouelle, V. Gauthier-Brunet, J. Cormier, P. Villechaise, P. Sallot et al., Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase. J. Alloys Compd. 826, 154062 (2020). https://doi.org/10.1016/j.jallcom.2020.154062
Z.H. Tian, P.G. Zhang, W.W. Sun, B.Z. Yan, Z.M. Sun, Vegard’s law deviating Ti2(SnxAl1−x)C solid solution with enhanced properties. J. Adv. Ceram. 12, 1655–1669 (2023). https://doi.org/10.26599/jac.2023.9220779
M.W. Barsoum, T. ElRaghy, L. Ogbuji, Oxidation of Ti3SiC2 in air J. Electrochem. Soc. 144, 2508–2516 (1997). https://doi.org/10.1149/1.1837846
S. Kuchida, T. Muranaka, K. Kawashima, K. Inoue, M. Yoshikawa et al., Superconductivity in Lu2SnC. Phys. C 494, 77–79 (2013). https://doi.org/10.1016/j.physc.2013.04.050
K. Chen, X. Bai, X. Mu, P. Yan, N. Qiu et al., MAX phase Zr2SeC and its thermal conduction behavior. J. Eur. Ceram. Soc. 41, 4447–4451 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.013
Z.M. Sun, Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev. 56, 143–166 (2011). https://doi.org/10.1179/1743280410y.0000000001
M.W. Barsoum, T. ElRaghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08018.x
C. Magnus, J. Sharp, W.M. Rainforth, The lubricating properties of spark plasma sintered (SPS) Ti3SiC2 MAX phase compound and composite. Tribol. Trans. 63, 38–51 (2020). https://doi.org/10.1080/10402004.2019.1657534
N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002). https://doi.org/10.1126/science.1068609
D.D. Wang, W.B. Tian, J.X. Ding, A.B. Ma, Y.F. Zhu et al., Anisotropic arc erosion resistance of Ag/Ti3AlC2 composites induced by the alignment of Ti3AlC2. Corros. Sci. 171, 108633 (2020). https://doi.org/10.1016/j.corsci.2020.108633
X.C. Huang, Y. Feng, J.L. Ge, L. Li, Z.Q. Li et al., Arc erosion mechanism of Ag-Ti3SiC2 material. J. Alloys Compd. 817, 152741 (2020). https://doi.org/10.1016/j.jallcom.2019.152741
P.W. Bai, S. Wang, B. Zhao, X.H. Wang, J.B. Ma et al., Electrically conductive and corrosion resistant MAX phases with superior electromagnetic wave shielding performance. J. Eur. Ceram. Soc. 42, 7414–7420 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.09.009
P. Yao, Y.H. Qian, W.C. Li, C.S. Li, J. Zuo et al., Exploration of dielectric and microwave absorption properties of quaternary MAX phase ceramic (Cr2/3Ti1/3)3AlC2. Ceram. Int. 46, 22919–22926 (2020). https://doi.org/10.1016/j.ceramint.2020.06.065
C.X. Wang, C.L. Tracy, R.C. Ewing, Radiation effects in Mn+1AXn phases. Appl. Phys. Rev. 7, 041311 (2020). https://doi.org/10.1063/5.0019284
X.Q. Xu, D.W. Sha, Z.H. Tian, F.S. Wu, W. Zheng et al., Lithium storage performance and mechanism of nano-sized Ti2InC MAX phase. Nanoscale Horizons 8, 331–337 (2023). https://doi.org/10.1039/d2nh00489e
Y.B. Li, G.L. Ma, H. Shao, P. Xiao, J. Lu et al., Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Lett. 13, 158 (2021). https://doi.org/10.1007/s40820-021-00684-6
X. Liu, M. Du, S. Zheng, T. Kar Ban, Z. Cuimei et al., Understand the effect of the confined trifluoromethane sulfonate (OTf−) anions by the adjacent MXene nanosheets on oriented design of Zn ion storage. Carbon 219, 118828 (2024). https://doi.org/10.1016/j.carbon.2024.118828
C. Zhou, K.B. Tan, W. Han, L. Wang, M. Lu, A review of MXene derived quantum dots: synthesis, characterization, properties and applications. Particuology 91, 50–71 (2024). https://doi.org/10.1016/j.partic.2023.12.016
Q.H. Gu, Y.Q. Cao, J.N. Chen, Y.J. Qi, Z.F. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium-sulfur battery. Nano-Micro Lett. 16, 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
A.V. Mohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1165 (2021). https://doi.org/10.1126/science.abf1581
H. Rohde, H. Kudielka, Strukturuntersuchungen an carbosulfiden von titan und zirkon. Z. Krist. Cryst. Mater. 114, 447–456 (1960). https://doi.org/10.1524/zkri.1960.114.16.447
W. Jeitschko, H. Nowotny, F. Benesovsky, Carbides of formula T2MC*. Monatsh. Chem. 95, 33–38 (1963). https://doi.org/10.1016/0022-5088(64)90055-4
W. Jeitschko, H. Nowotny, F. Benesovsky, Kohlenstoffhaltige ternäre Verbindungen (H-Phase). Monatsh. Chem. 94, 672–676 (1963). https://doi.org/10.1007/BF00913068
W. Jeitschko, H. Nowotny, F. Benesovsky, Kohlenstoffhaltige ternare Verbindungen (V-GeC, Nb-Ga-C, Ta-Ga-C, Ta-Ge-C, Cr-Ga-C und Cr-Ge-C). Monatsh. Chem. 94, 844–850 (1963). https://doi.org/10.1007/bf00902358
W. Jeitschko, H. Nowotny, F. Benesovsky, Die H-Phasen Ti2InC, Zr2InC Hf2InC und Ti2GeC. Monatsh. Chem. 94, 1201–1205 (1963). https://doi.org/10.1007/bf00905711
J.J. Nickl, K.K. Schweitzer, P. Luxenberg, Gasphasenabscheidung im system Ti-Si-C. J. Less-Common Met. 26, 335–353 (1972). https://doi.org/10.1016/0022-5088(72)90083-5
M.A. Pietzka, J.C. Schuster, Summary of constitutional data on the aluminum-carbon-titanium system. J. Phase Equilib. 15, 392–400 (1994). https://doi.org/10.1007/BF02647559
J.P. Palmquist, S. Li, P. Persson, J. Emmerlich, O. Wilhelmsson et al., Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations. Phys. Rev. B 70, 165401 (2004). https://doi.org/10.1103/PhysRevB.70.165401
Z. Lin, M. Zhuo, Y. Zhou, M. Li, J. Wang, Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides. J. Am. Ceram. Soc. 89, 3765–3769 (2006). https://doi.org/10.1111/j.1551-2916.2006.01303.x
W.B. Tian, P.L. Wang, Y.M. Kan, G.J. Zhang, Cr2AlC powders prepared by molten salt method. J. Alloys Compd. 461, L5–L10 (2008). https://doi.org/10.1016/j.jallcom.2007.06.094
J. Zhang, B. Liu, J.Y. Wang, Y.C. Zhou, Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and x-ray diffraction investigations. J. Mater. Res. 24, 39–49 (2009). https://doi.org/10.1557/jmr.2009.0012
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Z.M. Liu, E.D. Wu, J.M. Wang, Y.H. Qian, H.M. Xiang et al., Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater. 73, 186–193 (2014). https://doi.org/10.1016/j.actamat.2014.04.006
Q.Z. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017). https://doi.org/10.1038/ncomms14949
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
Y.B. Li, M. Li, J. Lu, B.K. Ma, Z.P. Wang et al., Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1–x)C2 and its artificial enzyme behavior. ACS Nano 13, 9198–9205 (2019). https://doi.org/10.1021/acsnano.9b03530
Y.B. Li, J. Lu, M. Li, K.K. Chang, X.H. Zha et al., Multielemental single–atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. U.S.A. 117, 820–825 (2020). https://doi.org/10.1073/pnas.1916256117
Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33, 2101473 (2021). https://doi.org/10.1002/adma.202101473
H.M. Ding, Y.B. Li, M. Li, K. Chen, K. Liang et al., Chemical scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023). https://doi.org/10.1126/science.add5901
Y. Li, S. Zhu, J.-B. Le, J. Lu, X. Wang et al., A-site alloying-guided universal design of noble metal-based MAX phases. Matter 7, 1–16 (2024). https://doi.org/10.1016/j.matt.2023.12.006
Q.Z. Tao, J. Lu, M. Dahlqvist, A. Mockute, S. Calder et al., Atomically layered and ordered rare-earth i-MAX Phases: a new class of magnetic quaternary compounds. Chem. Mater. 31, 2476–2485 (2019). https://doi.org/10.1021/acs.chemmater.8b05298
R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim et al., W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 30, 1706409 (2018). https://doi.org/10.1002/adma.201706409
