Bimetallic Single-Atom Catalysts for Water Splitting
Corresponding Author: Aristides Bakandritsos
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 1
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal–metal and metal–support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Highlights:
1 Bimetallic single-atom catalysts (bimSACs) have garnered significant attention for leveraging the synergistic functions of the two metal active centers.
2 This review focuses on the advancements in the field of bimSACs and their pivotal role in hydrogen generation via water splitting.
3 State-of-the-art computational and physicochemical techniques for the analysis of bimSACs and their application in electrocatalytic water splitting are discussed.
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.-Y. Wang, L. Wang, J.-T. Ren, W.-W. Tian, M.-L. Sun et al., Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15, 155 (2023). https://doi.org/10.1007/s40820-023-01128-z
- R. Meys, A. Kätelhön, M. Bachmann, B. Winter, C. Zibunas et al., Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021). https://doi.org/10.1126/science.abg9853
- H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9, eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
- T. Hashimoto, T. Asada, S. Ogoshi, Y. Hoshimoto, Main Group catalysis for H2 purification based on liquid organic hydrogen carriers. Sci. Adv. 8, eade0189 (2022). https://doi.org/10.1126/sciadv.ade0189
- B. Ma, C. Deng, H. Chen, M. Zhu, M. Yang et al., Hybrid separation process of refinery off-gas toward near-zero hydrogen emission: conceptual design and Techno-economic analysis. Ind. Eng. Chem. Res. 59, 8715–8727 (2020). https://doi.org/10.1021/acs.iecr.0c00143
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022). https://doi.org/10.1007/s10311-021-01322-8
- M.A. Rosen, S. Koohi-Fayegh, The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 1, 10–29 (2016). https://doi.org/10.1007/s40974-016-0005-z
- C. Xia, Y. Li, M. Je, J. Kim, S.M. Cho et al., Nanocrystalline iron pyrophosphate-regulated amorphous phosphate overlayer for enhancing solar water oxidation. Nano-Micro Lett. 14, 209 (2022). https://doi.org/10.1007/s40820-022-00955-w
- I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds et al., The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019). https://doi.org/10.1039/C8EE01157E
- P.J. Megía, A.J. Vizcaíno, J.A. Calles, A. Carrero, Hydrogen production technologies: from fossil fuels toward renewable sources A mini review. Energy Fuels 35, 16403–16415 (2021). https://doi.org/10.1021/acs.energyfuels.1c02501
- S. van Renssen, The hydrogen solution? Nat. Clim. Change 10, 799–801 (2020). https://doi.org/10.1038/s41558-020-0891-0
- I. Ozsari, Trend analysis and evaluation of hydrogen energy and hydrogen storage research. Energy Storage 5, e471 (2023). https://doi.org/10.1002/est2.471
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- S. Freund, D. Sánchez, Green hydrogen market and growth Machinery and Energy Systems for the Hydrogen Economy (Elsevier, Amsterdam, 2022), pp.605–635
- A.B.S. Semente, C.B. Madeira Rodrigues, M.A. Mariano, M.B. Gaspar, B. Šljukić et al., Prospects and challenges for the green hydrogen market Solar-Driven Green Hydrogen Generation and Storage (Elsevier, Amsterdam, 2023), pp.381–415
- M. Yusuf, M.S. Alnarabiji, B. Abdullah, Clean hydrogen production technologies (Advances in Sustainable Energy. Springer International Publishing, Cham, 2021), pp.159–170
- M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei et al., Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021). https://doi.org/10.1016/j.rser.2021.111180
- H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: challenges and opportunities. Int. J. Hydrog. Energy 47, 26238–26264 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.149
- L. Zhang, H. Liu, S. Liu, M.N. Banis, Z. Song et al., Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS Catal. 9, 9350–9358 (2019). https://doi.org/10.1021/acscatal.9b01677
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
- J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15, 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- C. Bie, L. Wang, J. Yu, Challenges for photocatalytic overall water splitting. Chem 8, 1567–1574 (2022). https://doi.org/10.1016/j.chempr.2022.04.013
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021). https://doi.org/10.1002/smll.202101584
- X. Li, L. Liu, X. Ren, J. Gao, Y. Huang et al., Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020). https://doi.org/10.1126/sciadv.abb6833
- D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang et al., Electron-deficient Zn–N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
- X. Chen, K. Niu, Z. Xue, X. Liu, B. Liu et al., Ultrafine platinum nanops supported on N, S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. Nanoscale Adv. 4, 1639–1648 (2022). https://doi.org/10.1039/d2na00014h
- W. Liu, Q. Xu, P. Yan, J. Chen, Y. Du et al., Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of HxMoO3–x with plasmon resonance. ChemCatChem 10, 946–950 (2018). https://doi.org/10.1002/cctc.201701777
- H. Su, M.A. Soldatov, V. Roldugin, Q. Liu, Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2, 102–109 (2022). https://doi.org/10.1016/j.esci.2021.12.007
- H. Jeong, S. Shin, H. Lee, Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 14, 14355–14374 (2020). https://doi.org/10.1021/acsnano.0c06610
- J. Liu, D. Cao, H. Xu, D. Cheng, From double-atom catalysts to single-cluster catalysts: a new frontier in heterogeneous catalysis. Nano Sel. 2, 251–270 (2021). https://doi.org/10.1002/nano.202000155
- X. Zhao, F. Wang, X.-P. Kong, R. Fang, Y. Li, Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 143, 16068–16077 (2021). https://doi.org/10.1021/jacs.1c06349
- W. Luo, Y. Wang, L. Luo, S. Gong, M. Wei et al., Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 12, 1167–1179 (2022). https://doi.org/10.1021/acscatal.1c04454
- J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32, e2003300 (2020). https://doi.org/10.1002/adma.202003300
- A. Bakandritsos, R.G. Kadam, P. Kumar, G. Zoppellaro, M. Medved’ et al., Mixed-valence single-atom catalyst derived from functionalized graphene. Adv. Mater. 31, 1900323 (2019). https://doi.org/10.1002/adma.201900323
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- A. Nandy, H. Adamji, D.W. Kastner, V. Vennelakanti, A. Nazemi et al., Using computational chemistry to reveal nature’s blueprints for single-site catalysis of C–H activation. ACS Catal. 12, 9281–9306 (2022). https://doi.org/10.1021/acscatal.2c02096
- J.T. Yates Jr., S.D. Worley, T.M. Duncan, R.W. Vaughan, Catalytic decomposition of formaldehyde on single rhodium atoms. J. Chem. Phys. 70, 1225–1230 (1979). https://doi.org/10.1063/1.437604
- T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159–162 (1995). https://doi.org/10.1038/378159a0
- A.K. Datye, H. Guo, Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat. Commun. 12, 895 (2021). https://doi.org/10.1038/s41467-021-21152-0
- H. Zhang, X.F. Lu, Z.-P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020). https://doi.org/10.1021/acscentsci.0c00512
- S.F. Yuk, G. Collinge, M.-T. Nguyen, M.-S. Lee, V.-A. Glezakou et al., Single-atom catalysis: an analogy between heterogeneous and homogeneous catalysts. ACS Symposium Series. Washington, DC: American Chemical Society, (2020), PP. 1–15 https://doi.org/10.1021/bk-2020-1360.ch001
- Y. Zhao, Z. Pei, X.F. Lu, D. Luan, X. Wang et al., Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn–CO2 batteries. Chem Catal. 2, 1480–1493 (2022). https://doi.org/10.1016/j.checat.2022.05.015
- V.B. Saptal, V. Ruta, M.A. Bajada, G. Vilé, Single-atom catalysis in organic synthesis. Angew. Chem. Int. Ed. 62, 2219306 (2023). https://doi.org/10.1002/anie.202219306
- L. Liu, K.-F. Yung, H. Yang, B. Liu, Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem. Sci. 15, 6285–6313 (2024). https://doi.org/10.1039/D4SC01030B
- Z. Pei, X.F. Lu, H. Zhang, Y. Li, D. Luan et al., Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem. Int. Ed. 61, e202207537 (2022). https://doi.org/10.1002/anie.202207537
- S. Mitchell, J. Pérez-Ramírez, Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5
- T. He, A.R. Puente-Santiago, S. Xia, M.A. Ahsan, G. Xu et al., Experimental and theoretical advances on single atom and atomic cluster-decorated low-dimensional platforms towards superior electrocatalysts. Adv. Energy Mater. 12, 2200493 (2022). https://doi.org/10.1002/aenm.202200493
- J. Gu, Y. Xu, J. Lu, Atom-precise low-nuclearity cluster catalysis: opportunities and challenges. ACS Catal. 13, 5609–5634 (2023). https://doi.org/10.1021/acscatal.3c01449
- L. Kong, M. Wang, C.-M.L. Wu, From single atom to low-nuclearity cluster immobilized Ti3C2TX MXene for highly efficient NO electroreduction to NH3. ACS Mater. Lett. 6, 1711–1721 (2024). https://doi.org/10.1021/acsmaterialslett.3c01604
- T. He, A.R.P. Santiago, Y. Kong, M.A. Ahsan, R. Luque et al., Atomically dispersed heteronuclear dual-atom catalysts: a new rising star in atomic catalysis. Small 18, e2106091 (2022). https://doi.org/10.1002/smll.202106091
- Y. Li, W. Shan, M.J. Zachman, M. Wang, S. Hwang et al., Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: mechanistic insight into active site structures. Angew. Chem. Int. Ed. 61, e202205632 (2022). https://doi.org/10.1002/anie.202205632
- Y. Ying, X. Luo, J. Qiao, H. Huang, “More is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
- X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
- Q.-Q. Yan, D.-X. Wu, S.-Q. Chu, Z.-Q. Chen, Y. Lin et al., Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019). https://doi.org/10.1038/s41467-019-12851-w
