Preparation and growth mechanism of nickel nanowires under applied magnetic field
Corresponding Author: Y. F. Zhang
Nano-Micro Letters,
Vol. 2 No. 2 (2010), Article Number: 134-138
Abstract
Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature 404, 59 (2000). doi:10.1038/35003535.
- S. J. Lei, Z. H. Liang, L. Zhou and K. B. Tang, Mater. Chem. Phys. 113, 445 (2009). doi:10.1016/j.matchemphys.2008.07.114.
- H. T. Hu, M. Ouyang, P. D. Yang and C. M. Lieber, Nature 399, 48 (1999). doi:10.1038/19941.
- D. S. Xu, G. L. Guo, L. L. Gui, Y. Q. Tang, Z. J. Shi, Z. X. Jin, Z. N. Gu, W. M. Liu, X. L. Li and G. H. Zhang, Appl. Phys. Lett. 75, 481 (1999). doi:10.1063/1.124415.
- C. M. Liu, L. Guo, R. M. Wang, Y. Deng, H. B. Xua and S. H. Yang, Chem. Commun. 2726 (2004). doi:10.1039/b411311j.
- N. Vassal, E. Salmon and J. Fauvarque, J. Electrochem. Soc. 146, 20 (1999). doi:10.1149/1.1391558.
- D. E. Laughlin, B. Lu, Y.-N. Hsu, J. Zou and D. Lambeth, IEEE. Trans. Magn. 36, 48 (2000). doi:10.1109/20.824424.
- J. M. Richardson and C. W. Jones, J. Mol. Catal. A: Chem. 297, 125 (2009). doi:10.1016/j.molcata.2008.09.021.
- R.B. Kamble and V. L. Mathe, Sens. Actuators, B: Chem. 131, 205 (2008). doi:10.1016/j.snb.2007.11.003.
- N. Rezlescu, N. Iftimie, E. Rezlescu, C. Doroftei and P. D. Popa, Sens. Actuators, B: Chem. 114, 427 (2006). doi:10.1016/j.snb.2005.05.030.
- Z. Libor and Q. Zhang, Mater. Chem. Phys. 114, 902 (2009). doi:10.1016/j.matchemphys.2008.10.068.
- S. Thakur, S. C. Katyal and M. Singh, J. Magn. Magn. Mater. 321, 1 (2009). doi:10.1016/j.jmmm.2008.07.009.
- C. Y. Yu, Y. L. Yu, H. Y. Sun, T. Xu, X. H. Li, W. Li, Z. S. Gao and X. Y. Zhang, Mater. Lett. 61, 1859 (2007). doi:10.1016/j.matlet.2006.07.162.
- H. J. Zhang and Y. Liu, J. Alloys Compd. 458, 588 (2008). doi:10.1016/j.jallcom.2007.05.016.
- Y. G. Sun and Y. N. Xia, Adv. Mater. 14, 833 (2002). doi:10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K.
- H. L. Niu, Q. W. Chen, M. Ning, Y. S. Jia and X. J. Wang, J. Phys. Chem. B 108, 3996 (2004). doi:10.1021/jp0361172.
- C. H. Gong, L. G. Yu, Y. P. Duan, J. T. Tian, Z. S. Wu and Z. J. Zhang, Eur. J. Inorg. Chem. 18, 2884 (2008). doi:10.1002/ejic.200800200.
- L. Y. Zhang, J. Wang, L. M. Wei, P. Liu, H. Wei and Y. F. Zhang, Nano-Micro Letters 1, 49 (2009). doi:10.5101/ nml.v1i1.p49-52.
- P. Liu, Z. J. Li, B. L. Yadian and Y. F. Zhang, Mater. Lett. 63, 1650 (2009). doi:10.1016/j.matlet.2009.04.031.
- S.H. Wu and D.H. Chen, J. Colloid Interface Sci. 259, 282 (2003). doi:10.1016/S0021-9797(02)00135-2.
- C. H. Gong, J. T. Tian, T. Zhao, Z. S. Wu and Z. J. Zhang, Mater. Res. Bull. 44, 35 (2009). doi:10.1016/j.materresbull.2008.04.010.
- M. Zhang, J. Deng, M. H. Zhang and W. Li, Chinese J. Catal. 30, 447 (2009). doi:10.1016/S1872-2067(08)60111-4.
- Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu and Y. Qian, Adv. Mater. 15, 1946 (2003). doi:10.1002/adma.200305663.
- E. K. Athanassiou, P. Grossmann, R. N. Grass and W. J. Stark, Nanotechnology 18, 165606 (2007). doi:10.1088/0957- 4484/18/16/165606.