J. Yang, R. Liu, N. Jia, K. Wu, X. Fu et al., Novel W-based in-plane chemically ordered (W2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er, Tm and Lu) MAX phases and their 2D W1.33C MXene derivatives. Carbon 183, 76–83 (2021). https://doi.org/10.1016/j.carbon.2021.07.010
Z.X. Zhang, W.L. Wang, J.T. Zhang, J.Q. Chen, X.N. Sun et al., Influence of elements (Zr, Mo, Cr, Fe, and Ni) doping on the electromagnetic wave absorption performance of Ti3AlC2-based ceramics. Ceram. Int. 49, 28660–28673 (2023). https://doi.org/10.1016/j.ceramint.2023.06.121
G.W. Bentzel, M. Sokol, J. Griggs, A.C. Lang, M.W. Barsoum, On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with palladium at 900 °C. J. Alloys Compd. 771, 1103–1110 (2019). https://doi.org/10.1016/j.jallcom.2018.08.127
M. Nechiche, V. Gauthier-Brunet, V. Mauchamp, A. Joulain, T. Cabioc’h et al., Synthesis and characterization of a new (Ti1-ε, Cuε)3(Al, Cu)C2 MAX phase solid solution. J. Eur. Ceram. Soc. 37, 459–466 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.09.028
L. Zheng, Q. Hua, X. Li, M. Li, Y. Qian et al., Exploring a novel ceramic (Ti, W)3SiC2 for interconnect of intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy 43, 7483–7491 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.162
L. Chen, Y.B. Li, B. Zhao, S.S. Liu, H.B. Zhang et al., Multiprincipal element M2FeC (M = Ti, V, Nb, Ta, Zr) MAX phases with synergistic effect of dielectric and magnetic loss. Adv. Sci. 10, 2206877 (2023). https://doi.org/10.1002/advs.202206877
L. Chen, Y. Li, K. Chen, X. Bai, M. Li et al., Synthesis and characterization of medium-/high-entropy M2SnC (M=Ti/V/Nb/Zr/Hf) MAX phases. Small Struct. 4, 2200161 (2022). https://doi.org/10.1002/sstr.202200161
C.-C. Lai, Q. Tao, H. Fashandi, U. Wiedwald, R. Salikhov et al., Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC. APL Mater. 6, 026104 (2018). https://doi.org/10.1063/1.5006304
J. Lu, A. Thore, R. Meshkian, Q. Tao, L. Hultman et al., Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3)2AlC i-MAX Phase with M = Sc and Y. Cryst. Growth Des. 17, 5704–5711 (2017). https://doi.org/10.1021/acs.cgd.7b00642
K. Chen, Y. Chen, J. Zhang, Y. Song, X. Zhou et al., Medium-entropy (Ti, Zr, Hf)2SC MAX phase. Ceram. Int. 47, 7582–7587 (2020). https://doi.org/10.1016/j.ceramint.2020.11.096
H. Fashandi, M. Dahlqvist, J. Lu, J. Palisaitis, S.I. Simak et al., Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 16, 814–818 (2017). https://doi.org/10.1038/nmat4896
Q.Q. Zhang, Y.C. Zhou, X.Y. San, D.T. Wan, Y.W. Bao et al., Thermal explosion synthesis of first Te-containing layered ternary Hf2TeB MAX phase. J. Eur. Ceram. Soc. 43, 173–176 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.09.051
H. Boller, H. Nowotny, Röntgenographische untersuchungen im system: Vanadin-Arsen-Kohlenstoff. Monatsh. Chem. 97, 1053–1058 (1966). https://doi.org/10.1007/BF00903553
O. Beckmann, H. Boller, H. Nowotny, Neue H-phasen. Monatsh. Chem. 99, 1580–1583 (1968). https://doi.org/10.1007/bf00902709
Y.B. Li, J.H. Liang, H.M. Ding, J. Lu, X.L. Mu et al., Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Appl. Phys. Rev. 8, 031418 (2021). https://doi.org/10.1063/5.0059078
Z.Q. Li, E.X. Wu, K. Chen, X.D. Wang, G.X. Chen et al., Chalcogenide MAX phases Zr2Se(B1-xSex) (x = 0–0.97) and their conduction behaviors. Acta Mater. 237, 118183 (2022). https://doi.org/10.1016/j.actamat.2022.118183
J. Rosen, P.O.A. Persson, M. Ionescu, A. Kondyurin, D.R. McKenzie et al., Oxygen incorporation in Ti2AlC thin films. Appl. Phys. Lett. 92, 064102 (2008). https://doi.org/10.1063/1.2838456
P.P. Michalowski, M. Anayee, T.S. is, S. Kozdra, A. Wójcik et al., Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry. Nat. Nanotechnol. 17, 1192 (2022). https://doi.org/10.1038/s41565-022-01214-0
B.K. Zhang, J. Zhou, Z.M. Sun, MBenes: progress, challenges and future. J. Mater. Chem. A 10, 15865–15880 (2022). https://doi.org/10.1039/d2ta03482d
T. Rackl, L. Eisenburger, R. Niklaus, D. Johrendt, Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x (x = 0–1). Phys. Rev. Mater. 3, 054001 (2019). https://doi.org/10.1103/PhysRevMaterials.3.054001
M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54, 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
V.I. Ivchenko, M.I. Lesnaya, V.F. Nemchenko, T.Y. Kosolapova, Preparation and some properties of the ternary compound Ti2AlN. Sov. Powder Metall. Met. Ceram. 15, 293–295 (1976). https://doi.org/10.1007/bf01178200
C.F. Hu, L.F. He, M.Y. Liu, X.H. Wang, J.Y. Wang et al., In situ reaction synthesis and mechanical properties of V2AlC. J. Am. Ceram. Soc. 91, 4029–4035 (2008). https://doi.org/10.1111/j.1551-2916.2008.02774.x
G.B. Ying, X.D. He, M.W. Li, W.B. Han, F. He et al., Synthesis and mechanical properties of high-purity Cr2AlC ceramic. Mater. Sci. Eng. A 528, 2635–2640 (2011). https://doi.org/10.1016/j.msea.2010.12.039
T. Lapauw, K. Lambrinou, T. Cabioc’h, J. Halim, J. Lu et al., Synthesis of the new MAX phase Zr2AlC. J. Eur. Ceram. Soc. 36, 1847–1853 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.044
W. Zhang, N. Travitzky, C.F. Hu, Y.C. Zhou, P. Greil, Reactive hot pressing and properties of Nb2AlC. J. Am. Ceram. Soc. 92, 2396–2399 (2009). https://doi.org/10.1111/j.1551-2916.2009.03187.x
C.F. Hu, L.F. He, J. Zhang, Y.W. Bao, J.Y. Wang et al., Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method. J. Eur. Ceram. Soc. 28, 1679–1685 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.10.006
T. Lapauw, B. Tunca, T. Cabioc’h, J. Lu, P. Persson et al., Synthesis of MAX phases in the Hf-Al-C system. Inorg. Chem. 55, 10922–10927 (2016). https://doi.org/10.1021/acs.inorgchem.6b01398
H. Boller, H. Nowotny, Die kristallstruktur von V2PC und V5P3N. Monatsh. Chem. 99, 672–675 (1968). https://doi.org/10.1007/bf00901220
T. Rackl, D. Johrendt, The MAX phase borides Zr2SB and Hf2SB. Solid State Sci. 106, 106316 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106316
X. Wang, K. Chen, Z. Li, H. Ding, Y. Song et al., MAX phases Hf2(SexS1−x)C (x = 0–1) and their thermal expansion behaviors. J. Eur. Ceram. Soc. 43, 1874–1879 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.12.026
Y.B. Li, S.R. Zhu, E.R. Wu, H.M. Ding, J. Lu et al., Nanolaminated ternary transition metal carbide (MAX phase)-derived core-shell structure electrocatalysts for hydrogen evolution and oxygen evolution reactions in alkaline electrolytes. J. Phys. Chem. Lett. 14, 481–488 (2023). https://doi.org/10.1021/acs.jpclett.2c03230
H.M. Ding, Y.B. Li, J. Lu, K. Luo, K. Chen et al., Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Mater. Res. Lett. 7, 510–516 (2019). https://doi.org/10.1080/21663831.2019.1672822
W. Jeitschko, H. Nowotny, Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC Monatsh. Chem. 95, 178–179 (1963). https://doi.org/10.1007/BF00909264
N. Kubitza, A. Reitz, A.-M. Zieschang, H. Pazniak, B. Albert et al., From MAX phase carbides to nitrides: synthesis of V2GaC, V2GaN, and the carbonitride V2GaC1–xNx. Inorg. Chem. 61, 10634–10641 (2022). https://doi.org/10.1021/acs.inorgchem.2c00200
O. Beckmann, H. Boller, H. Nowotny, Einige Komplexcarbide und-nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N} und Cr-Ga-N. Monatsh. Chem. 100, 1465–1470 (1969). https://doi.org/10.1007/BF00900159
A.S. Ingason, A. Petruhins, M. Dahlqvist, F. Magnus, A. Mockute et al., A nanolaminated magnetic phase: Mn2GaC. Mater. Res. Lett. 2, 89–93 (2014). https://doi.org/10.1080/21663831.2013.865105
W. Jeitschko, H. Nowotny, F. Benesovsky, Die H-phasen Ti2TIC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC. Monatsh. Chem. 95, 431–435 (1964). https://doi.org/10.1007/BF00901306