- A. Kumar, V.Q. Bui, J. Lee, L. Wang, A.R. Jadhav et al., Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 12, 6766 (2021). https://doi.org/10.1038/s41467-021-27145-3
- P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv et al., Thermolysis of noble metal nanops into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58, 14184–14188 (2019). https://doi.org/10.1002/anie.201908351
- Y. Kang, J. Henzie, H. Gu, J. Na, A. Fatehmulla et al., Mesoporous metal-metalloid amorphous alloys: the first synthesis of open 3D mesoporous Ni–B amorphous alloy spheres via a dual chemical reduction method. Small 16, e1906707 (2020). https://doi.org/10.1002/smll.201906707
- Y. Kang, B. Jiang, J. Yang, Z. Wan, J. Na et al., Amorphous alloy architectures in pore walls: mesoporous amorphous NiCoB alloy spheres with controlled compositions via a chemical reduction. ACS Nano 14, 17224–17232 (2020). https://doi.org/10.1021/acsnano.0c07178
- Y. Da, R. Jiang, Z. Tian, X. Han, W. Chen et al., The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 4, e1136 (2023). https://doi.org/10.1002/smm2.1136
- Y. Wang, L. Cao, N.J. Libretto, X. Li, C. Li et al., Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16635–16642 (2019). https://doi.org/10.1021/jacs.9b05766
- G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 52, 237–247 (2019). https://doi.org/10.1021/acs.accounts.8b00490
- G. Giannakakis, P. Kress, K. Duanmu, H.T. Ngan, G. Yan et al., Mechanistic and electronic insights into a working NiAu single-atom alloy ethanol dehydrogenation catalyst. J. Am. Chem. Soc. 143, 21567–21579 (2021). https://doi.org/10.1021/jacs.1c09274
- Z. Chen, P. Zhang, Electronic structure of single-atom alloys and its impact on the catalytic activities. ACS Omega 7, 1585–1594 (2022). https://doi.org/10.1021/acsomega.1c06067
- M.T. Greiner, T.E. Jones, S. Beeg, L. Zwiener, M. Scherzer et al., Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018). https://doi.org/10.1038/s41557-018-0125-5
- D.-C. Zhong, Y.-N. Gong, C. Zhang, T.-B. Lu, Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 52, 3170–3214 (2023). https://doi.org/10.1039/d2cs00368f
- W. Yang, T.T. Fidelis, W.-H. Sun, Machine learning in catalysis, from proposal to practicing. ACS Omega 5, 83–88 (2020). https://doi.org/10.1021/acsomega.9b03673
- J.-D. Yi, X. Gao, H. Zhou, W. Chen, Y. Wu, Design of Co–Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew. Chem. Int. Ed. 61, e202212329 (2022). https://doi.org/10.1002/anie.202212329
- H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun et al., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017). https://doi.org/10.1038/s41467-017-01259-z
- J. Shan, C. Ye, Y. Jiang, M. Jaroniec, Y. Zheng et al., Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022). https://doi.org/10.1126/sciadv.abo0762
- T. He, A.R. Puente Santiago, A. Du, Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J. Catal. 388, 77–83 (2020). https://doi.org/10.1016/j.jcat.2020.05.009
- I.G. Powers, C. Uyeda, Metal–metal bonds in catalysis. ACS Catal. 7, 936–958 (2017). https://doi.org/10.1021/acscatal.6b02692
- F. Wang, W. Xie, L. Yang, D. Xie, S. Lin, Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 396, 215–223 (2021). https://doi.org/10.1016/j.jcat.2021.02.016
- X. Liu, Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. J. Mater. Chem. A 7, 3648–3654 (2019). https://doi.org/10.1039/C8TA11626A
- Y. Ouyang, L. Shi, X. Bai, Q. Li, J. Wang, Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 11, 1807–1813 (2020). https://doi.org/10.1039/C9SC05236D
- G. Hu, L. Shang, T. Sheng, Y. Chen, L. Wang, PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 30, 2002281 (2020). https://doi.org/10.1002/adfm.202002281
- M. Gong, Z. Deng, D. Xiao, L. Han, T. Zhao et al., One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: integrating multiple advantages into one catalyst. ACS Catal. 9, 4488–4494 (2019). https://doi.org/10.1021/acscatal.9b00603
- V. Giulimondi, A. Ruiz-Ferrando, A.H. Clark, S.K. Kaiser, F. Krumeich et al., Catalytic synergies in bimetallic Ru-Pt single–atom catalysts via speciation control. Adv. Funct. Mater. 32, 2206513 (2022). https://doi.org/10.1002/adfm.202206513
- L. Lei, X. Guo, X. Han, L. Fei, X. Guo et al., From synthesis to mechanisms: In-depth exploration of the dual-atom catalytic mechanisms toward oxygen electrocatalysis. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311434
- S. Zhang, Y. Wu, Y.-X. Zhang, Z. Niu, Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Sci. China Chem. 64, 1908–1922 (2021). https://doi.org/10.1007/s11426-021-1106-9
- X. Wang, L. Xu, C. Li, C. Zhang, H. Yao et al., Developing a class of dual atom materials for multifunctional catalytic reactions. Nat. Commun. 14, 7210 (2023). https://doi.org/10.1038/s41467-023-42756-8
- L. Wang, X. Gao, S. Wang, C. Chen, J. Song et al., Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas. J. Am. Chem. Soc. 145, 13462–13468 (2023). https://doi.org/10.1021/jacs.3c04172
- Y. Wang, X. Cui, J. Zhang, J. Qiao, H. Huang et al., Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Prog. Mater. Sci. 128, 100964 (2022). https://doi.org/10.1016/j.pmatsci.2022.100964
- L. Shen, M. Ma, F. Tu, Z. Zhao, Y. Xia et al., Recent advances in high-loading catalysts for low-temperature fuel cells: From nanop to single atom. SusMat 1, 569–592 (2021). https://doi.org/10.1002/sus2.38
- M. Wang, Y. Xiang, W. Chen, S. Wu, Z.-Z. Zhu et al., SiFeN6-graphene: a promising dual-atom catalyst for enhanced CO2-to-CH4 conversion. Appl. Surf. Sci. 643, 158724 (2024). https://doi.org/10.1016/j.apsusc.2023.158724
- T. Zhao, K. Chen, X. Xu, X. Li, X. Zhao et al., Homonuclear dual-atom catalysts embedded on N-doped graphene for highly efficient nitrate reduction to ammonia: from theoretical prediction to experimental validation. Appl. Catal. B Environ. 339, 123156 (2023). https://doi.org/10.1016/j.apcatb.2023.123156
- H. Gharibi, N. Dalir, M. Jafari, M.J. Parnian, M. Zhiani, Engineering dual metal single-atom sites with the nitrogen-coordinated nonprecious catalyst for oxygen reduction reaction (ORR) in acidic electrolyte. Appl. Surf. Sci. 572, 151367 (2022). https://doi.org/10.1016/j.apsusc.2021.151367
- X.-M. Liang, H.-J. Wang, C. Zhang, D.-C. Zhong, T.-B. Lu, Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Appl. Catal. B Environ. 322, 122073 (2023). https://doi.org/10.1016/j.apcatb.2022.122073
- Y.-X. Zhang, S. Zhang, H. Huang, X. Liu, B. Li et al., General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 145, 4819–4827 (2023). https://doi.org/10.1021/jacs.2c13886
- J. Han, J. Guan, Controllable synthesis of dual-atom catalysts by a confinement-pyrolysis strategy. Chin. J. Catal. 49, 1–4 (2023). https://doi.org/10.1016/S1872-2067(23)64436-5
- O. Yadorao Bisen, A. Kumar Yadav, B. Pavithra, K. Kar Nanda, Electronic structure modulation of molybdenum-iron double-atom catalyst for bifunctional oxygen electrochemistry. Chem. Eng. J. 449, 137705 (2022). https://doi.org/10.1016/j.cej.2022.137705
- B. Wang, J. Tang, X. Zhang, M. Hong, H. Yang et al., Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. 437, 135295 (2022). https://doi.org/10.1016/j.cej.2022.135295
- L. Liu, H. Zhang, S. Xing, Y. Zhang, L. Shangguan et al., Copper-zinc bimetallic single-atom catalysts with localized surface plasmon resonance-enhanced photothermal effect and catalytic activity for melanoma treatment and wound-healing. Adv. Sci. 10, e2207342 (2023). https://doi.org/10.1002/advs.202207342
- W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen et al., Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 2865–2878 (2019). https://doi.org/10.1016/j.chempr.2019.07.020
- J. Zang, F. Wang, Q. Cheng, G. Wang, L. Ma et al., Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 8, 3686–3691 (2020). https://doi.org/10.1039/C9TA12207A
- Z. Li, Y. Wu, H. Wang, Z. Wu, X. Wu, High-efficiency electrocatalytic reduction of N2O with single-atom Cu supported on nitrogen-doped carbon. Environ. Sci. Technol. 58, 8976–8987 (2024). https://doi.org/10.1021/acs.est.4c00765
- Y. Zeng, E. Almatrafi, W. Xia, B. Song, W. Xiong et al., Nitrogen-doped carbon-based single-atom Fe catalysts: synthesis, properties, and applications in advanced oxidation processes. Coord. Chem. Rev. 475, 214874 (2023). https://doi.org/10.1016/j.ccr.2022.214874
- L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang et al., Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y
- M. Knez, K. Nielsch, L. Niinistö, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 3425–3438 (2007). https://doi.org/10.1002/adma.200700079
- R.L. Puurunen, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301-121301–121352 (2005). https://doi.org/10.1063/1.1940727
- S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010). https://doi.org/10.1021/cr900056b
- S. Shahkarami, A.K. Dalai, J. Soltan, Enhanced CO2 adsorption using MgO-impregnated activated carbon: impact of preparation techniques. Ind. Eng. Chem. Res. 55, 5955–5964 (2016). https://doi.org/10.1021/acs.iecr.5b04824
- A.G. da Costa, M.L. de Paiva, G.K. de Souza, R.R. de Moura, C.F.F. de Andrade, Impregnation methods and Ra adsorption process in Mn-fibers and Mn-cartridges: a mini review. Environ. Technol. Innov. 25, 102144 (2022). https://doi.org/10.1016/j.eti.2021.102144
- K. Leng, J. Zhang, Y. Wang, D. Li, L. Bai et al., Interfacial cladding engineering suppresses atomic thermal migration to fabricate well-defined dual-atom electrocatalysts (adv funct mater 41/2022). Adv. Funct. Mater. 32, 2270227 (2022). https://doi.org/10.1002/adfm.202270227
- S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
- J. Barrio, A. Pedersen, J. Feng, S.C. Sarma, M. Wang et al., Metal coordination in C2N-like materials towards dual atom catalysts for oxygen reduction. J. Mater. Chem. A Mater. 10, 6023–6030 (2022). https://doi.org/10.1039/d1ta09560a