- Y. Hou, S. Gao, T. Ohta and H. Kondoh, Eur. J. Inorg. Chem. 4, 1169 (2004). doi:10.1002/ejic.200300779s.
References
X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature 404, 59 (2000). doi:10.1038/35003535.
S. J. Lei, Z. H. Liang, L. Zhou and K. B. Tang, Mater. Chem. Phys. 113, 445 (2009). doi:10.1016/j.matchemphys.2008.07.114.
H. T. Hu, M. Ouyang, P. D. Yang and C. M. Lieber, Nature 399, 48 (1999). doi:10.1038/19941.
D. S. Xu, G. L. Guo, L. L. Gui, Y. Q. Tang, Z. J. Shi, Z. X. Jin, Z. N. Gu, W. M. Liu, X. L. Li and G. H. Zhang, Appl. Phys. Lett. 75, 481 (1999). doi:10.1063/1.124415.
C. M. Liu, L. Guo, R. M. Wang, Y. Deng, H. B. Xua and S. H. Yang, Chem. Commun. 2726 (2004). doi:10.1039/b411311j.
N. Vassal, E. Salmon and J. Fauvarque, J. Electrochem. Soc. 146, 20 (1999). doi:10.1149/1.1391558.
D. E. Laughlin, B. Lu, Y.-N. Hsu, J. Zou and D. Lambeth, IEEE. Trans. Magn. 36, 48 (2000). doi:10.1109/20.824424.
J. M. Richardson and C. W. Jones, J. Mol. Catal. A: Chem. 297, 125 (2009). doi:10.1016/j.molcata.2008.09.021.
R.B. Kamble and V. L. Mathe, Sens. Actuators, B: Chem. 131, 205 (2008). doi:10.1016/j.snb.2007.11.003.
N. Rezlescu, N. Iftimie, E. Rezlescu, C. Doroftei and P. D. Popa, Sens. Actuators, B: Chem. 114, 427 (2006). doi:10.1016/j.snb.2005.05.030.
Z. Libor and Q. Zhang, Mater. Chem. Phys. 114, 902 (2009). doi:10.1016/j.matchemphys.2008.10.068.
S. Thakur, S. C. Katyal and M. Singh, J. Magn. Magn. Mater. 321, 1 (2009). doi:10.1016/j.jmmm.2008.07.009.
C. Y. Yu, Y. L. Yu, H. Y. Sun, T. Xu, X. H. Li, W. Li, Z. S. Gao and X. Y. Zhang, Mater. Lett. 61, 1859 (2007). doi:10.1016/j.matlet.2006.07.162.
H. J. Zhang and Y. Liu, J. Alloys Compd. 458, 588 (2008). doi:10.1016/j.jallcom.2007.05.016.
Y. G. Sun and Y. N. Xia, Adv. Mater. 14, 833 (2002). doi:10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K.
H. L. Niu, Q. W. Chen, M. Ning, Y. S. Jia and X. J. Wang, J. Phys. Chem. B 108, 3996 (2004). doi:10.1021/jp0361172.
C. H. Gong, L. G. Yu, Y. P. Duan, J. T. Tian, Z. S. Wu and Z. J. Zhang, Eur. J. Inorg. Chem. 18, 2884 (2008). doi:10.1002/ejic.200800200.
L. Y. Zhang, J. Wang, L. M. Wei, P. Liu, H. Wei and Y. F. Zhang, Nano-Micro Letters 1, 49 (2009). doi:10.5101/ nml.v1i1.p49-52.
P. Liu, Z. J. Li, B. L. Yadian and Y. F. Zhang, Mater. Lett. 63, 1650 (2009). doi:10.1016/j.matlet.2009.04.031.
S.H. Wu and D.H. Chen, J. Colloid Interface Sci. 259, 282 (2003). doi:10.1016/S0021-9797(02)00135-2.
C. H. Gong, J. T. Tian, T. Zhao, Z. S. Wu and Z. J. Zhang, Mater. Res. Bull. 44, 35 (2009). doi:10.1016/j.materresbull.2008.04.010.
M. Zhang, J. Deng, M. H. Zhang and W. Li, Chinese J. Catal. 30, 447 (2009). doi:10.1016/S1872-2067(08)60111-4.
Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu and Y. Qian, Adv. Mater. 15, 1946 (2003). doi:10.1002/adma.200305663.
E. K. Athanassiou, P. Grossmann, R. N. Grass and W. J. Stark, Nanotechnology 18, 165606 (2007). doi:10.1088/0957- 4484/18/16/165606.
Y. Hou, S. Gao, T. Ohta and H. Kondoh, Eur. J. Inorg. Chem. 4, 1169 (2004). doi:10.1002/ejic.200300779s.