W. Jeitschko, H. Nowotny, F. Benesovsky, Ternäre carbide und nitride in systemen: Übergangsmetall-Metametall-Kohlenstoff (Stickstoff). Monatsh. Chem. 95, 156–157 (1964). https://doi.org/10.1007/BF00909261
S.H. Li, Z.N. Yang, R. Khaledialidusti, S. Lin, J. Yu et al., High-throughput study and machine learning on MAX and MAB phases: new materials and fingerprints of superior lattice thermal conductivities. Acta Mater. 254, 119001 (2023). https://doi.org/10.1016/j.actamat.2023.119001
A. Bouhemadou, Calculated structural, electronic and elastic properties of M2GeC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). Appl. Phys. A Mater. Sci. Process. 96, 959–967 (2009). https://doi.org/10.1007/s00339-009-5106-5
Q.Q. Zhang, Y.C. Zhou, X.Y. San, W.B. Li, Y.W. Bao et al., Zr2SeB and Hf2SeB: Two new MAB phase compounds with the Cr2AlC-type MAX phase (211 phase) crystal structures. J. Adv. Ceram. 11, 1764–1776 (2022). https://doi.org/10.1007/s40145-022-0646-7
X.D. Wang, K. Chen, E.X. Wang, Y.M. Zhang, H.M. Ding et al., Synthesis and thermal expansion of chalcogenide MAX phase Hf2SeC. J. Eur. Ceram. Soc. 42, 2084–2088 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.12.062
Y.B. Li, Y.Q. Qin, K. Chen, L. Chen, X. Zhang et al., Molten salt synthesis of nanolaminated Sc2SnC MAX phase. J. Inorg. Mater. 36, 773–778 (2021). https://doi.org/10.15541/jim20200529
M.W. Barsoum, G. Yaroschuk, S. Tyagi, Fabrication and characterization of M2SnC (M = Ti, Zr, Hf and Nb). Scr. Mater. 37, 1583–1591 (1997). https://doi.org/10.1016/S1359-6462(97)00288-1
Q. Xu, Y.C. Zhou, H.M. Zhang, A.N. Jiang, Q.Z. Tao et al., Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. J. Adv. Ceram. 9, 481–492 (2020). https://doi.org/10.1007/s40145-020-0391-8
A. Roumili, Y. Medkour, D. Maouch, Elastic and electronic properties of Hf2SnC and Hf2SnN. Int. J. Mod. Phys. B 26, 5155–5161 (2009). https://doi.org/10.1142/s0217979209053370
H. Boller, Gemischte Pnictide mit geordnetem TiP-Typ (Ti2SC-Typ)*. Monatsh. Chem. 104, 166–171 (1973). https://doi.org/10.1007/BF00911157
C.-C. Lai, H. Fashandi, J. Lu, J. Palisaitis, P.O.Å. Persson et al., Phase formation of nanolaminated Mo2AuC and Mo2(Au1–xGax)2C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films. Nanoscale 9, 17681–17687 (2017). https://doi.org/10.1039/c7nr03663a
Q.Q. Zhang, B. Wen, J. Luo, Y.C. Zhou, X.Y. San et al., Synthesis of new rare earth containing ternary laminar Sc2PbC ceramic. J. Eur. Ceram. Soc. 43, 1735–1739 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.056
J.C. Schuster, H. Nowotny, C. Vaccaro, The ternary systems: Cr-Al-C, V-Al-C, and Ti-Al-C and the behavior of H-phases (M2AlC). J. Solid State Chem. 32, 213–219 (1980). https://doi.org/10.1016/0022-4596(80)90569-1
B. Tunca, T. Lapauw, O.M. Karakulina, M. Batuk, T. Cabioc’h et al., Synthesis of MAX phases in the Zr-Ti-Al-C system. Inorg. Chem. 56, 3489–3498 (2017). https://doi.org/10.1021/acs.inorgchem.6b03057
I. Salama, T. El-Raghy, M.W. Barsoum, Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC. J. Alloys Compd. 347, 271–278 (2002). https://doi.org/10.1016/s0925-8388(02)00756-9
R. Pan, J. Zhu, Y. Liu, Synthesis, microstructure and properties of (Ti1–x, Mox)2AlC phases. Mater. Sci. Technol. 34, 1064–1069 (2018). https://doi.org/10.1080/02670836.2017.1419614
S. Sridharan, H. Nowotny, Studies in the ternary system Ti-Ta-Al and in the quaternary system Ti-Ta-Al-C. Z. Metallkd. 74, 468–472 (1983). https://doi.org/10.1515/ijmr-1983-740711
L. Wei, L. Yi, W. Chuangye, Z. Dan, Y. Xiaoyan et al., Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption. J. Mater. Sci. Technol. 111, 236–244 (2021). https://doi.org/10.1016/j.jmst.2021.10.018
G.Q. He, Y. Zhang, P. Yao, X.C. Li, K. Ma et al., A novel medium-entropy (TiVNb)2AlC MAX phase: Fabrication, microstructure, and properties. J. Mater. Sci. Technol. 137, 91–99 (2022). https://doi.org/10.1016/j.jmst.2022.07.037
H.W. Seong, M.S. Lee, H.J. Ryu, First-principles study for discovery of novel synthesizable 2D high-entropy transition metal carbides (MXenes). J. Mater. Chem. A 11, 5681–5695 (2023). https://doi.org/10.1039/d2ta09996a
L. Bo, L.G. Zu, X.L. Liu, D.Z. Wang, A multicomponent porous MAX phase (Ti0.25Zr0.25Nb0.25Ta0.25)2AlC: reaction process, microstructure and pore formation mechanism. Ceram. Int. 49, 2167–2173 (2023). https://doi.org/10.1016/j.ceramint.2022.09.183
C. Liu, Y.Y. Yang, Z.F. Zhou, C.W. Nan, Y.H. Lin, (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC–(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics with low thermal conductivity. J. Am. Ceram. Soc. 105, 2764–2771 (2021). https://doi.org/10.1111/jace.18252
W.C. Bao, X.G. Wang, H.J. Ding, P. Lu, C.X. Zhu et al., High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: synthesis and microstructures. Scr. Mater. 183, 33–38 (2020). https://doi.org/10.1016/j.scriptamat.2020.03.015
C.M. Hamm, M. Dürrschnabel, L. Molina-Luna, R. Salikhov, D. Spoddig et al., Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC. Mater. Chem. Front. 2, 483–490 (2018). https://doi.org/10.1039/c7qm00488e
M. Naguib, G.W. Bentzel, J. Shah, J. Halim, E.N. Caspi et al., New solid solution MAX phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC. Mater. Res. Lett. 2, 233–240 (2014). https://doi.org/10.1080/21663831.2014.932858
H. Nowotny, P. Rogl, J.C. Schuster, Structural chemistry of complex carbides and related compounds. J. Solid State Chem. 60, 850–850 (1981). https://doi.org/10.1016/0022-4596(82)90409-1
H.L. Li, S.B. Li, H. Mao, Y. Zhou, Synthesis and mechanical and thermal properties of (Cr, Mn)2AlC solid solutions. Adv. Appl. Ceram. 116, 165–172 (2017). https://doi.org/10.1080/17436753.2016.1278511
C.M. Hamm, J.D. Bocarsly, G. Seward, U.I. Kramm, C.S. Birkel, Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC. J. Mater. Chem. C 5, 5700–5708 (2017). https://doi.org/10.1039/c7tc00112f
J. Halim, J. Palisaitis, J. Lu, J. Thörnberg, E.J. Moon et al., Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Appl. Energy Mater. 1, 2455–2460 (2018). https://doi.org/10.1021/acsanm.8b00332
M. Griseri, B. Tunca, S.G. Huang, M. Dahlqvist, J. Rosén et al., Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb. J. Eur. Ceram. Soc. 40, 1829–1838 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.052
N. Kubitza, R.W. Xie, I. Tarasov, C. Shen, H.B. Zhang et al., Microwave-assisted synthesis of the new solid-solution (V1−xCrx)2GaC (0 ≤ x ≤ 1), a pauli paramagnet almost matching the stoner criterion for x=0.80. Chem. Mater. 35, 4427–4434 (2023). https://doi.org/10.1021/acs.chemmater.3c00591
A. Petruhins, A.S. Ingason, J. Lu, F. Magnus, S. Olafsson et al., Synthesis and characterization of magnetic (Cr0.5Mn0.5)2GaC thin films. J. Mater. Sci. 50, 4495–4502 (2015). https://doi.org/10.1007/s10853-015-8999-8
S. Lin, P. Tong, B.S. Wang, Y.N. Huang, W.J. Lu et al., Magnetic and electrical/thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2–xMnxGaC (0 ≤ x ≤ 1). J. Appl. Phys. 113, 053502 (2013). https://doi.org/10.1063/1.4789954
R. Meshkian, A.S. Ingason, U.B. Arnalds, F. Magnus, J. Lu et al., A magnetic atomic laminate from thin film synthesis: (Mo0.5Mn0.5)2GaC. APL Mater. 3, 076102 (2015). https://doi.org/10.1063/1.4926611
L. Chen, Y. Li, K. Liang, K. Chen, M. Li et al., Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance. Small Methods 7, 2300054 (2023). https://doi.org/10.1002/smtd.202300054