- D. Cao, J. Wang, H. Xu, D. Cheng, Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution. Small 17, 2101163 (2021). https://doi.org/10.1002/smll.202101163
- X. Li, J. Wang, Q. Yuan, X. Song, J. Mu et al., Palladium and ruthenium dual-single-atom sites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic effects stabilize the active site and increase CO adsorption. Angew. Chem. Int. Ed. 62, e202307570 (2023). https://doi.org/10.1002/anie.202307570
- J. Sun, Z. Liu, H. Zhou, M. Cao, W. Cai et al., Ionic liquids modulating local microenvironment of Ni-Fe binary single atom catalyst for efficient electrochemical CO2 reduction. Small 20, e2308522 (2024). https://doi.org/10.1002/smll.202308522
- Q. Chen, M. Yang, F. Chen, Z. Zhang, W. Liang et al., Synthesis of Co4S3/Co9S8 nanosheets and their Fe/Cr dual heteroatom Co-doped components for the promoted OER properties. J. Solid State Electrochem. 27, 739–751 (2023). https://doi.org/10.1007/s10008-022-05368-8
- Y.-K. Lee, Density functional theory (DFT) calculations and catalysis. Catalysts 11, 454 (2021). https://doi.org/10.3390/catal11040454
- N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
- L. Wu, T. Guo, T. Li, Rational, design of transition metal single-atom electrocatalysts: a simulation-based, machine learning-accelerated study. J. Mater. Chem. A 8, 19290–19299 (2020). https://doi.org/10.1039/D0TA06207C
- Z. Hao, S. Guo, L. Guo, Mechanisms investigation of the WGSR catalyzed by single noble metal atoms supported on vanadium oxide clusters. Appl. Organomet. Chem. 33, e4960 (2019). https://doi.org/10.1002/aoc.4960
- H. Gao, CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: first principle study. Appl. Surf. Sci. 379, 347–357 (2016). https://doi.org/10.1016/j.apsusc.2016.04.009
- C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao et al., A general two-step strategy–based high-throughput screening of single atom catalysts for nitrogen fixation. Small Meth. 3, 1800376 (2019). https://doi.org/10.1002/smtd.201800376
- Z. Yu, H. Xu, D. Cheng, Design of single atom catalysts. Adv. Phys. X 6, 1905545 (2021). https://doi.org/10.1080/23746149.2021.1905545
- M. Xue, J. Jia, H. Wu, A density functional theory study on the catalytic performance of metal (Ni, Pd) single atom, dimer and trimer for H2 dissociation. Chem. Phys. 552, 111336 (2022). https://doi.org/10.1016/j.chemphys.2021.111336
- X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen et al., Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 142, 5709–5721 (2020). https://doi.org/10.1021/jacs.9b13349
- B. Li, W. Gao, Q. Jiang, Electronic and geometric determinants of adsorption: fundamentals and applications. J. Phys. Energy 3, 022001 (2021). https://doi.org/10.1088/2515-7655/abd295
- Y. Zhou, L. Chen, L. Sheng, Q. Luo, W. Zhang et al., Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: a DFT study. Nano Res. 15, 7994–8000 (2022). https://doi.org/10.1007/s12274-022-4510-4
- Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020). https://doi.org/10.1126/sciadv.aba6586
- L. Zhang, J.M.T.A. Fischer, Y. Jia, X. Yan, W. Xu et al., Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140, 10757–10763 (2018). https://doi.org/10.1021/jacs.8b04647
- M. Besora, F. Maseras, Microkinetic modeling in homogeneous catalysis. Wires Comput. Mol. Sci. 8, e1372 (2018). https://doi.org/10.1002/wcms.1372
- A.H. Motagamwala, J.A. Dumesic, Microkinetic modeling: a tool for rational catalyst design. Chem. Rev. 121, 1049–1076 (2021). https://doi.org/10.1021/acs.chemrev.0c00394
- S.A. Hollingsworth, R.O. Dror, Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018). https://doi.org/10.1016/j.neuron.2018.08.011
- W. Xie, J. Xu, J. Chen, H. Wang, P. Hu, Achieving theory-experiment parity for activity and selectivity in heterogeneous catalysis using microkinetic modeling. Acc. Chem. Res. 55, 1237–1248 (2022). https://doi.org/10.1021/acs.accounts.2c00058
- L. Li, Y. Huang, Y. Li, Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024
- G.A. Gebreslase, M.V. Martínez-Huerta, M.J. Lázaro, Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: a review. J. Energy Chem. 67, 101–137 (2022). https://doi.org/10.1016/j.jechem.2021.10.009
- O. Eisenstein, S. Shaik, Computational catalysis: a land of opportunities. Top. Catal. 65, 1–5 (2022). https://doi.org/10.1007/s11244-021-01555-5
- E. van der Giessen, P.A. Schultz, N. Bertin, V.V. Bulatov, W. Cai et al., Roadmap on multiscale materials modeling. Modelling Simul. Mater. Sci. Eng. 28, 043001 (2020). https://doi.org/10.1088/1361-651x/ab7150
- M.E. Tuckerman, Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys. Condens. Matter 14, R1297–R1355 (2002). https://doi.org/10.1088/0953-8984/14/50/202
- L. Je, G.W. Huber, R.C. Van Lehn, V.M. Zavala, On the integration of molecular dynamics, data science, and experiments for studying solvent effects on catalysis. Curr. Opin. Chem. Eng. 36, 100796 (2022). https://doi.org/10.1016/j.coche.2022.100796
- G. Cassone, J. Sponer, F. Saija, Ab initio molecular dynamics studies of the electric-field-induced catalytic effects on liquids. Top. Catal. 65, 40–58 (2022). https://doi.org/10.1007/s11244-021-01487-0
- J.J. Varghese, Computational design of catalysts for bio-waste upgrading. Curr. Opin. Chem. Eng. 26, 20–27 (2019). https://doi.org/10.1016/j.coche.2019.08.002
- G. Piccini, M.-S. Lee, S.F. Yuk, D. Zhang, G. Collinge et al., Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catal. Sci. Technol. 12, 12–37 (2022). https://doi.org/10.1039/d1cy01329g
- Z. Yang, W. Gao, Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 9, e2106043 (2022). https://doi.org/10.1002/advs.202106043
- L.M. Gladence, M. Karthi, V.M. Anu, A Statistical comparison of logistic regression and different bayes classification methods for machine learning. JEAS 10, 5947–5953 (2015)
- F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl et al., Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015). https://doi.org/10.1126/science.aab3501
- V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 113–126 (2004). https://doi.org/10.1016/S0893-6080(03)00169-2
- J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines (World Scientific Publishing Co. Pte. Ltd., Singapore, 2002)
- M. Steiner, M. Reiher, Autonomous reaction network exploration in homogeneous and heterogeneous catalysis. Top. Catal. 65, 6–39 (2022). https://doi.org/10.1007/s11244-021-01543-9
- I. Funes-Ardoiz, F. Schoenebeck, Established and emerging computational tools to study homogeneous catalysis—from quantum mechanics to machine learning. Chem 6, 1904–1913 (2020). https://doi.org/10.1016/j.chempr.2020.07.008
- A. Kumar, J. Iyer, F. Jalid, M. Ramteke, T.S. Khan et al., Machine learning enabled screening of single atom alloys: predicting reactivity trend for ethanol dehydrogenation. ChemCatChem 14, e202101481 (2022). https://doi.org/10.1002/cctc.202101481
- Z. Lu, S. Yadav, C.V. Singh, Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catal. Sci. Technol. 10, 86–98 (2020). https://doi.org/10.1039/C9CY02070E
- B. Muneer, M. Zeeshan, S. Qaisar, M. Razzaq, H. Iftikhar, Influence of in situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. J. Clean. Prod. 237, 117762 (2019). https://doi.org/10.1016/j.jclepro.2019.117762
- J. Timoshenko, B. Roldan, Cuenya In situ/Operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021). https://doi.org/10.1021/acs.chemrev.0c00396
- B.B. Sarma, F. Maurer, D.E. Doronkin, J.D. Grunwaldt, Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem. Rev. 123, 379–444 (2023). https://doi.org/10.1021/acs.chemrev.2c00495
- J. Park, J. Cho, Advances in understanding mechanisms of perovskites and pyrochlores as electrocatalysts using in-situ X-ray absorption spectroscopy. Angew. Chem. Int. Ed. 59, 15314–15324 (2020). https://doi.org/10.1002/anie.202000768
- B.M. Gibbons, M. Wette, M.B. Stevens, R.C. Davis, S. Siahrostami et al., In situ X-ray absorption spectroscopy disentangles the roles of copper and silver in a bimetallic catalyst for the oxygen reduction reaction. Chem. Mater. 32, 1819–1827 (2020). https://doi.org/10.1021/acs.chemmater.9b03963
- D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra et al., Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801–6809 (2012). https://doi.org/10.1021/ja301018q
- D.M.F. Tesch, D.S.A. Bonke, D.T.E. Jones, M.N. Shaker, D. Jie Xiao et al., Evolution of oxygen–metal electron transfer and metal electronic states during manganese oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy. Angew. Chem. Int. Ed. 58, 3426–3432 (2019). https://doi.org/10.1002/anie.201810825
- J. Amsler, B.B. Sarma, G. Agostini, G. Prieto, P.N. Plessow et al., Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 142, 5087–5096 (2020). https://doi.org/10.1021/jacs.9b12171
- C. Li, Z. Chen, H. Yi, Y. Cao, L. Du et al., Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 59, 15902–15907 (2020). https://doi.org/10.1002/anie.202005282
- X. Liang, Z. Li, H. Xiao, T. Zhang, P. Xu et al., Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chem. Mater. 33, 5542–5554 (2021). https://doi.org/10.1021/acs.chemmater.1c00235
- Y. Chen, L. Zou, H. Liu, C. Chen, Q. Wang et al., Fe and N Co-doped porous carbon nanospheres with high density of active sites for efficient CO2 electroreduction. J. Phys. Chem. C 123, 16651–16659 (2019). https://doi.org/10.1021/acs.jpcc.9b02195
- G.S. Henderson, F.M. De Groot, B.J. Moulton, X-ray Absorption near-edge structure (XANES) spectroscopy. Rev. Mineral. Geochem (2014). https://doi.org/10.2138/rmg.2014.78.3
- E.E. Alp, S.M. Mini, M. Ramanathan, X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials. X-Ray Absorption Spectroscopy: EXAFS and XANES - A Versatile Tool to Study the Atomic and Electronic Structure of Materials (1990).