S. Kerdsongpanya, K. Buchholt, O. Tengstrand, J. Lu, J. Jensen et al., Phase-stabilization and substrate effects on nucleation and growth of (Ti, V)n+1GeCn thin films. J. Appl. Phys. 110, 053516 (2011). https://doi.org/10.1063/1.3631087
S. Lin, Y.A. Huang, L. Zu, X.C. Kan, J.C. Lin et al., Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2-xMxGeC (M= Ti, V, Mn, Fe, and Mo). J. Alloys Compd. 680, 452–461 (2016). https://doi.org/10.1016/j.jallcom.2016.04.197
B. Manoun, O.D. Leaffer, S. Gupta, E.N. Hoffman, S.K. Saxena et al., On the compression behavior of Ti2InC, (Ti0.5, Zr0.5)2InC, and M2SnC (M = Ti, Nb, Hf) to quasi-hydrostatic pressures up to 50 GPa. Solid State Commun. 149, 1978–1983 (2009). https://doi.org/10.1016/j.ssc.2009.05.043
M.W. Barsoum, J. Golczewski, H.J. Seifert, F. Aldinger, Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC. J. Alloys Compd. 340, 173–179 (2002). https://doi.org/10.1016/s0925-8388(02)00107-x
J. Thörnberg, J. Halim, J. Lu, R. Meshkian, J. Palisaitis et al., Synthesis of (V2/3Sc1/3)2AlC i-MAX phase and V2–xC MXene scrolls. Nanoscale 11, 14720–14726 (2019). https://doi.org/10.1039/c9nr02354b
M. Dahlqvist, J. Lu, R. Meshkian, Q.Z. Tao, L. Hultman et al., Prediction and synthesis of a family of atomic laminate phases with Kagome-like and in-plane chemical ordering. Sci. Adv. 3, e1700642 (2017). https://doi.org/10.1126/sciadv.1700642
L. Chen, M. Dahlqvist, T. Lapauw, B. Tunca, F. Wang et al., Theoretical prediction and synthesis of (Cr2/3Zr1/3)2AlC i-MAX phase. Inorg. Chem. 57, 6237–6244 (2018). https://doi.org/10.1021/acs.inorgchem.8b00021
S. Sun, Z. Ma, Z. Chen, P. Liu, Y. Song et al., The crystallographic structure and properties of novel quaternary nanolaminated rare-earth-Cr-based i-MAX phases. Acta Mater. 242, 118479 (2022). https://doi.org/10.1016/j.actamat.2022.118479
Z. Chen, H. Chong, S. Sun, J. Yang, G. Yao et al., Synthesis and characterizations of solid-solution i-MAX phase (W1/3Mo1/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) and derivated i-MXene with improved electrochemical properties. Scr. Mater. 213, 114596 (2022). https://doi.org/10.1016/j.scriptamat.2022.114596
A. Petruhins, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Theoretical prediction and experimental verification of the chemically ordered atomiclaminate i-MAX phases (Cr2/3Sc1/3)2GaC and (Mn2/3Sc1/3)2GaC. Cryst. Growth Des. 20, 55–61 (2020). https://doi.org/10.1021/acs.cgd.9b00449
M. Dahlqvist, A. Petruhins, J. Lu, L. Hultman, J. Rosen, Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano 12, 7761–7770 (2018). https://doi.org/10.1021/acsnano.8b01774
A. Petruhins, J. Lu, L. Hultman, J. Rosen, Synthesis of atomically layered and chemically ordered rare-earth (RE) i-MAX phases; (Mo2/3RE1/3)2GaC with RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Mater. Res. Lett. 7, 446–452 (2019). https://doi.org/10.1080/21663831.2019.1644684
Z.H. Tian, B.Z. Yan, F.S. Wu, J.W. Tang, X.Q. Xu et al., Synthesis of Ti2(InxAl1–x)C (x = 0−1) solid solutions with high-purity and their properties. J. Eur. Ceram. Soc. 43, 5915–5924 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.06.060
L. Yushuang, L. Chengjie, C. Yue, H. Miaoyan, L. Ying et al., Mitigation of metal whisker growth from MAX phases by A-site alloying strategy. Appl. Surf. Sci. 632, 157486 (2023). https://doi.org/10.1016/j.apsusc.2023.157486
J. Etzkorn, M. Ade, D. Kotzott, M. Kleczek, H. Hillebrecht, Ti2GaC, Ti4GaC3 and Cr2GaC—Synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M = Ti, Cr and n = 1, 3. J. Solid State Chem. 182, 995–1002 (2009). https://doi.org/10.1016/j.jssc.2009.01.003
W. Yu, S. Li, W.G. Sloof, Microstructure and mechanical properties of a Cr2Al(Si)C solid solution. Mater. Sci. Eng. A 527, 5997–6001 (2010). https://doi.org/10.1016/j.msea.2010.05.093
T. Cabioch, P. Eklund, V. Mauchamp, M. Jaouen, M.W. Barsoum, Tailoring of the thermal expansion of Cr2(Alx, Ge1–x)C phases. J. Eur. Ceram. Soc. 33, 897–904 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.10.008
D. Horlait, S. Grasso, A. Chroneos, W.E. Lee, Attempts to synthesise quaternary MAX phases (Zr, M)2AlC and Zr2(Al, A)C as a way to approach Zr2AlC. Mater. Res. Lett. 4, 137–144 (2016). https://doi.org/10.1080/21663831.2016.1143053
D. Horlait, S.C. Middleburgh, A. Chroneos, W.E. Lee, Synthesis and DFT investigation of new bismuth-containing MAX phases. Sci. Rep. 6, 18829 (2016). https://doi.org/10.1038/srep18829
B. Tunca, T. Lapauw, C. Callaert, J. Hadermann, R. Delville et al., Compatibility of Zr2AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic. Corros. Sci. 171, 32067 (2020). https://doi.org/10.1016/j.corsci.2020.108704
C.-C. Lai, A. Petruhins, J. Lu, M. Farle, L. Hultman et al., Thermally induced substitutional reaction of Fe into Mo2GaC thin films. Mater. Res. Lett. 5, 533–539 (2017). https://doi.org/10.1080/21663831.2017.1343207
M.A. Pietzka, J.C. Schuster, Phase equilibria in the quaternary system Ti-Al-C-N. J. Am. Ceram. Soc. 79, 2321–2330 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08979.x
B. Tunca, T. Lapauw, R. Delville, D.R. Neuville, L. Hennet et al., Synthesis and characterization of double solid solution (Zr, Ti)2(Al, Sn)C MAX phase ceramics. Inorg. Chem. 58, 6669–6683 (2019). https://doi.org/10.1021/acs.inorgchem.9b00065
T. Lapauw, B. Tunca, D. Potashnikov, A. Pesach, O. Ozeri et al., The double solid solution (Zr, Nb)2(Al, Sn)C MAX phase: a steric stability approach. Sci. Rep. 8, 12801 (2018). https://doi.org/10.1038/s41598-018-31271-2
B. Tunca, S. Huang, N. Goossens, K. Lambrinou, J. Vleugels, Chemically complex double solid solution MAX phase-based ceramics in the (Ti, Zr, Hf, V, Nb)-(Al, Sn)-C system. Mater. Res. Lett. 10, 52–61 (2022). https://doi.org/10.1080/21663831.2021.2017043
X. Zhang, Y.B. Li, K. Chen, H.M. Ding, L. Chen et al., Tailoring MAX phase magnetic property based on M-site and A-site double solid solution. J. Inorg. Mater. 36, 1247–1255 (2021). https://doi.org/10.15541/jim20210126
Z. Du, C. Wu, Y. Chen, Q. Zhu, Y. Cui et al., High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 12, 2103228 (2021). https://doi.org/10.1002/aenm.202103228
T. Lapauw, J. Halim, J. Lu, T. Cabioc’h, L. Hultman et al., Synthesis of the novel Zr3AlC2 MAX phase. J. Eur. Ceram. Soc. 36, 943–947 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.011
D.T. Cuskelly, E.R. Richards, E.H. Kisi, V.J. Keast, Ti3GaC2 and Ti3InC2: First bulk synthesis, DFT stability calculations and structural systematics. J. Solid State Chem. 230, 418–425 (2015). https://doi.org/10.1016/j.jssc.2015.07.028
H. Wolfsgruber, H. Nowotny, F. Benesovsky, Die Kristallstruktur von Ti3GeC2. Monatsh. Chem. 98, 2403–2405 (1967). https://doi.org/10.1007/bf00902438
Q.Q. Zhang, J. Luo, B. Wen, Y.C. Zhou, L.S. Chu et al., Determination of new a-312 MAX phases of Zr3InC2 and Hf3InC2. J. Eur. Ceram. Soc. 43, 7228–7233 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.07.015
T. Lapauw, B. Tunca, T. Cabioc’h, J. Vleugels, K. Lambrinou, Reactive spark plasma sintering of Ti3SnC2, Zr3SnC2 and Hf3SnC2 using Fe, Co or Ni additives. J. Eur. Ceram. Soc. 37, 4539–4545 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.041
Q.Q. Zhang, B. Wen, J. Luo, Y.C. Zhou, X.Y. San et al., Synthesis ofnew lead-containing MAX phases of Zr3PbC2 and Hf3PbC2. J. Am. Ceram. Soc. 106, 6390–6397 (2023). https://doi.org/10.1111/jace.19332