- B.-K. Teo, Extended X-ray absorption fine structure (EXAFS) spectroscopy: techniques and applications, in EXAFS Spectroscopy. (Springer, Boston, 1981), pp.13–58
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
- W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
- R.T. Hannagan, G. Giannakakis, R. Réocreux, J. Schumann, J. Finzel et al., First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021). https://doi.org/10.1126/science.abg8389
- V. Giulimondi, S.K. Kaiser, A.J. Martín, S. Büchele, F. Krumeich et al., Controlled formation of dimers and spatially isolated atoms in bimetallic Au–Ru catalysts via carbon-host functionalization. Small 18, e2200224 (2022). https://doi.org/10.1002/smll.202200224
- J.Y. Zhang, J. Hwang, B.J. Isaac, S. Stemmer, Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling. Sci. Rep. 5, 12419 (2015). https://doi.org/10.1038/srep12419
- M.M.J. Treacy, J.M. Gibson, K.T. Short, S.B. Rice, Channeling effects from impurity atoms in the high-angle annular detector of the stem. Ultramicroscopy 26, 133–142 (1988). https://doi.org/10.1016/0304-3991(88)90385-3
- P. Tieu, X. Yan, M. Xu, P. Christopher, X. Pan, Directly probing the local coordination, charge state, and stability of single atom catalysts by advanced electron microscopy: a review. Small 17, 2006482 (2021). https://doi.org/10.1002/smll.202006482
- P. Qi, J. Wang, X. Djitcheu, D. He, H. Liu et al., Techniques for the characterization of single atom catalysts. RSC Adv. 12, 1216–1227 (2022). https://doi.org/10.1039/D1RA07799F
- Z. Chen, L.X. Chen, C.C. Yang, Q. Jiang, Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J. Mater. Chem. A 7, 3492–3515 (2019). https://doi.org/10.1039/C8TA11416A
- I. Ro, M. Xu, G.W. Graham, X. Pan, P. Christopher, Synthesis of heteroatom Rh–ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal. 9, 10899–10912 (2019). https://doi.org/10.1021/acscatal.9b02111
- T. Zhang, A.G. Walsh, J. Yu, P. Zhang, Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 50, 569–588 (2021). https://doi.org/10.1039/d0cs00844c
- J. Sun, H. Yang, W. Gao, T. Cao, G. Zhao, Diatomic Pd-Cu metal-phosphorus sites for complete N≡N bond formation in photoelectrochemical nitrate reduction. Angew. Chem. Int. Ed. 61, e202211373 (2022). https://doi.org/10.1002/anie.202211373
- J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020). https://doi.org/10.1021/acsnano.9b04224
- H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999). https://doi.org/10.1103/physrevlett.83.4357
- D.M. Solís, J.M. Taboada, F. Obelleiro, L.M. Liz-Marzán, F.J. García de Abajo, Optimization of nanop-based SERS substrates through large-scale realistic simulations. ACS Photonics 4, 329–337 (2017). https://doi.org/10.1021/acsphotonics.6b00786
- R. Alvarez-Puebla, L.M. Liz-Marzán, F.J. García de Abajo, Light concentration at the nanometer scale. J. Phys. Chem. Lett. 1, 2428–2434 (2010). https://doi.org/10.1021/jz100820m
- K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003). https://doi.org/10.1103/PhysRevLett.91.227402
- A.I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020). https://doi.org/10.1039/D0SC00809E
- K. Kneipp, H. Kneip, H.G. Bohr, Single-Molecule SERS Spectroscopy in Surface-Enhanced Raman Scattering (Springer, Berlin Heidelberg, 2006), pp.261–277
- M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia et al., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B Environ. 274, 119091 (2020). https://doi.org/10.1016/j.apcatb.2020.119091
- W. Zhang, S. Yao, F. Wang, In Situ, Operando lithium K-edge energy-loss spectroscopy of battery materials. Microsc. Microanal. 26, 2538–2540 (2020). https://doi.org/10.1017/s1431927620021960
- O.L. Krivanek, N. Dellby, J.A. Hachtel, J.-C. Idrobo, M.T. Hotz et al., Progress in ultrahigh energy resolution EELS. Ultramicroscopy 203, 60–67 (2019). https://doi.org/10.1016/j.ultramic.2018.12.006
- Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao et al., Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018). https://doi.org/10.1038/s41586-018-0298-5
- R.F. Egerton, M. Watanabe, Characterization of single-atom catalysts by EELS and EDX spectroscopy. Ultramicroscopy 193, 111–117 (2018). https://doi.org/10.1016/j.ultramic.2018.06.013
- N.R. Lewis, Y. Jin, X. Tang, V. Shah, C. Doty et al., Forecasting of in situ electron energy loss spectroscopy. npj Comput. Mater. 8, 252 (2022). https://doi.org/10.1038/s41524-022-00940-2
- X. Zheng, J. Yang, D. Wang, Advanced dual-atom catalysts for efficient oxygen evolution reaction. EES. Catal. 1, 665–676 (2023). https://doi.org/10.1039/d3ey00050h
- W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv et al., Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 33, e2102576 (2021). https://doi.org/10.1002/adma.202102576
- Y. Da, Z. Tian, R. Jiang, Y. Liu, X. Lian et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 66, 1389–1397 (2023). https://doi.org/10.1007/s40843-022-2249-9
- C. Li, J.-C. Chen, X.-K. Wang, M.-H. Huang, W. Theis et al., Going beyond atom visualization—Characterization of supported two-atom single-cluster catalysts with scanning transmission electron microscopy. Sci. China Mater. 66, 2733–2740 (2023). https://doi.org/10.1007/s40843-022-2416-2
- Y. Zhou, E. Song, W. Chen, C.U. Segre, J. Zhou et al., Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 32, e2003484 (2020). https://doi.org/10.1002/adma.202003484
- L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu et al., Atomically dispersed Ni–Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 35, e2209590 (2023). https://doi.org/10.1002/adma.202209590
- J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
- J. Gu, M. Jian, L. Huang, Z. Sun, A. Li et al., Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021). https://doi.org/10.1038/s41565-021-00951-y
- B. Sun, S. Zhang, H. Yang, T. Zhang, Q. Dong et al., Revealing the active sites in atomically dispersed multi-metal–nitrogen–carbon catalysts. Adv. Funct. Mater. 34, 2315862 (2024). https://doi.org/10.1002/adfm.202315862
- Z. Fan, R. Luo, Y. Zhang, B. Zhang, P. Zhai et al., Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 62, e202216326 (2023). https://doi.org/10.1002/anie.202216326
- R. Senga, K. Suenaga, Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015). https://doi.org/10.1038/ncomms8943
- R. Kronberg, H. Lappalainen, K. Laasonen, Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys. Chem. Chem. Phys. 22, 10536–10549 (2020). https://doi.org/10.1039/c9cp06474e
- M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen evolution reaction: analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J. Electroanal. Chem. 372, 209–223 (1994). https://doi.org/10.1016/0022-0728(93)03043-O
- H.Q. Fu, M. Zhou, P.F. Liu, P. Liu, H. Yin et al., Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 144, 6028–6039 (2022). https://doi.org/10.1021/jacs.2c01094
- K. Kakaei, M.D. Esrafili, A. Ehsani, Alcohol oxidation and hydrogen evolution Interface Science and Technology (Elsevier, Amsterdam, 2019), pp.253–301
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 3 (2017). https://doi.org/10.1038/s41570-016-0003
- F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
- J. Yang, Y. Fan, P.-F. Liu, Theoretical insights into heterogeneous single-atom Fe1 catalysts supported by graphene-based substrates for water splitting. Appl. Surf. Sci. 540, 148245 (2021). https://doi.org/10.1016/j.apsusc.2020.148245
- X. Zhao, W.-P. Li, Y. Cao, A. Portniagin, B. Tang et al., Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano 18, 4256–4268 (2024). https://doi.org/10.1021/acsnano.3c09639
- J. Lei, Y. Liu, Y. Chen, C. Liang, L. Wang et al., Engineering bimetallic single-atom catalysts utilizing the reducibility of HxMoO3 for high efficiency hydrogen evolution. Surf. Interfaces 51, 104569 (2024). https://doi.org/10.1016/j.surfin.2024.104569
- Y. He, F. Yan, X. Zhang, C. Zhu, Y. Zhao et al., Creating dual active sites in conductive metal-organic frameworks for efficient water splitting. Adv. Energy Mater. 13, 2204177 (2023). https://doi.org/10.1002/aenm.202204177
- J. Ge, D. Zhang, Y. Qin, T. Dou, M. Jiang et al., Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B Environ. 298, 120557 (2021). https://doi.org/10.1016/j.apcatb.2021.120557
- J. Guo, J. Yang, Z. Xiang, H. Zhai, W. Chen, An asymmetrically coordinated Zn–Co diatomic site catalyst for efficient hydrogen evolution reactions. Chem. Commun. 60, 6320–6323 (2024). https://doi.org/10.1039/D4CC01832J
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro Lett. 16, 39 (2023). https://doi.org/10.1007/s40820-023-01253-9
- Y. Zhao, X.F. Lu, G. Fan, D. Luan, X. Gu et al., Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 61, e202212542 (2022). https://doi.org/10.1002/anie.202212542
- Q. Liang, G. Brocks, A. Bieberle-Hütter, Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 3, 026001 (2021). https://doi.org/10.1088/2515-7655/abdc85
- D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
- X. Xie, L. Du, L. Yan, S. Park, Y. Qiu et al., Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 32, 2110036 (2022). https://doi.org/10.1002/adfm.202110036
- X. Li, Z. Cheng, X. Wang, Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem. Energy Rev. 4, 136–145 (2021). https://doi.org/10.1007/s41918-020-00084-1
- J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
- N. Snir, N. Yatom, M. Caspary Toroker, Progress in understanding hematite electrochemistry through computational modeling. Comput. Mater. Sci. 160, 411–419 (2019). https://doi.org/10.1016/j.commatsci.2019.01.001
- Y. Zuo, Y. Liu, J. Li, R. Du, X. Han et al., In situ electrochemical oxidation of Cu2S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 31, 7732–7743 (2019). https://doi.org/10.1021/acs.chemmater.9b02790
- M. Zlatar, D. Nater, D. Escalera-López, R.M. Joy, P. Pobedinskas et al., Evaluating the stability of Ir single atom and Ru atomic cluster oxygen evolution reaction electrocatalysts. Electrochim. Acta 444, 141982 (2023). https://doi.org/10.1016/j.electacta.2023.141982
- H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran et al., Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020). https://doi.org/10.1038/s41586-020-2908-2
- C.-H. Chen, D. Wu, Z. Li, R. Zhang, C.-G. Kuai et al., Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9, 1803913 (2019). https://doi.org/10.1002/aenm.201803913
- J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x
- R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020). https://doi.org/10.1021/acs.chemrev.0c00078
- Y. Xu, W. Zhang, Y. Li, P. Lu, Y. Wang et al., The synergetic effect of Ni and Fe bi-metal single atom catalysts on graphene for highly efficient oxygen evolution reaction. Front. Mater. 6, 271 (2019). https://doi.org/10.3389/fmats.2019.00271
- L. Bai, C.-S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021). https://doi.org/10.1038/s41560-021-00925-3