Z.M. Liu, L.Y. Zheng, L.C. Sun, Y.H. Qian, J.Y. Wang et al., (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: New MAX-phase compounds in Ti–Cr–Al–C system. J. Am. Ceram. Soc. 97, 67–69 (2014). https://doi.org/10.1111/jace.12731
E. Zapata-Solvas, M.A. Hadi, D. Horlait, D.C. Parfitt, A. Thibaud et al., Synthesis and physical properties of (Zr1–x, Tix)3AlC2 MAX phases. J. Am. Ceram. Soc. 100, 3393–3401 (2017). https://doi.org/10.1111/jace.14870
H. Zhang, Z.J. Li, C. Zhang, J.L. Li, X.H. Wang et al., Nb doping in Ti3AlC2: Effects on phase stability, high-temperature compressive properties, and oxidation resistance. J. Eur. Ceram. Soc. 37, 3641–3645 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.026
M.T.P. Rigby, V. Natu, M. Sokol, D.J. Kelly, D.G. Hopkinson et al., Synthesis of new M-layer solid-solution 312 MAX phases (Ta1–xTix)3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes. RSC Adv. 11, 3110–3114 (2021). https://doi.org/10.1039/d0ra09761f
Y.C. Zhou, F.L. Meng, J. Zhang, New MAX-phase compounds in the V-Cr–Al–C system. J. Am. Ceram. Soc. 91, 1357–1360 (2008). https://doi.org/10.1111/j.1551-2916.2008.02279.x
W.S. Ma, M. Wang, Q.J. Yi, D.J. Huang, J. Dang et al., A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 96, 107129 (2022). https://doi.org/10.1016/j.nanoen.2022.107129
C.F. Du, Y.Q. Xue, C.C. Wang, Q.Y. Zeng, J.J. Wang et al., Synthesis of a high-entropy (TiVCrMo)3AlC2 MAX and its tribological properties in a wide temperature range. J. Eur. Ceram. Soc. 43, 4684–4695 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.04.027
L. Qu, G. Bei, B. Stelzer, H. Ruess, J.M. Schneider et al., Synthesis, crystal structure, microstructure and mechanical properties of (Ti1–xZrx)3SiC2 MAX phase solid solutions. Ceram. Int. 45, 1400–1408 (2019). https://doi.org/10.1016/j.ceramint.2018.10.030
P.V. Istomin, E.I. Istomina, A.V. Nadutkin, V.E. Grass, I.A. Karateev et al., Synthesis of novel Zr-rich 312-type solid-solution MAX phase in the Zr-Ti-Si-C system. J. Eur. Ceram. Soc. 43, 3122–3130 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.02.049
L.-L. Zheng, X.-C. Li, Q.-S. Hua, Z.-Q. Dai, T.-Z. Zhang et al., Long-term oxidation and electrical behavior of Nb-doped Ti3SiC2 as solid oxide fuel cell interconnects. J. Am. Ceram. Soc. 100, 3155–3164 (2017). https://doi.org/10.1111/jace.14843
L. Zheng, Q. Hua, X. Li, M. Li, Y. Qian et al., Investigation on the properties of Ta doped Ti3SiC2 as solid oxide fuel cell interconnects. RSC Adv. 7, 42350–42356 (2017). https://doi.org/10.1039/c7ra07215e
A.H. Lashkari, A.O. Moghaddam, M. Naseri, A. Shokuhfar, Synthesis and characterization of high entropy carbide-MAX two-phase composites. J. Mater. Res. Technol. 24, 5024–5031 (2023). https://doi.org/10.1016/j.jmrt.2023.04.125
Q. Tao, R. Salikhov, A. Mockute, J. Lu, M. Farle et al., Thin film synthesis and characterization of a chemically ordered magnetic nanolaminate (V, Mn)3GaC2. APL Mater. 4, 086109 (2016). https://doi.org/10.1063/1.4961502
E.N. Caspi, P. Chartier, F. Porcher, F. Damay, T. Cabioc’h, Ordering of (Cr, V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds. Mater. Res. Lett. 3, 100–106 (2015). https://doi.org/10.1080/21663831.2014.975294
B. Anasori, M. Dahlqvist, J. Halim, E.J. Moon, J. Lu et al., Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 118, 094304 (2015). https://doi.org/10.1063/1.4929640
R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman et al., Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 125, 476–480 (2017). https://doi.org/10.1016/j.actamat.2016.12.008
C.F. Du, Y.Q. Xue, Q.Y. Zeng, J.J. Wang, X.Y. Zhao et al., Mo-doped Cr-Ti-Mo ternary o-MAX with ultra-low wear at elevated temperatures. J. Eur. Ceram. Soc. 42, 7403–7413 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.09.020
C.F. Du, C.C. Wang, H.W. Liang, L.L. Xue, Y.Q. Xue et al., In-situ liquid lubrication with bearing effect on a semi-out-of-plane ordered ternary (TiVCr)3AlC2 MAX at 800 °C. J. Eur. Ceram. Soc. 43, 7341–7353 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.08.020
B.B. Gou, L.L. Wang, B. Ye, C.M. Meng, X.H. Li et al., Low-temperature synthesis of pure-phase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction. J. Mater. Sci.: Mater Electron. 32, 13081–13088 (2021). https://doi.org/10.1007/s10854-021-05761-5
Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1–xSixC2 solid solutions. Acta Mater. 54, 1317–1322 (2006). https://doi.org/10.1016/j.actamat.2005.10.057
E. Zapata-Solvas, S.R.G. Christopoulos, N. Ni, D.C. Parfitt, D. Horlait et al., Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2 MAX phases. J. Am. Ceram. Soc. 100, 1377–1387 (2017). https://doi.org/10.1111/jace.14742
B. Manoun, S.K. Saxena, G. Hug, A. Ganguly, E.N. Hoffman et al., Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2733644
J.H. Han, K.D. Nam, S.W. Park, Y.D. Kim, Synthesis and characterization of Ti3(Al1–n Gen)C2 by a reactive hot pressing of TiCx, Al, and Ge powder mixture. Solid State Phenom. 124–126, 751–754 (2007). https://doi.org/10.4028/www.scientific.net/SSP.124-126.751
J. Etzkorn, M. Ade, H. Hillebrecht, Ta3AlC2 and Ta4AlC3−single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique. Inorg. Chem. 46, 1410–1418 (2007). https://doi.org/10.1021/ic062231y
A. Ganguly, T. Zhen, M.W. Barsoum, Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1−x)C2 (x = 0.5, 0.75) solid solutions. J. Alloys. Compd. 376, 287–295 (2004). https://doi.org/10.1016/j.jallcom.2004.01.011
Z.X. Liu, Y.P. Tian, S.Q. Li, L. Wang, B.X. Han et al., Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes. Adv. Funct. Mater. 33, 2301994 (2023). https://doi.org/10.1002/adfm.202301994
L.F. Marion, I. Monnet, Saturation of irradiation damage in (Ti, Zr)3(Si, Al)C2 compounds. J. Nucl. Mater. 433, 534–537 (2013). https://doi.org/10.1016/j.jnucmat.2012.07.042
M.W. Barsoum, L. Farber, I. Levin, A. Procopio, T. El-Raghy et al., High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited. J. Am. Ceram. Soc. 82, 2545–2547 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02117.x
C. Hu, J. Zhang, J. Wang, F. Li, J. Wang et al., Crystal structure of V4AlC3: a new layered ternary carbide. J. Am. Ceram. Soc. 92, 636–639 (2008). https://doi.org/10.1111/j.1551-2916.2007.02136.x
J. Etzkorn, M. Ade, H. Hillebrecht, V2AlC, V4AlC3–x (x ≈ 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure. Inorg. Chem. 46, 7646–7653 (2007). https://doi.org/10.1021/ic700382y
C. Hu, F. Li, J. Zhang, J. Wang, J. Wang et al., Nb4AlC3: a new compound belonging to the MAX phases. Scr. Mater. 57, 893–896 (2007). https://doi.org/10.1016/j.scriptamat.2007.07.038
Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang, Structural characterization of a new layered-ternary Ta4AlC3 ceramic. J. Mater. Res. 21, 2587–2592 (2006). https://doi.org/10.1557/jmr.2006.0310
X.B. Liu, Y.B. Li, H.M. Ding, L. Chen, S.Y. Du et al., Topotactic transition of Ti4AlN3 MAX phase in Lewis acid molten salt. J. Materiomics 9, 1032–1038 (2023). https://doi.org/10.1016/j.jmat.2023.03.012
H. Högberg, P. Eklund, J. Emmerlich, J. Birch, L. Hultman, Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering. J. Mater. Res. 20, 779–782 (2005). https://doi.org/10.1557/jmr.2005.0105
J. Gu, L.M. Pan, J. Yang, L. Yu, H.B. Zhang et al., Mechanical properties and oxidation behavior of Ti-doped Nb4AlC3. J. Eur. Ceram. Soc. 36, 1001–1008 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.023
R. Syamsai, J.R. Rodriguez, V.G. Pol, Q. Van Le, K.M. Batoo et al., Double transition metal MXene (TixTa4–xC3) 2D materials as anodes for Li-ion batteries. Sci. Rep. 11, 688 (2021). https://doi.org/10.1038/s41598-020-79991-8
D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides - solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
J. Yang, M. Naguib, M. Ghidiu, L.M. Pan, J. Gu et al., Two-dimensional Nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 99, 660–666 (2016). https://doi.org/10.1111/jace.13922
P. Cai, Q.M. He, L.J. Wang, X.J. Liu, J. Yin et al., Two-dimensional Nb-based M4C3Tx MXenes and their sodium storage performances. Ceram. Int. 45, 5761–5767 (2019). https://doi.org/10.1016/j.ceramint.2018.12.042
P.V. Istomin, E.I. Istomina, A.V. Nadutkin, V.E. Grass, Synthesis and crystal structure of a novel quaternary Zr3TiSiC3 MAX phase. Ceram. Int. 49, 37034–37039 (2023). https://doi.org/10.1016/j.ceramint.2023.08.261
Y.Q. Tan, Y.H. Xia, Z. Teng, C. Chen, X.S. Zhou et al., Synthesis and enhanced mechanical properties of compositionally complex MAX phases. J. Eur. Ceram. Soc. 41, 4658–4665 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.027
S.K. Nemani, B.W. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna et al., High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021). https://doi.org/10.1021/acsnano.1c02775
J. Zhou, Q.Z. Tao, B. Ahmed, J. Palisaitis, I. Persson et al., High-entropy laminate metal carbide (MAX Phase) and its two-dimensional derivative MXene. Chem. Mater. 34, 2098–2106 (2022). https://doi.org/10.1021/acs.chemmater.1c03348
B.C. Wyatt, A. Thakur, K. Nykiel, Z.D. Hood, S.P. Adhikari et al., Design of atomic ordering in Mo2Nb2C3TX MXenes for hydrogen evolution electrocatalysis. Nano Lett. 23, 931–938 (2023). https://doi.org/10.1021/acs.nanolett.2c04287
N.J. Lane, M. Naguib, J. Lu, L. Hultman, M.W. Barsoum, Structure of a new bulk Ti5Al2C3 MAX phase produced by the topotactic transformation of Ti2AlC. J. Eur. Ceram. Soc. 32, 3485–3491 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.03.035
H. Boller, K. Hiebl, Quaternary pseudo-intercalation phases Tx [Nb2S2C] (T=V, Cr, Mn, Fe Co, Ni, Cu) and metastable Nb2S2C formed by topochemical synthesis. J. Alloys Compd. 183, 438–443 (1992). https://doi.org/10.1016/0925-8388(92)90765-2
C. Hu, C.C. Lai, Q.Z. Tao, J. Lu, J. Halim et al., Mo2Ga2C: a new ternary nanolaminated carbide. Chem. Commun. 51, 6560–6563 (2015). https://doi.org/10.1039/c5cc00980d
H. Fashandi, C.C. Lai, M. Dahlqvist, J. Lu, J. Rosen et al., Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem. Commun. 53, 9554–9557 (2017). https://doi.org/10.1039/c7cc04701k
M. Downes, C.E. Shuck, R.W. Lord, M. Anayee, M. Shekhirev et al., M5X4: a family of MXenes. ACS Nano 17, 17158–17168 (2023). https://doi.org/10.1021/acsnano.3c04967
R.M. Snyder, M. Juelsholt, C. Kalha, J. Holm, E. Mansfield et al., Detailed analysis of the synthesis and structure of MAX phase (Mo0.75V0.25)5AlC4 and its MXene sibling (Mo0.75V0.25)5C4. ACS Nano 17, 12693–12705 (2023). https://doi.org/10.1021/acsnano.3c03395
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of MoVAlC MAX phase and two-dimensional MoVC MXene with 5 atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
W.S. Ma, Z.M. Qiu, M. Wang, C.W. Tan, L.W. Hu et al., A novel high-entropy MXene Ti1.1V1.2Cr0.8Nb1.0Mo0.9C4Tx for high-performance supercapacitor. Scr. Mater. 235, 115596 (2023). https://doi.org/10.1016/j.scriptamat.2023.115596
M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1, 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
C.M. Hamm, T. Schäfer, H.B. Zhang, C.S. Birkel, Non-conventional synthesis of the 413 MAX phase V4AlC3. Z. Anorg. Allg. Chem. 642, 1397–1401 (2016). https://doi.org/10.1002/zaac.201600370
C.C. Lai, R. Meshkian, M. Dahlqvist, J. Lu, L. Näslund et al., Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis. Acta Mater. 99, 157–164 (2015). https://doi.org/10.1016/j.actamat.2015.07.063
J. Björk, J. Halim, J. Zhou, J. Rosen, Predicting chemical exfoliation: fundamental insights into the synthesis of MXenes. npj 2D Mater. Appl. 7, 5 (2023). https://doi.org/10.1038/s41699-023-00370-8
X.D. He, Y.L. Bai, C.C. Zhu, M.W. Barsoum, Polymorphism of newly discovered Ti4GaC3: a first-principles study. Acta Mater. 59, 5523–5533 (2011). https://doi.org/10.1016/j.actamat.2011.05.025
M.W. Barsoum, MAX Phases: Properties of machinable Ternary Carbides and Nitrides. (Wiley-VCH, Hoboken, 2013), pp.13–64
D. Martin, W.B. Michel, R. Johanna, MAX phases – Past, present, and future. Mater. Today 72, 1–24 (2023). https://doi.org/10.1016/j.mattod.2023.11.010
M. Dahlqvist, J. Rosen, Order and disorder in quaternary atomic laminates from first-principles calculations. Phys. Chem. Chem. Phys. 17, 31810–31821 (2015). https://doi.org/10.1039/c5cp06021d
M. Dahlqvist, J. Rosen, Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale 12, 785–794 (2020). https://doi.org/10.1039/c9nr08675g
V. Gauthier-Brunet, T. Cabioc’h, P. Chartier, M. Jaouen, S. Dubois, Reaction synthesis of layered ternary Ti2AlC ceramic. J. Eur. Ceram. Soc. 29, 187–194 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.05.039
D.T. Cuskelly, E.H. Kisi, Single-step carbothermal synthesis of high-purity MAX phase powders. J. Am. Ceram. Soc. 99, 1137–1140 (2016). https://doi.org/10.1111/jace.14170
S. Cetinkaya, S. Eroglu, Synthesis and reaction mechanism of Ti3SiC2 ternary compound by carbothermal reduction of TiO2 and SiO2 powder mixtures. Ceram. Int. 38, 6445–6453 (2012). https://doi.org/10.1016/j.ceramint.2012.05.020
A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas et al., Synthesis of high-purity polycrystalline MAX phases in Ti-Al-C system through mechanically activated self-propagating high-temperature synthesis. J. Eur. Ceram. Soc. 30, 1049–1057 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.10.001
M. Lopacinski, J. Puszynski, J. Lis, Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Am. Ceram. Soc. 84, 3051–3053 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01138.x
Z.M. Sun, H. Hashimoto, W.B. Tian, Y. Zou, Synthesis of the MAX phases by pulse discharge sintering. Int. J. Appl. Ceram. Technol. 7, 704–718 (2010). https://doi.org/10.1111/j.1744-7402.2010.02555.x
X. Guo, J.X. Wang, S.Y. Yang, L. Gao, B. Qian, Preparation of Ti3SiC2 powders by the molten salt method. Mater. Lett. 111, 211–213 (2013). https://doi.org/10.1016/j.matlet.2013.08.077
L. Feng, M.Q. Lv, Q. Qian, R.X. Luo, B. Huang, The synthesis of high purity Ti3AlC2 MAX phase via molten salt method. Adv. Powder Technol. 34, 103920 (2023). https://doi.org/10.1016/j.apt.2022.103920
A.M. Abdelkader, Molten salts electrochemical synthesis of Cr2AlC. J. Eur. Ceram. Soc. 36, 33–42 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.003
J.L. Smialek, Oxidation of Al2O3 scale-forming MAX phases in turbine environments. Metall. Mater. Trans. A 49A, 782–792 (2018). https://doi.org/10.1007/s11661-017-4346-9
J.P. Palmquist, U. Jansson, T. Seppänen, P. Persson, J. Birch et al., Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl. Phys. Lett. 81, 835–837 (2002). https://doi.org/10.1063/1.1494865
S. Bakardjieva, P. Horak, J. Vacik, A. Cannavò, V. Lavrentiev et al., Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences. Surf. Coat. Technol. 394, 125834 (2020). https://doi.org/10.1016/j.surfcoat.2020.125834
G.Y. Yang, G.D. Li, X. Xiong, Y.L. Wang, J. Wang, Effect of temperature on the formation law of Ti3SiC2 in CVD prepared Ti-Si-C codeposited coating. Mater. Sci. Eng. Powder Metall. 19, 797–804 (2014). https://doi.org/10.3969/j.issn.1673-0224.2014.05.020