- G.S. Parkinson, Single-atom catalysis: how structure influences catalytic performance. Catal. Lett. 149, 1137–1146 (2019). https://doi.org/10.1007/s10562-019-02709-7
- B. Tang, Y. Zhou, Q. Ji, Z. Zhuang, L. Zhang et al., A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 3, 878–890 (2024). https://doi.org/10.1038/s44160-024-00545-1
- Q. Lu, X. Zou, Y. Bu, Y. Wang, Z. Shao, Single-phase ruthenium-based oxide with dual-atoms induced bifunctional catalytic centers enables highly efficient rechargeable Zn-air batteries. Energy Storage Mater. 68, 103341 (2024). https://doi.org/10.1016/j.ensm.2024.103341
- J. Peng, B. Hu, Z. Li, X. Zhong, J. Shi et al., Regulating atomic Fe/Cu dual sites with unsymmetrical Fe–N6 and Cu-N1S2 coordination for promoting bifunctional oxygen electrocatalysis in advanced zinc-air batteries. Energy Storage Mater. 68, 103342 (2024). https://doi.org/10.1016/j.ensm.2024.103342
- W.-X. Hong, W.-H. Wang, Y.-H. Chang, H. Pourzolfaghar, I.-H. Tseng et al., A Ni–Fe layered double hydroxide anchored FeCo nanoalloys and Fe–Co dual single-atom electrocatalysts for rechargeable and flexible zinc-air and aluminum-air batteries. Nano Energy 121, 109236 (2024). https://doi.org/10.1016/j.nanoen.2023.109236
- C. Fang, J. Zhou, L. Zhang, W. Wan, Y. Ding et al., Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 14, 4449 (2023). https://doi.org/10.1038/s41467-023-40177-1
- J. Ping, Density functional theory calculation of electronic structure of Fe–N–C, Fe–O–C, Fe–P–C, Fe–S–C single-atom catalysts systems. J. Phys. Conf. Ser. 2194, 012048 (2022). https://doi.org/10.1088/1742-6596/2194/1/012048
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32, e2003134 (2020). https://doi.org/10.1002/adma.202003134
- X. Kong, J. Xu, Z. Ju, C. Chen, Durable Ru nanocrystal with HfO2 modification for acidic overall water splitting. Nano-Micro Lett. 16, 185 (2024). https://doi.org/10.1007/s40820-024-01384-7
- B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat. Commun. 10, 5599 (2019). https://doi.org/10.1038/s41467-019-13415-8
- H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou et al., Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 6, 12441 (2023). https://doi.org/10.1002/eem2.12441
- Z. Wu, G. Yang, Q. Zhang, Z. Liu, F. Peng, Deciphering the high overpotential of the oxygen reduction reaction via comprehensively elucidating the open circuit potential. Energy Environ. Sci. 17, 3338–3346 (2024). https://doi.org/10.1039/D3EE04368A
- J. Li, W. Tian, Q. Li, S. Zhao, Acidic oxygen evolution reaction: fundamental understanding and electrocatalysts design. ChemSusChem 17, e202400239 (2024). https://doi.org/10.1002/cssc.202400239
- M.N. Lakhan, A. Hanan, A. Hussain, I. Ali Soomro, Y. Wang et al., Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem. Commun. 60, 5104–5135 (2024). https://doi.org/10.1039/d3cc06015b
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
- Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16, 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
- P. Zhang, M. Gan, Y. Song, P. Liu, H. Liang et al., Bifunctional Pt dual atoms for overall water splitting. Appl. Catal. B Environ. Energy 355, 124214 (2024). https://doi.org/10.1016/j.apcatb.2024.124214
- J.-X. Wu, W.-X. Chen, C.-T. He, K. Zheng, L.-L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023). https://doi.org/10.1007/s40820-023-01080-y
- Z. Jiang, W. Zhou, C. Hu, X. Luo, W. Zeng et al., Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv. Mater. 35, e2300505 (2023). https://doi.org/10.1002/adma.202300505
- J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
- H. Li, J. Wang, M. Cui, R. Huang, W. Qi et al., Dynamic dual-atom synergistic catalysis boosted by liquid metal for direct seawater electroreduction. J. Mater. Chem. A 12, 13466–13473 (2024). https://doi.org/10.1039/d4ta01464b
References
H.-Y. Wang, L. Wang, J.-T. Ren, W.-W. Tian, M.-L. Sun et al., Heteroatom-induced accelerated kinetics on nickel selenide for highly efficient hydrazine-assisted water splitting and Zn-hydrazine battery. Nano-Micro Lett. 15, 155 (2023). https://doi.org/10.1007/s40820-023-01128-z
R. Meys, A. Kätelhön, M. Bachmann, B. Winter, C. Zibunas et al., Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021). https://doi.org/10.1126/science.abg9853
H. Jin, J. Xu, H. Liu, H. Shen, H. Yu et al., Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9, eadi7755 (2023). https://doi.org/10.1126/sciadv.adi7755
T. Hashimoto, T. Asada, S. Ogoshi, Y. Hoshimoto, Main Group catalysis for H2 purification based on liquid organic hydrogen carriers. Sci. Adv. 8, eade0189 (2022). https://doi.org/10.1126/sciadv.ade0189
B. Ma, C. Deng, H. Chen, M. Zhu, M. Yang et al., Hybrid separation process of refinery off-gas toward near-zero hydrogen emission: conceptual design and Techno-economic analysis. Ind. Eng. Chem. Res. 59, 8715–8727 (2020). https://doi.org/10.1021/acs.iecr.0c00143
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai et al., Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188 (2022). https://doi.org/10.1007/s10311-021-01322-8
M.A. Rosen, S. Koohi-Fayegh, The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 1, 10–29 (2016). https://doi.org/10.1007/s40974-016-0005-z
C. Xia, Y. Li, M. Je, J. Kim, S.M. Cho et al., Nanocrystalline iron pyrophosphate-regulated amorphous phosphate overlayer for enhancing solar water oxidation. Nano-Micro Lett. 14, 209 (2022). https://doi.org/10.1007/s40820-022-00955-w
I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P.E. Dodds et al., The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019). https://doi.org/10.1039/C8EE01157E
P.J. Megía, A.J. Vizcaíno, J.A. Calles, A. Carrero, Hydrogen production technologies: from fossil fuels toward renewable sources A mini review. Energy Fuels 35, 16403–16415 (2021). https://doi.org/10.1021/acs.energyfuels.1c02501
S. van Renssen, The hydrogen solution? Nat. Clim. Change 10, 799–801 (2020). https://doi.org/10.1038/s41558-020-0891-0
I. Ozsari, Trend analysis and evaluation of hydrogen energy and hydrogen storage research. Energy Storage 5, e471 (2023). https://doi.org/10.1002/est2.471
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
S. Freund, D. Sánchez, Green hydrogen market and growth Machinery and Energy Systems for the Hydrogen Economy (Elsevier, Amsterdam, 2022), pp.605–635
A.B.S. Semente, C.B. Madeira Rodrigues, M.A. Mariano, M.B. Gaspar, B. Šljukić et al., Prospects and challenges for the green hydrogen market Solar-Driven Green Hydrogen Generation and Storage (Elsevier, Amsterdam, 2023), pp.381–415
M. Yusuf, M.S. Alnarabiji, B. Abdullah, Clean hydrogen production technologies (Advances in Sustainable Energy. Springer International Publishing, Cham, 2021), pp.159–170
M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei et al., Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021). https://doi.org/10.1016/j.rser.2021.111180
H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: challenges and opportunities. Int. J. Hydrog. Energy 47, 26238–26264 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.149
L. Zhang, H. Liu, S. Liu, M.N. Banis, Z. Song et al., Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS Catal. 9, 9350–9358 (2019). https://doi.org/10.1021/acscatal.9b01677
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2022). https://doi.org/10.1007/s40820-022-00974-7
J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15, 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
C. Bie, L. Wang, J. Yu, Challenges for photocatalytic overall water splitting. Chem 8, 1567–1574 (2022). https://doi.org/10.1016/j.chempr.2022.04.013
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
M.B. Gawande, K. Ariga, Y. Yamauchi, Single-atom catalysts. Small 17, 2101584 (2021). https://doi.org/10.1002/smll.202101584
X. Li, L. Liu, X. Ren, J. Gao, Y. Huang et al., Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020). https://doi.org/10.1126/sciadv.abb6833
D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang et al., Electron-deficient Zn–N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
X. Chen, K. Niu, Z. Xue, X. Liu, B. Liu et al., Ultrafine platinum nanops supported on N, S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. Nanoscale Adv. 4, 1639–1648 (2022). https://doi.org/10.1039/d2na00014h
W. Liu, Q. Xu, P. Yan, J. Chen, Y. Du et al., Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of HxMoO3–x with plasmon resonance. ChemCatChem 10, 946–950 (2018). https://doi.org/10.1002/cctc.201701777
H. Su, M.A. Soldatov, V. Roldugin, Q. Liu, Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2, 102–109 (2022). https://doi.org/10.1016/j.esci.2021.12.007
H. Jeong, S. Shin, H. Lee, Heterogeneous atomic catalysts overcoming the limitations of single-atom catalysts. ACS Nano 14, 14355–14374 (2020). https://doi.org/10.1021/acsnano.0c06610
J. Liu, D. Cao, H. Xu, D. Cheng, From double-atom catalysts to single-cluster catalysts: a new frontier in heterogeneous catalysis. Nano Sel. 2, 251–270 (2021). https://doi.org/10.1002/nano.202000155
X. Zhao, F. Wang, X.-P. Kong, R. Fang, Y. Li, Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 143, 16068–16077 (2021). https://doi.org/10.1021/jacs.1c06349
W. Luo, Y. Wang, L. Luo, S. Gong, M. Wei et al., Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 12, 1167–1179 (2022). https://doi.org/10.1021/acscatal.1c04454
J. Yang, W. Li, D. Wang, Y. Li, Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32, e2003300 (2020). https://doi.org/10.1002/adma.202003300
A. Bakandritsos, R.G. Kadam, P. Kumar, G. Zoppellaro, M. Medved’ et al., Mixed-valence single-atom catalyst derived from functionalized graphene. Adv. Mater. 31, 1900323 (2019). https://doi.org/10.1002/adma.201900323
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
A. Nandy, H. Adamji, D.W. Kastner, V. Vennelakanti, A. Nazemi et al., Using computational chemistry to reveal nature’s blueprints for single-site catalysis of C–H activation. ACS Catal. 12, 9281–9306 (2022). https://doi.org/10.1021/acscatal.2c02096
J.T. Yates Jr., S.D. Worley, T.M. Duncan, R.W. Vaughan, Catalytic decomposition of formaldehyde on single rhodium atoms. J. Chem. Phys. 70, 1225–1230 (1979). https://doi.org/10.1063/1.437604
T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159–162 (1995). https://doi.org/10.1038/378159a0
A.K. Datye, H. Guo, Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat. Commun. 12, 895 (2021). https://doi.org/10.1038/s41467-021-21152-0
H. Zhang, X.F. Lu, Z.-P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020). https://doi.org/10.1021/acscentsci.0c00512
S.F. Yuk, G. Collinge, M.-T. Nguyen, M.-S. Lee, V.-A. Glezakou et al., Single-atom catalysis: an analogy between heterogeneous and homogeneous catalysts. ACS Symposium Series. Washington, DC: American Chemical Society, (2020), PP. 1–15 https://doi.org/10.1021/bk-2020-1360.ch001
Y. Zhao, Z. Pei, X.F. Lu, D. Luan, X. Wang et al., Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn–CO2 batteries. Chem Catal. 2, 1480–1493 (2022). https://doi.org/10.1016/j.checat.2022.05.015
V.B. Saptal, V. Ruta, M.A. Bajada, G. Vilé, Single-atom catalysis in organic synthesis. Angew. Chem. Int. Ed. 62, 2219306 (2023). https://doi.org/10.1002/anie.202219306
L. Liu, K.-F. Yung, H. Yang, B. Liu, Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem. Sci. 15, 6285–6313 (2024). https://doi.org/10.1039/D4SC01030B
Z. Pei, X.F. Lu, H. Zhang, Y. Li, D. Luan et al., Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem. Int. Ed. 61, e202207537 (2022). https://doi.org/10.1002/anie.202207537
S. Mitchell, J. Pérez-Ramírez, Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11, 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5
T. He, A.R. Puente-Santiago, S. Xia, M.A. Ahsan, G. Xu et al., Experimental and theoretical advances on single atom and atomic cluster-decorated low-dimensional platforms towards superior electrocatalysts. Adv. Energy Mater. 12, 2200493 (2022). https://doi.org/10.1002/aenm.202200493
J. Gu, Y. Xu, J. Lu, Atom-precise low-nuclearity cluster catalysis: opportunities and challenges. ACS Catal. 13, 5609–5634 (2023). https://doi.org/10.1021/acscatal.3c01449
L. Kong, M. Wang, C.-M.L. Wu, From single atom to low-nuclearity cluster immobilized Ti3C2TX MXene for highly efficient NO electroreduction to NH3. ACS Mater. Lett. 6, 1711–1721 (2024). https://doi.org/10.1021/acsmaterialslett.3c01604
T. He, A.R.P. Santiago, Y. Kong, M.A. Ahsan, R. Luque et al., Atomically dispersed heteronuclear dual-atom catalysts: a new rising star in atomic catalysis. Small 18, e2106091 (2022). https://doi.org/10.1002/smll.202106091
Y. Li, W. Shan, M.J. Zachman, M. Wang, S. Hwang et al., Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: mechanistic insight into active site structures. Angew. Chem. Int. Ed. 61, e202205632 (2022). https://doi.org/10.1002/anie.202205632
Y. Ying, X. Luo, J. Qiao, H. Huang, “More is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, 1905622 (2019). https://doi.org/10.1002/adma.201905622
Q.-Q. Yan, D.-X. Wu, S.-Q. Chu, Z.-Q. Chen, Y. Lin et al., Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019). https://doi.org/10.1038/s41467-019-12851-w
A. Kumar, V.Q. Bui, J. Lee, L. Wang, A.R. Jadhav et al., Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 12, 6766 (2021). https://doi.org/10.1038/s41467-021-27145-3
P. Zhou, N. Li, Y. Chao, W. Zhang, F. Lv et al., Thermolysis of noble metal nanops into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58, 14184–14188 (2019). https://doi.org/10.1002/anie.201908351
Y. Kang, J. Henzie, H. Gu, J. Na, A. Fatehmulla et al., Mesoporous metal-metalloid amorphous alloys: the first synthesis of open 3D mesoporous Ni–B amorphous alloy spheres via a dual chemical reduction method. Small 16, e1906707 (2020). https://doi.org/10.1002/smll.201906707
Y. Kang, B. Jiang, J. Yang, Z. Wan, J. Na et al., Amorphous alloy architectures in pore walls: mesoporous amorphous NiCoB alloy spheres with controlled compositions via a chemical reduction. ACS Nano 14, 17224–17232 (2020). https://doi.org/10.1021/acsnano.0c07178
Y. Da, R. Jiang, Z. Tian, X. Han, W. Chen et al., The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 4, e1136 (2023). https://doi.org/10.1002/smm2.1136
Y. Wang, L. Cao, N.J. Libretto, X. Li, C. Li et al., Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16635–16642 (2019). https://doi.org/10.1021/jacs.9b05766
G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 52, 237–247 (2019). https://doi.org/10.1021/acs.accounts.8b00490
G. Giannakakis, P. Kress, K. Duanmu, H.T. Ngan, G. Yan et al., Mechanistic and electronic insights into a working NiAu single-atom alloy ethanol dehydrogenation catalyst. J. Am. Chem. Soc. 143, 21567–21579 (2021). https://doi.org/10.1021/jacs.1c09274
Z. Chen, P. Zhang, Electronic structure of single-atom alloys and its impact on the catalytic activities. ACS Omega 7, 1585–1594 (2022). https://doi.org/10.1021/acsomega.1c06067
M.T. Greiner, T.E. Jones, S. Beeg, L. Zwiener, M. Scherzer et al., Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018). https://doi.org/10.1038/s41557-018-0125-5
D.-C. Zhong, Y.-N. Gong, C. Zhang, T.-B. Lu, Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 52, 3170–3214 (2023). https://doi.org/10.1039/d2cs00368f
W. Yang, T.T. Fidelis, W.-H. Sun, Machine learning in catalysis, from proposal to practicing. ACS Omega 5, 83–88 (2020). https://doi.org/10.1021/acsomega.9b03673
J.-D. Yi, X. Gao, H. Zhou, W. Chen, Y. Wu, Design of Co–Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew. Chem. Int. Ed. 61, e202212329 (2022). https://doi.org/10.1002/anie.202212329
H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun et al., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017). https://doi.org/10.1038/s41467-017-01259-z
J. Shan, C. Ye, Y. Jiang, M. Jaroniec, Y. Zheng et al., Metal-metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022). https://doi.org/10.1126/sciadv.abo0762
T. He, A.R. Puente Santiago, A. Du, Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J. Catal. 388, 77–83 (2020). https://doi.org/10.1016/j.jcat.2020.05.009
I.G. Powers, C. Uyeda, Metal–metal bonds in catalysis. ACS Catal. 7, 936–958 (2017). https://doi.org/10.1021/acscatal.6b02692
F. Wang, W. Xie, L. Yang, D. Xie, S. Lin, Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 396, 215–223 (2021). https://doi.org/10.1016/j.jcat.2021.02.016
X. Liu, Y. Jiao, Y. Zheng, K. Davey, S.-Z. Qiao, A computational study on Pt and Ru dimers supported on graphene for the hydrogen evolution reaction: new insight into the alkaline mechanism. J. Mater. Chem. A 7, 3648–3654 (2019). https://doi.org/10.1039/C8TA11626A
Y. Ouyang, L. Shi, X. Bai, Q. Li, J. Wang, Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 11, 1807–1813 (2020). https://doi.org/10.1039/C9SC05236D
G. Hu, L. Shang, T. Sheng, Y. Chen, L. Wang, PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 30, 2002281 (2020). https://doi.org/10.1002/adfm.202002281
M. Gong, Z. Deng, D. Xiao, L. Han, T. Zhao et al., One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: integrating multiple advantages into one catalyst. ACS Catal. 9, 4488–4494 (2019). https://doi.org/10.1021/acscatal.9b00603
V. Giulimondi, A. Ruiz-Ferrando, A.H. Clark, S.K. Kaiser, F. Krumeich et al., Catalytic synergies in bimetallic Ru-Pt single–atom catalysts via speciation control. Adv. Funct. Mater. 32, 2206513 (2022). https://doi.org/10.1002/adfm.202206513
L. Lei, X. Guo, X. Han, L. Fei, X. Guo et al., From synthesis to mechanisms: In-depth exploration of the dual-atom catalytic mechanisms toward oxygen electrocatalysis. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311434
S. Zhang, Y. Wu, Y.-X. Zhang, Z. Niu, Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Sci. China Chem. 64, 1908–1922 (2021). https://doi.org/10.1007/s11426-021-1106-9
X. Wang, L. Xu, C. Li, C. Zhang, H. Yao et al., Developing a class of dual atom materials for multifunctional catalytic reactions. Nat. Commun. 14, 7210 (2023). https://doi.org/10.1038/s41467-023-42756-8
L. Wang, X. Gao, S. Wang, C. Chen, J. Song et al., Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas. J. Am. Chem. Soc. 145, 13462–13468 (2023). https://doi.org/10.1021/jacs.3c04172
Y. Wang, X. Cui, J. Zhang, J. Qiao, H. Huang et al., Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Prog. Mater. Sci. 128, 100964 (2022). https://doi.org/10.1016/j.pmatsci.2022.100964
L. Shen, M. Ma, F. Tu, Z. Zhao, Y. Xia et al., Recent advances in high-loading catalysts for low-temperature fuel cells: From nanop to single atom. SusMat 1, 569–592 (2021). https://doi.org/10.1002/sus2.38
M. Wang, Y. Xiang, W. Chen, S. Wu, Z.-Z. Zhu et al., SiFeN6-graphene: a promising dual-atom catalyst for enhanced CO2-to-CH4 conversion. Appl. Surf. Sci. 643, 158724 (2024). https://doi.org/10.1016/j.apsusc.2023.158724
T. Zhao, K. Chen, X. Xu, X. Li, X. Zhao et al., Homonuclear dual-atom catalysts embedded on N-doped graphene for highly efficient nitrate reduction to ammonia: from theoretical prediction to experimental validation. Appl. Catal. B Environ. 339, 123156 (2023). https://doi.org/10.1016/j.apcatb.2023.123156
H. Gharibi, N. Dalir, M. Jafari, M.J. Parnian, M. Zhiani, Engineering dual metal single-atom sites with the nitrogen-coordinated nonprecious catalyst for oxygen reduction reaction (ORR) in acidic electrolyte. Appl. Surf. Sci. 572, 151367 (2022). https://doi.org/10.1016/j.apsusc.2021.151367
X.-M. Liang, H.-J. Wang, C. Zhang, D.-C. Zhong, T.-B. Lu, Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Appl. Catal. B Environ. 322, 122073 (2023). https://doi.org/10.1016/j.apcatb.2022.122073
Y.-X. Zhang, S. Zhang, H. Huang, X. Liu, B. Li et al., General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 145, 4819–4827 (2023). https://doi.org/10.1021/jacs.2c13886
J. Han, J. Guan, Controllable synthesis of dual-atom catalysts by a confinement-pyrolysis strategy. Chin. J. Catal. 49, 1–4 (2023). https://doi.org/10.1016/S1872-2067(23)64436-5
O. Yadorao Bisen, A. Kumar Yadav, B. Pavithra, K. Kar Nanda, Electronic structure modulation of molybdenum-iron double-atom catalyst for bifunctional oxygen electrochemistry. Chem. Eng. J. 449, 137705 (2022). https://doi.org/10.1016/j.cej.2022.137705
B. Wang, J. Tang, X. Zhang, M. Hong, H. Yang et al., Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. 437, 135295 (2022). https://doi.org/10.1016/j.cej.2022.135295
L. Liu, H. Zhang, S. Xing, Y. Zhang, L. Shangguan et al., Copper-zinc bimetallic single-atom catalysts with localized surface plasmon resonance-enhanced photothermal effect and catalytic activity for melanoma treatment and wound-healing. Adv. Sci. 10, e2207342 (2023). https://doi.org/10.1002/advs.202207342
W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen et al., Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 2865–2878 (2019). https://doi.org/10.1016/j.chempr.2019.07.020
J. Zang, F. Wang, Q. Cheng, G. Wang, L. Ma et al., Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 8, 3686–3691 (2020). https://doi.org/10.1039/C9TA12207A
Z. Li, Y. Wu, H. Wang, Z. Wu, X. Wu, High-efficiency electrocatalytic reduction of N2O with single-atom Cu supported on nitrogen-doped carbon. Environ. Sci. Technol. 58, 8976–8987 (2024). https://doi.org/10.1021/acs.est.4c00765
Y. Zeng, E. Almatrafi, W. Xia, B. Song, W. Xiong et al., Nitrogen-doped carbon-based single-atom Fe catalysts: synthesis, properties, and applications in advanced oxidation processes. Coord. Chem. Rev. 475, 214874 (2023). https://doi.org/10.1016/j.ccr.2022.214874
L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang et al., Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y
M. Knez, K. Nielsch, L. Niinistö, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 3425–3438 (2007). https://doi.org/10.1002/adma.200700079
R.L. Puurunen, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301-121301–121352 (2005). https://doi.org/10.1063/1.1940727