M. Dahlqvist, B. Alling, J. Rosén, Stability trends of MAX phases from first principles. Phys. Rev. B 81, 220102(R) (2010). https://doi.org/10.1103/PhysRevB.81.220102
S. Aryal, R. Sakidja, M.W. Barsoum, W.Y. Ching, A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys. Status Solidi B 251, 1480–1497 (2014). https://doi.org/10.1002/pssb.201451226
M. Ashton, R.G. Hennig, S.R. Broderick, K. Rajan, S.B. Sinnott, Computational discovery of stable M2AX phases. Phys. Rev. B 94, 054116 (2016). https://doi.org/10.1103/PhysRevB.94.054116
N.C. Frey, J. Wang, G.I.V. Bellido, B. Anasori, Y. Gogotsi et al., Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13, 3031–3041 (2019). https://doi.org/10.1021/acsnano.8b08014
R. Khaledialidusti, M. Khazaei, S. Khazaei, K. Ohno, High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13, 7294–7307 (2021). https://doi.org/10.1039/d0nr08791b
M. Dahlqvist, J. Rosen, The rise of MAX phase alloys - large-scale theoretical screening for the prediction of chemical order and disorder. Nanoscale 14, 10958–10971 (2022). https://doi.org/10.1039/d2nr02414d
X.F. Wang, J.J. Ma, Z.Y. Jiao, X.Z. Zhang, Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1–x)C2 solid solutions. Acta Phys. Sin. 65, 206201 (2016). https://doi.org/10.7498/aps.65.206201
S.T. Ahams, A. Shaari, R. Ahmed, N.F.A. Pattah, M.C. Idris et al., Theoretical investigation of Zr2PbC, (V0.25Zr0.75)2PbC, (V0.5Zr0.5)2PbC, V0.75Zr0.25)2PbC, and V2PbC MAX phases: a DFT based study. Mater. Today Commun. 27, 102397 (2021). https://doi.org/10.1016/j.mtcomm.2021.102397
F.W. Zeng, H.Z. Zheng, G.F. Li, Y.X. Geng, P. Peng, Study on the structural, mechanical, and dynamical stabilities and properties of Nb2AN (A = Si, Ge, and Sn) MAX phases by first principle. J. Am. Ceram. Soc. 105, 5285–5298 (2022). https://doi.org/10.1111/jace.18442
H. Tian, X. He, J. Wang, M. Haiyan, S. Longhai et al., Theoretical insights into the physical properties of a new 211 MAX phase V2ZnC under high pressure. Comput. Mater. Sci. 232, 112649 (2023). https://doi.org/10.1016/j.commatsci.2023.112649
T.H. Scabarozi, S. Amini, P. Finkel, O.D. Leaffer, J.E. Spanier et al., Electrical, thermal, and elastic properties of the MAX-phase Ti2SC. J. Appl. Phys (2008). https://doi.org/10.1063/1.2959738
Y.L. Bai, X.D. He, C.C. Zhu, G.Q. Chen, Microstructures, electrical, thermal, and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing. J. Am. Ceram. Soc. 95, 358–364 (2012). https://doi.org/10.1111/j.1551-2916.2011.04934.x
T. El-Raghy, S. Chakraborty, M.W. Barsoum, Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr). J. Eur. Ceram. Soc. 20, 2619–2625 (2000). https://doi.org/10.1016/s0955-2219(00)00127-8
M. Radovic, A. Ganguly, M.W. Barsoum, Elastic properties and phonon conductivities of Ti3Al(C0.5, N0.5)2 and Ti2Al(C0.5, N0.5) solid solutions. J. Mater. Res. 23, 1517–1521 (2008). https://doi.org/10.1557/jmr.2008.0200
Z.J. Lin, Y.C. Zhou, M.S. Li, J.Y. Wang, In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC. Z. Metallkd. 96, 291–296 (2005). https://doi.org/10.3139/146.101033
S. Amini, A. Zhou, S. Gupta, A. DeVillier, P. Finkel et al., Synthesis and elastic and mechanical properties of Cr2GeC. J. Mater. Res. 23, 2157–2165 (2008). https://doi.org/10.1557/jmr.2008.0262
M.W. Barsoum, D. Brodkin, T. ElRaghy, Layered machinable ceramics for high temperature applications. Scr. Mater. 36, 535–541 (1997). https://doi.org/10.1016/s1359-6462(96)00418-6
P. Finkel, B. Seaman, K. Harrell, J. Palma, J.D. Hettinger et al., Electronic, thermal, and elastic properties of Ti3Si1–xGexC2 solid solutions. Phys. Rev. B 70, 085104 (2004). https://doi.org/10.1103/PhysRevB.70.085104
C.F. Hu, F.Z. Li, L.F. He, M.Y. Liu, J. Zhang et al., In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 91, 2258–2263 (2008). https://doi.org/10.1111/j.1551-2916.2008.02424.x
C.F. Hu, Z.J. Lin, L.F. He, Y.W. Bao, J.Y. Wang et al., Physical and mechanical properties of bulk Ta4AIC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method. J. Am. Ceram. Soc. 90, 2542–2548 (2007). https://doi.org/10.1111/j.1551-2916.2007.01804.x
Y.L. Bai, X.D. He, R.G. Wang, Y. Sun, C.C. Zhu et al., High temperature physical and mechanical properties of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing. J. Eur. Ceram. Soc. 33, 2435–2445 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.04.014
T. Scabarozi, A. Ganguly, J.D. Hettinger, S.E. Lofland, S. Amini et al., Electronic and thermal properties of Ti3Al(C0.5, N0.5)2, Ti2Al(C0.5, N0.5) and Ti2AlN. J. Appl. Phys 104, 073713 (2008). https://doi.org/10.1063/1.2979326
M.W. Barsoum, MAX Phases: Properties of machinable Ternary Carbides and Nitrides. (Wiley-VCH, Hoboken, 2013), pp.107–153
T.H. Scabarozi, S. Benjamin, B. Adamson, J. Applegate, J. Roche et al., Combinatorial investigation of the stoichiometry, electronic transport and elastic properties of (Cr1–xVx)2GeC thin films. Scr. Mater. 66, 85–88 (2012). https://doi.org/10.1016/j.scriptamat.2011.10.001
T.H. Scabarozi, P. Eklund, J. Emmerlich, H. Högberg, T. Meehan et al., Weak electronic anisotropy in the layered nanolaminate Ti2GeC. Solid State Commun. 146, 498–501 (2008). https://doi.org/10.1016/j.ssc.2008.03.026
L.E. Toth, High superconducting transition temperatures in the molybdenum carbide family of compounds. J. Less-common Met. 13, 129 (1967). https://doi.org/10.1016/0022-5088(67)90055-0
I.R. Shein, V.G. Bamburov, A.L. Ivanovskii, Ab initio calculations of the electronic properties of new superconducting nanolaminates: Nb2SnC and Nb2SC1–x. Dokl. Phys. Chem. 411, 317–321 (2006). https://doi.org/10.1134/s001250160611008x
W. Zhou, L. Liu, P. Wu et al., First-principles study of structural, thermodynamic, elastic, and magnetic properties of Cr2GeC under pressure and temperature. J. Appl. Phys. 106, 33501–33501 (2009). https://doi.org/10.1063/1.3187912
A.S. Ingason, A. Mockute, M. Dahlqvist, F. Magnus, S. Olafsson et al., Magnetic self-organized atomic laminate from first principles and thin film synthesis. Phys. Rev. Lett. 110, 195502 (2013). https://doi.org/10.1103/PhysRevLett.110.195502
A. Mockute, J. Lu, E.J. Moon, M. Yan, B. Anasori et al., Solid solubility and magnetism upon Mn incorporation in the bulk ternary carbides Cr2AlC and Cr2GaC. Mater. Res. Lett. 3, 16–22 (2015). https://doi.org/10.1080/21663831.2014.944676
E. Drouelle, V. Brunet, J. Cormier, P. Villechaise, P. Sallot et al., Oxidation resistance of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: a comparison. J. Am. Ceram. Soc. 103, 1270–1280 (2020). https://doi.org/10.1111/jace.16780
W.B. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, S. Dubois, Oxidation mechanisms in bulk Ti2AlC: Influence of the grain size. J. Eur. Ceram. Soc. 40, 1820–1828 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.042
G.P. Bei, B.J. Pedimonte, T. Fey, P. Greil, Oxidation behavior of MAX phase Ti2Al(1–x)SnxC solid solution. J. Am. Ceram. Soc. 96, 1359–1362 (2013). https://doi.org/10.1111/jace.12358
S. Badie, D. Sebold, R. Vassen, O. Guillon, J. Gonzalez-Julian, Mechanism for breakaway oxidation of the Ti2AlC MAX phase. Acta Mater. 215, 117025 (2021). https://doi.org/10.1016/j.actamat.2021.117025
J. Travaglini, M.W. Barsoum, V. Jovic, T. El-Raghy, The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH. Corros. Sci. 45, 1313–1327 (2003). https://doi.org/10.1016/s0010-938x(02)00227-5