S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010). https://doi.org/10.1021/cr900056b
S. Shahkarami, A.K. Dalai, J. Soltan, Enhanced CO2 adsorption using MgO-impregnated activated carbon: impact of preparation techniques. Ind. Eng. Chem. Res. 55, 5955–5964 (2016). https://doi.org/10.1021/acs.iecr.5b04824
A.G. da Costa, M.L. de Paiva, G.K. de Souza, R.R. de Moura, C.F.F. de Andrade, Impregnation methods and Ra adsorption process in Mn-fibers and Mn-cartridges: a mini review. Environ. Technol. Innov. 25, 102144 (2022). https://doi.org/10.1016/j.eti.2021.102144
K. Leng, J. Zhang, Y. Wang, D. Li, L. Bai et al., Interfacial cladding engineering suppresses atomic thermal migration to fabricate well-defined dual-atom electrocatalysts (adv funct mater 41/2022). Adv. Funct. Mater. 32, 2270227 (2022). https://doi.org/10.1002/adfm.202270227
S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018). https://doi.org/10.1038/s41467-018-04845-x
J. Barrio, A. Pedersen, J. Feng, S.C. Sarma, M. Wang et al., Metal coordination in C2N-like materials towards dual atom catalysts for oxygen reduction. J. Mater. Chem. A Mater. 10, 6023–6030 (2022). https://doi.org/10.1039/d1ta09560a
D. Cao, J. Wang, H. Xu, D. Cheng, Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution. Small 17, 2101163 (2021). https://doi.org/10.1002/smll.202101163
X. Li, J. Wang, Q. Yuan, X. Song, J. Mu et al., Palladium and ruthenium dual-single-atom sites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic effects stabilize the active site and increase CO adsorption. Angew. Chem. Int. Ed. 62, e202307570 (2023). https://doi.org/10.1002/anie.202307570
J. Sun, Z. Liu, H. Zhou, M. Cao, W. Cai et al., Ionic liquids modulating local microenvironment of Ni-Fe binary single atom catalyst for efficient electrochemical CO2 reduction. Small 20, e2308522 (2024). https://doi.org/10.1002/smll.202308522
Q. Chen, M. Yang, F. Chen, Z. Zhang, W. Liang et al., Synthesis of Co4S3/Co9S8 nanosheets and their Fe/Cr dual heteroatom Co-doped components for the promoted OER properties. J. Solid State Electrochem. 27, 739–751 (2023). https://doi.org/10.1007/s10008-022-05368-8
Y.-K. Lee, Density functional theory (DFT) calculations and catalysis. Catalysts 11, 454 (2021). https://doi.org/10.3390/catal11040454
N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
L. Wu, T. Guo, T. Li, Rational, design of transition metal single-atom electrocatalysts: a simulation-based, machine learning-accelerated study. J. Mater. Chem. A 8, 19290–19299 (2020). https://doi.org/10.1039/D0TA06207C
Z. Hao, S. Guo, L. Guo, Mechanisms investigation of the WGSR catalyzed by single noble metal atoms supported on vanadium oxide clusters. Appl. Organomet. Chem. 33, e4960 (2019). https://doi.org/10.1002/aoc.4960
H. Gao, CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: first principle study. Appl. Surf. Sci. 379, 347–357 (2016). https://doi.org/10.1016/j.apsusc.2016.04.009
C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao et al., A general two-step strategy–based high-throughput screening of single atom catalysts for nitrogen fixation. Small Meth. 3, 1800376 (2019). https://doi.org/10.1002/smtd.201800376
Z. Yu, H. Xu, D. Cheng, Design of single atom catalysts. Adv. Phys. X 6, 1905545 (2021). https://doi.org/10.1080/23746149.2021.1905545
M. Xue, J. Jia, H. Wu, A density functional theory study on the catalytic performance of metal (Ni, Pd) single atom, dimer and trimer for H2 dissociation. Chem. Phys. 552, 111336 (2022). https://doi.org/10.1016/j.chemphys.2021.111336
X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen et al., Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 142, 5709–5721 (2020). https://doi.org/10.1021/jacs.9b13349
B. Li, W. Gao, Q. Jiang, Electronic and geometric determinants of adsorption: fundamentals and applications. J. Phys. Energy 3, 022001 (2021). https://doi.org/10.1088/2515-7655/abd295
Y. Zhou, L. Chen, L. Sheng, Q. Luo, W. Zhang et al., Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: a DFT study. Nano Res. 15, 7994–8000 (2022). https://doi.org/10.1007/s12274-022-4510-4
Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020). https://doi.org/10.1126/sciadv.aba6586
L. Zhang, J.M.T.A. Fischer, Y. Jia, X. Yan, W. Xu et al., Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140, 10757–10763 (2018). https://doi.org/10.1021/jacs.8b04647
M. Besora, F. Maseras, Microkinetic modeling in homogeneous catalysis. Wires Comput. Mol. Sci. 8, e1372 (2018). https://doi.org/10.1002/wcms.1372
A.H. Motagamwala, J.A. Dumesic, Microkinetic modeling: a tool for rational catalyst design. Chem. Rev. 121, 1049–1076 (2021). https://doi.org/10.1021/acs.chemrev.0c00394
S.A. Hollingsworth, R.O. Dror, Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018). https://doi.org/10.1016/j.neuron.2018.08.011
W. Xie, J. Xu, J. Chen, H. Wang, P. Hu, Achieving theory-experiment parity for activity and selectivity in heterogeneous catalysis using microkinetic modeling. Acc. Chem. Res. 55, 1237–1248 (2022). https://doi.org/10.1021/acs.accounts.2c00058
L. Li, Y. Huang, Y. Li, Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024
G.A. Gebreslase, M.V. Martínez-Huerta, M.J. Lázaro, Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: a review. J. Energy Chem. 67, 101–137 (2022). https://doi.org/10.1016/j.jechem.2021.10.009
O. Eisenstein, S. Shaik, Computational catalysis: a land of opportunities. Top. Catal. 65, 1–5 (2022). https://doi.org/10.1007/s11244-021-01555-5
E. van der Giessen, P.A. Schultz, N. Bertin, V.V. Bulatov, W. Cai et al., Roadmap on multiscale materials modeling. Modelling Simul. Mater. Sci. Eng. 28, 043001 (2020). https://doi.org/10.1088/1361-651x/ab7150
M.E. Tuckerman, Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys. Condens. Matter 14, R1297–R1355 (2002). https://doi.org/10.1088/0953-8984/14/50/202
L. Je, G.W. Huber, R.C. Van Lehn, V.M. Zavala, On the integration of molecular dynamics, data science, and experiments for studying solvent effects on catalysis. Curr. Opin. Chem. Eng. 36, 100796 (2022). https://doi.org/10.1016/j.coche.2022.100796
G. Cassone, J. Sponer, F. Saija, Ab initio molecular dynamics studies of the electric-field-induced catalytic effects on liquids. Top. Catal. 65, 40–58 (2022). https://doi.org/10.1007/s11244-021-01487-0
J.J. Varghese, Computational design of catalysts for bio-waste upgrading. Curr. Opin. Chem. Eng. 26, 20–27 (2019). https://doi.org/10.1016/j.coche.2019.08.002
G. Piccini, M.-S. Lee, S.F. Yuk, D. Zhang, G. Collinge et al., Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catal. Sci. Technol. 12, 12–37 (2022). https://doi.org/10.1039/d1cy01329g
Z. Yang, W. Gao, Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv. Sci. 9, e2106043 (2022). https://doi.org/10.1002/advs.202106043
L.M. Gladence, M. Karthi, V.M. Anu, A Statistical comparison of logistic regression and different bayes classification methods for machine learning. JEAS 10, 5947–5953 (2015)
F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl et al., Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015). https://doi.org/10.1126/science.aab3501
V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17, 113–126 (2004). https://doi.org/10.1016/S0893-6080(03)00169-2
J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines (World Scientific Publishing Co. Pte. Ltd., Singapore, 2002)
M. Steiner, M. Reiher, Autonomous reaction network exploration in homogeneous and heterogeneous catalysis. Top. Catal. 65, 6–39 (2022). https://doi.org/10.1007/s11244-021-01543-9
I. Funes-Ardoiz, F. Schoenebeck, Established and emerging computational tools to study homogeneous catalysis—from quantum mechanics to machine learning. Chem 6, 1904–1913 (2020). https://doi.org/10.1016/j.chempr.2020.07.008
A. Kumar, J. Iyer, F. Jalid, M. Ramteke, T.S. Khan et al., Machine learning enabled screening of single atom alloys: predicting reactivity trend for ethanol dehydrogenation. ChemCatChem 14, e202101481 (2022). https://doi.org/10.1002/cctc.202101481
Z. Lu, S. Yadav, C.V. Singh, Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catal. Sci. Technol. 10, 86–98 (2020). https://doi.org/10.1039/C9CY02070E
B. Muneer, M. Zeeshan, S. Qaisar, M. Razzaq, H. Iftikhar, Influence of in situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. J. Clean. Prod. 237, 117762 (2019). https://doi.org/10.1016/j.jclepro.2019.117762
J. Timoshenko, B. Roldan, Cuenya In situ/Operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021). https://doi.org/10.1021/acs.chemrev.0c00396
B.B. Sarma, F. Maurer, D.E. Doronkin, J.D. Grunwaldt, Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem. Rev. 123, 379–444 (2023). https://doi.org/10.1021/acs.chemrev.2c00495
J. Park, J. Cho, Advances in understanding mechanisms of perovskites and pyrochlores as electrocatalysts using in-situ X-ray absorption spectroscopy. Angew. Chem. Int. Ed. 59, 15314–15324 (2020). https://doi.org/10.1002/anie.202000768
B.M. Gibbons, M. Wette, M.B. Stevens, R.C. Davis, S. Siahrostami et al., In situ X-ray absorption spectroscopy disentangles the roles of copper and silver in a bimetallic catalyst for the oxygen reduction reaction. Chem. Mater. 32, 1819–1827 (2020). https://doi.org/10.1021/acs.chemmater.9b03963
D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra et al., Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801–6809 (2012). https://doi.org/10.1021/ja301018q
D.M.F. Tesch, D.S.A. Bonke, D.T.E. Jones, M.N. Shaker, D. Jie Xiao et al., Evolution of oxygen–metal electron transfer and metal electronic states during manganese oxide catalyzed water oxidation revealed with in situ soft X-ray spectroscopy. Angew. Chem. Int. Ed. 58, 3426–3432 (2019). https://doi.org/10.1002/anie.201810825
J. Amsler, B.B. Sarma, G. Agostini, G. Prieto, P.N. Plessow et al., Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 142, 5087–5096 (2020). https://doi.org/10.1021/jacs.9b12171
C. Li, Z. Chen, H. Yi, Y. Cao, L. Du et al., Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 59, 15902–15907 (2020). https://doi.org/10.1002/anie.202005282
X. Liang, Z. Li, H. Xiao, T. Zhang, P. Xu et al., Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chem. Mater. 33, 5542–5554 (2021). https://doi.org/10.1021/acs.chemmater.1c00235
Y. Chen, L. Zou, H. Liu, C. Chen, Q. Wang et al., Fe and N Co-doped porous carbon nanospheres with high density of active sites for efficient CO2 electroreduction. J. Phys. Chem. C 123, 16651–16659 (2019). https://doi.org/10.1021/acs.jpcc.9b02195
G.S. Henderson, F.M. De Groot, B.J. Moulton, X-ray Absorption near-edge structure (XANES) spectroscopy. Rev. Mineral. Geochem (2014). https://doi.org/10.2138/rmg.2014.78.3
E.E. Alp, S.M. Mini, M. Ramanathan, X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials. X-Ray Absorption Spectroscopy: EXAFS and XANES - A Versatile Tool to Study the Atomic and Electronic Structure of Materials (1990).