G.M. Liu, M.S. Li, Y.C. Zhou, Y.M. Zhang, Corrosion behavior and strength degradation of Ti3SiC2 exposed to a eutectic K2CO3 and Li2CO3 mixture. J. Eur. Ceram. Soc. 23, 1957–1962 (2003). https://doi.org/10.1016/s0955-2219(02)00419-3
Y.Q. Tan, H. Luo, X.S. Zhou, S.M. Peng, H.B. Zhang, Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics. Sci. Rep. 8, 7935 (2018). https://doi.org/10.1038/s41598-018-26256-0
Y. Liu, C.Y. Wang, W. Luo, L. Bai, Y. Xu et al., Facile synthesis of hollow Ti3AlC2 microrods in molten salts via Kirkendall effect. J. Adv. Ceram. 11, 1491–1497 (2022). https://doi.org/10.1007/s40145-022-0616-0
Y.B. Li, H. Shao, Z.F. Lin, J. Lu, L.Y. Liu et al., A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
A. Sengupta, B.V.B. Rao, N. Sharma, S. Parmar, V. Chavan et al., Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications. Nanoscale 12, 8466–8476 (2020). https://doi.org/10.1039/c9nr10980c
J.G. Xu, M.Q. Zhao, Y.C. Wang, W. Yao, C. Chen et al., Demonstration of Li-ion capacity of MAX phases. ACS Energy Lett. 1, 1094–1099 (2016). https://doi.org/10.1021/acsenergylett.6b00488
J. Carbajo, A. Quintanilla, A.L. Garcia-Costa, J. González-Julián, M. Belmonte et al., The influence of the catalyst on the CO formation during catalytic wet peroxide oxidation process. Catal. Today 361, 30–36 (2021). https://doi.org/10.1016/j.cattod.2019.12.020
K. Wang, H.F. Du, Z.Y. Wang, M.X. Gao, H.G. Pan et al., Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 42, 4244–4251 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.073
B. Anasori, E.N. Caspi, M.W. Barsoum, Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC ps. Mater. Sci. Eng. A 618, 511–522 (2014). https://doi.org/10.1016/j.msea.2014.09.039
S. Amini, C.Y. Ni, M.W. Barsoum, Processing, microstructural characterization and mechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite. Compos. Sci. Technol. 69, 414–420 (2009). https://doi.org/10.1016/j.compscitech.2008.11.007
W.T. Chen, W.B. Yu, C.S. Ma, G.Z. Ma, L.Q. Zhang et al., A review of novel ternary nano-layered MAX phases reinforced AZ91D magnesium composite. J. Magnes Alloy 10, 1457–1475 (2022). https://doi.org/10.1016/j.jma.2022.05.013
L.X. Yang, Y.B. Mu, R.J. Liu, H.J. Liu, L. Zeng et al., A facile preparation of submicro-sized Ti2AlC precursor toward Ti2CTx MXene for lithium storage. Electrochim. Acta 432, 141152 (2022). https://doi.org/10.1016/j.electacta.2022.141152
I. Roslyk, I. Baginskiy, V. Zahorodna, O. Gogotsi, S. Ippolito et al., Porous Ti3AlC2 MAX phase enables efficient synthesis of Ti3C2Tx MXene. Int. J. Appl. Ceram. Technol. 21, 2605–2612 (2024). https://doi.org/10.1111/ijac.14671
M. Shekhirev, J. Busa, C.E. Shuck, A. Torres, S. Bagheri et al., Ultralarge flakes of Ti3C2Tx MXene via soft delamination. ACS Nano 16, 13695–13703 (2022). https://doi.org/10.1021/acsnano.2c04506
L.Z. Huang, S.Y. Chen, L. Ding, H.H. Wang, Lateral-size-dependent ion transport behavior of the MXene membrane facilitates efficient ion sieving. ACS Appl. Nano Mater. 7, 9482–9489 (2024). https://doi.org/10.1021/acsanm.4c00919
J. Gonzalez-Julian, Processing of MAX phases: from synthesis to applications. J. Am. Ceram. Soc. 104, 659–690 (2021). https://doi.org/10.1111/jace.17544
D.J. Tallman, E.N. Hoffman, E.N. Caspi, B.L. Garcia-Diaz, G. Kohse et al., Effect of neutron irradiation on select MAX phases. Acta Mater. 85, 132–143 (2015). https://doi.org/10.1016/j.actamat.2014.10.068
S.S. Liu, C.X. Wang, T.F. Yang, Y. Fang, Q. Huang et al., High temperature effects on irradiation damage of Ti2AlC. Nucl. Instrum. Meth. B 406, 662–669 (2017). https://doi.org/10.1016/j.nimb.2017.01.040
A. Sommers, Q. Wang, X. Han, C. T’Joen, Y. Park et al., Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-A review. Appl. Therm. Eng. 30, 1277–1291 (2010). https://doi.org/10.1016/j.applthermaleng.2010.02.018
L. Bo, X. Liu, D. Wang, The corrosion behavior of multicomponent porous MAX phase (Ti0.25Zr0.25Nb0.25Ta0.25)2AlC in hydrochloric acid. Corros. Sci. 222, 111430 (2023). https://doi.org/10.1016/j.corsci.2023.111430
Z. Li, Y. Zhang, K. Wang, Z. Wang, G. Ma et al., Highly dense passivation enhanced corrosion resistance of Ti2AlC MAX phase coating in 3.5 wt.% NaCl solution. Corros. Sci. 228, 111820 (2024). https://doi.org/10.1016/j.corsci.2024.111820
F. Hu, H. Tang, F. Wu, P. Ding, P. Zhang et al., Sn Whiskers from Ti2SnC max phase: bridging dual-functionality in electromagnetic attenuation. Small Methods 8(9), 2301476 (2024). https://doi.org/10.1002/smtd.202301476
Q. Tan, W. Zhuang, M. Attia, R. Djugum, M. Zhang, Recent progress in additive manufacturing of bulk MAX phase components: A review. J. Mater. Sci. Technol. 131, 30–47 (2022). https://doi.org/10.1016/j.jmst.2022.05.026
Y. Liu, C. Ji, X.L. Su, J. Xu, X.H. He, Electromagnetic and microwave absorption properties of Ti3SiC2 powders decorated with Ag ps. J. Alloys Compd. 820, 153154 (2020). https://doi.org/10.1016/j.jallcom.2019.153154
D.D. Wang, W.B. Tian, A.B. Ma, J.X. Ding, C.S. Wang et al., Anisotropic properties of Ag/Ti3AlC2 electrical contact materials prepared by equal channel angular pressing. J. Alloys Compd. 784, 431–438 (2019). https://doi.org/10.1016/j.jallcom.2019.01.083
J.X. Ding, W.B. Tian, D.D. Wang, P.G. Zhang, J. Chen et al., Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge. Corros. Sci. 156, 147–160 (2019). https://doi.org/10.1016/j.corsci.2019.05.005
D.D. Wang, W.B. Tian, J.X. Ding, Y.F. Zhu, P.G. Zhang et al., The beauty and the deed of silver during arc erosion of Ag/Ti3AlC2 contacts. J. Alloys Compd. 820, 34382–34388 (2020). https://doi.org/10.1016/j.jallcom.2019.153136
H.M. Ding, M. Li, Y.B. Li, K. Chen, Y.K. Xiao et al., Progress in structural tailoring and properties of ternary layered ceramics. J. Inorg. Mater. 38, 845–884 (2023). https://doi.org/10.15541/jim20230123
X.H. Yin, M.S. Li, J.J. Xu, J. Zhang, Y.C. Zhou, Direct diffusion bonding of Ti3SiC2 and Ti3AlC2. Mater. Res. Bull. 44, 1379–1384 (2009). https://doi.org/10.1016/j.materresbull.2008.12.002
L. Shen, J.M. Xue, M.W. Barsoum, Q. Huang, Rapid bonding of Ti3SiC2 and Ti3AlC2 by pulsed electrical current heating. J. Am. Ceram. Soc. 97, 3721–3724 (2014). https://doi.org/10.1111/jace.13323
R. Jamshidi, O. Bayat, A. Heidarpour, Tribological and corrosion behavior of flame sprayed Al-10 wt% Ti3SiC2 composite coating on carbon steel. Surf. Coat. Technol. 358, 1–10 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.087
Z.Y. Wang, C.C. Wang, Y.P. Zhang, A.Y. Wang, P.L. Ke, M-site solid solution of vanadium enables the promising mechanical and high-temperature tribological properties of Cr2AlC coating. Mater. Des. 222, 111060 (2022). https://doi.org/10.1016/j.matdes.2022.111060
S.H. Li, W.W. Sun, Y. Luo, J. Yu, L.T. Sun et al., Pushing the limit of thermal conductivity of MAX borides and MABs. J. Mater. Sci. Technol. 97, 79–88 (2022). https://doi.org/10.1016/j.jmst.2021.05.006
X.L. Shi, W.Z. Zhai, Z.S. Xu, M. Wang, J. Yao et al., Synergetic lubricating effect of MoS2 and Ti3SiC2 on tribological properties of NiAl matrix self-lubricating composites over a wide temperature range. Mater. Des. 55, 93–103 (2014). https://doi.org/10.1016/j.matdes.2013.09.072
J.L. Zhou, D.J. Kong, Friction-wear performances and oxidation behaviors of Ti3AlC2 reinforced Co-based alloy coatings by laser cladding. Surf. Coat. Technol. 408, 126816 (2021). https://doi.org/10.1016/j.surfcoat.2020.126816
Y.A. Elizarova, A.I. Zakharov, High-temperature functional protective coating