B.-K. Teo, Extended X-ray absorption fine structure (EXAFS) spectroscopy: techniques and applications, in EXAFS Spectroscopy. (Springer, Boston, 1981), pp.13–58
Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu et al., Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575
R.T. Hannagan, G. Giannakakis, R. Réocreux, J. Schumann, J. Finzel et al., First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021). https://doi.org/10.1126/science.abg8389
V. Giulimondi, S.K. Kaiser, A.J. Martín, S. Büchele, F. Krumeich et al., Controlled formation of dimers and spatially isolated atoms in bimetallic Au–Ru catalysts via carbon-host functionalization. Small 18, e2200224 (2022). https://doi.org/10.1002/smll.202200224
J.Y. Zhang, J. Hwang, B.J. Isaac, S. Stemmer, Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling. Sci. Rep. 5, 12419 (2015). https://doi.org/10.1038/srep12419
M.M.J. Treacy, J.M. Gibson, K.T. Short, S.B. Rice, Channeling effects from impurity atoms in the high-angle annular detector of the stem. Ultramicroscopy 26, 133–142 (1988). https://doi.org/10.1016/0304-3991(88)90385-3
P. Tieu, X. Yan, M. Xu, P. Christopher, X. Pan, Directly probing the local coordination, charge state, and stability of single atom catalysts by advanced electron microscopy: a review. Small 17, 2006482 (2021). https://doi.org/10.1002/smll.202006482
P. Qi, J. Wang, X. Djitcheu, D. He, H. Liu et al., Techniques for the characterization of single atom catalysts. RSC Adv. 12, 1216–1227 (2022). https://doi.org/10.1039/D1RA07799F
Z. Chen, L.X. Chen, C.C. Yang, Q. Jiang, Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J. Mater. Chem. A 7, 3492–3515 (2019). https://doi.org/10.1039/C8TA11416A
I. Ro, M. Xu, G.W. Graham, X. Pan, P. Christopher, Synthesis of heteroatom Rh–ReOx atomically dispersed species on Al2O3 and their tunable catalytic reactivity in ethylene hydroformylation. ACS Catal. 9, 10899–10912 (2019). https://doi.org/10.1021/acscatal.9b02111
T. Zhang, A.G. Walsh, J. Yu, P. Zhang, Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 50, 569–588 (2021). https://doi.org/10.1039/d0cs00844c
J. Sun, H. Yang, W. Gao, T. Cao, G. Zhao, Diatomic Pd-Cu metal-phosphorus sites for complete N≡N bond formation in photoelectrochemical nitrate reduction. Angew. Chem. Int. Ed. 61, e202211373 (2022). https://doi.org/10.1002/anie.202211373
J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R.A. Alvarez-Puebla, B. Auguié et al., Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020). https://doi.org/10.1021/acsnano.9b04224
H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999). https://doi.org/10.1103/physrevlett.83.4357
D.M. Solís, J.M. Taboada, F. Obelleiro, L.M. Liz-Marzán, F.J. García de Abajo, Optimization of nanop-based SERS substrates through large-scale realistic simulations. ACS Photonics 4, 329–337 (2017). https://doi.org/10.1021/acsphotonics.6b00786
R. Alvarez-Puebla, L.M. Liz-Marzán, F.J. García de Abajo, Light concentration at the nanometer scale. J. Phys. Chem. Lett. 1, 2428–2434 (2010). https://doi.org/10.1021/jz100820m
K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003). https://doi.org/10.1103/PhysRevLett.91.227402
A.I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020). https://doi.org/10.1039/D0SC00809E
K. Kneipp, H. Kneip, H.G. Bohr, Single-Molecule SERS Spectroscopy in Surface-Enhanced Raman Scattering (Springer, Berlin Heidelberg, 2006), pp.261–277
M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia et al., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B Environ. 274, 119091 (2020). https://doi.org/10.1016/j.apcatb.2020.119091
W. Zhang, S. Yao, F. Wang, In Situ, Operando lithium K-edge energy-loss spectroscopy of battery materials. Microsc. Microanal. 26, 2538–2540 (2020). https://doi.org/10.1017/s1431927620021960
O.L. Krivanek, N. Dellby, J.A. Hachtel, J.-C. Idrobo, M.T. Hotz et al., Progress in ultrahigh energy resolution EELS. Ultramicroscopy 203, 60–67 (2019). https://doi.org/10.1016/j.ultramic.2018.12.006
Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao et al., Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018). https://doi.org/10.1038/s41586-018-0298-5
R.F. Egerton, M. Watanabe, Characterization of single-atom catalysts by EELS and EDX spectroscopy. Ultramicroscopy 193, 111–117 (2018). https://doi.org/10.1016/j.ultramic.2018.06.013
N.R. Lewis, Y. Jin, X. Tang, V. Shah, C. Doty et al., Forecasting of in situ electron energy loss spectroscopy. npj Comput. Mater. 8, 252 (2022). https://doi.org/10.1038/s41524-022-00940-2
X. Zheng, J. Yang, D. Wang, Advanced dual-atom catalysts for efficient oxygen evolution reaction. EES. Catal. 1, 665–676 (2023). https://doi.org/10.1039/d3ey00050h
W. Zhang, Y. Chao, W. Zhang, J. Zhou, F. Lv et al., Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 33, e2102576 (2021). https://doi.org/10.1002/adma.202102576
Y. Da, Z. Tian, R. Jiang, Y. Liu, X. Lian et al., Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 66, 1389–1397 (2023). https://doi.org/10.1007/s40843-022-2249-9
C. Li, J.-C. Chen, X.-K. Wang, M.-H. Huang, W. Theis et al., Going beyond atom visualization—Characterization of supported two-atom single-cluster catalysts with scanning transmission electron microscopy. Sci. China Mater. 66, 2733–2740 (2023). https://doi.org/10.1007/s40843-022-2416-2
Y. Zhou, E. Song, W. Chen, C.U. Segre, J. Zhou et al., Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 32, e2003484 (2020). https://doi.org/10.1002/adma.202003484
L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu et al., Atomically dispersed Ni–Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 35, e2209590 (2023). https://doi.org/10.1002/adma.202209590
J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017). https://doi.org/10.1021/jacs.7b10385
J. Gu, M. Jian, L. Huang, Z. Sun, A. Li et al., Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021). https://doi.org/10.1038/s41565-021-00951-y
B. Sun, S. Zhang, H. Yang, T. Zhang, Q. Dong et al., Revealing the active sites in atomically dispersed multi-metal–nitrogen–carbon catalysts. Adv. Funct. Mater. 34, 2315862 (2024). https://doi.org/10.1002/adfm.202315862
Z. Fan, R. Luo, Y. Zhang, B. Zhang, P. Zhai et al., Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 62, e202216326 (2023). https://doi.org/10.1002/anie.202216326
R. Senga, K. Suenaga, Single-atom electron energy loss spectroscopy of light elements. Nat. Commun. 6, 7943 (2015). https://doi.org/10.1038/ncomms8943
R. Kronberg, H. Lappalainen, K. Laasonen, Revisiting the Volmer-Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics versus the nudged elastic band method. Phys. Chem. Chem. Phys. 22, 10536–10549 (2020). https://doi.org/10.1039/c9cp06474e
M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen evolution reaction: analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J. Electroanal. Chem. 372, 209–223 (1994). https://doi.org/10.1016/0022-0728(93)03043-O
H.Q. Fu, M. Zhou, P.F. Liu, P. Liu, H. Yin et al., Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 144, 6028–6039 (2022). https://doi.org/10.1021/jacs.2c01094
K. Kakaei, M.D. Esrafili, A. Ehsani, Alcohol oxidation and hydrogen evolution Interface Science and Technology (Elsevier, Amsterdam, 2019), pp.253–301
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 3 (2017). https://doi.org/10.1038/s41570-016-0003
F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
J. Yang, Y. Fan, P.-F. Liu, Theoretical insights into heterogeneous single-atom Fe1 catalysts supported by graphene-based substrates for water splitting. Appl. Surf. Sci. 540, 148245 (2021). https://doi.org/10.1016/j.apsusc.2020.148245
X. Zhao, W.-P. Li, Y. Cao, A. Portniagin, B. Tang et al., Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano 18, 4256–4268 (2024). https://doi.org/10.1021/acsnano.3c09639
J. Lei, Y. Liu, Y. Chen, C. Liang, L. Wang et al., Engineering bimetallic single-atom catalysts utilizing the reducibility of HxMoO3 for high efficiency hydrogen evolution. Surf. Interfaces 51, 104569 (2024). https://doi.org/10.1016/j.surfin.2024.104569
Y. He, F. Yan, X. Zhang, C. Zhu, Y. Zhao et al., Creating dual active sites in conductive metal-organic frameworks for efficient water splitting. Adv. Energy Mater. 13, 2204177 (2023). https://doi.org/10.1002/aenm.202204177
J. Ge, D. Zhang, Y. Qin, T. Dou, M. Jiang et al., Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B Environ. 298, 120557 (2021). https://doi.org/10.1016/j.apcatb.2021.120557
J. Guo, J. Yang, Z. Xiang, H. Zhai, W. Chen, An asymmetrically coordinated Zn–Co diatomic site catalyst for efficient hydrogen evolution reactions. Chem. Commun. 60, 6320–6323 (2024). https://doi.org/10.1039/D4CC01832J
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
J. Xie, F. Wang, Y. Zhou, Y. Dong, Y. Chai et al., Internal polarization field induced hydroxyl spillover effect for industrial water splitting electrolyzers. Nano-Micro Lett. 16, 39 (2023). https://doi.org/10.1007/s40820-023-01253-9
Y. Zhao, X.F. Lu, G. Fan, D. Luan, X. Gu et al., Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 61, e202212542 (2022). https://doi.org/10.1002/anie.202212542
Q. Liang, G. Brocks, A. Bieberle-Hütter, Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 3, 026001 (2021). https://doi.org/10.1088/2515-7655/abdc85
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015). https://doi.org/10.1021/acs.chemrev.5b00073
X. Xie, L. Du, L. Yan, S. Park, Y. Qiu et al., Oxygen evolution reaction in alkaline environment: material challenges and solutions. Adv. Funct. Mater. 32, 2110036 (2022). https://doi.org/10.1002/adfm.202110036
X. Li, Z. Cheng, X. Wang, Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem. Energy Rev. 4, 136–145 (2021). https://doi.org/10.1007/s41918-020-00084-1
J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
N. Snir, N. Yatom, M. Caspary Toroker, Progress in understanding hematite electrochemistry through computational modeling. Comput. Mater. Sci. 160, 411–419 (2019). https://doi.org/10.1016/j.commatsci.2019.01.001
Y. Zuo, Y. Liu, J. Li, R. Du, X. Han et al., In situ electrochemical oxidation of Cu2S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 31, 7732–7743 (2019). https://doi.org/10.1021/acs.chemmater.9b02790
M. Zlatar, D. Nater, D. Escalera-López, R.M. Joy, P. Pobedinskas et al., Evaluating the stability of Ir single atom and Ru atomic cluster oxygen evolution reaction electrocatalysts. Electrochim. Acta 444, 141982 (2023). https://doi.org/10.1016/j.electacta.2023.141982
H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran et al., Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020). https://doi.org/10.1038/s41586-020-2908-2
C.-H. Chen, D. Wu, Z. Li, R. Zhang, C.-G. Kuai et al., Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9, 1803913 (2019). https://doi.org/10.1002/aenm.201803913
J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x
R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020). https://doi.org/10.1021/acs.chemrev.0c00078
Y. Xu, W. Zhang, Y. Li, P. Lu, Y. Wang et al., The synergetic effect of Ni and Fe bi-metal single atom catalysts on graphene for highly efficient oxygen evolution reaction. Front. Mater. 6, 271 (2019). https://doi.org/10.3389/fmats.2019.00271
L. Bai, C.-S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021). https://doi.org/10.1038/s41560-021-00925-3
G.S. Parkinson, Single-atom catalysis: how structure influences catalytic performance. Catal. Lett. 149, 1137–1146 (2019). https://doi.org/10.1007/s10562-019-02709-7
B. Tang, Y. Zhou, Q. Ji, Z. Zhuang, L. Zhang et al., A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 3, 878–890 (2024). https://doi.org/10.1038/s44160-024-00545-1
Q. Lu, X. Zou, Y. Bu, Y. Wang, Z. Shao, Single-phase ruthenium-based oxide with dual-atoms induced bifunctional catalytic centers enables highly efficient rechargeable Zn-air batteries. Energy Storage Mater. 68, 103341 (2024). https://doi.org/10.1016/j.ensm.2024.103341
J. Peng, B. Hu, Z. Li, X. Zhong, J. Shi et al., Regulating atomic Fe/Cu dual sites with unsymmetrical Fe–N6 and Cu-N1S2 coordination for promoting bifunctional oxygen electrocatalysis in advanced zinc-air batteries. Energy Storage Mater. 68, 103342 (2024). https://doi.org/10.1016/j.ensm.2024.103342
W.-X. Hong, W.-H. Wang, Y.-H. Chang, H. Pourzolfaghar, I.-H. Tseng et al., A Ni–Fe layered double hydroxide anchored FeCo nanoalloys and Fe–Co dual single-atom electrocatalysts for rechargeable and flexible zinc-air and aluminum-air batteries. Nano Energy 121, 109236 (2024). https://doi.org/10.1016/j.nanoen.2023.109236
C. Fang, J. Zhou, L. Zhang, W. Wan, Y. Ding et al., Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 14, 4449 (2023). https://doi.org/10.1038/s41467-023-40177-1
J. Ping, Density functional theory calculation of electronic structure of Fe–N–C, Fe–O–C, Fe–P–C, Fe–S–C single-atom catalysts systems. J. Phys. Conf. Ser. 2194, 012048 (2022). https://doi.org/10.1088/1742-6596/2194/1/012048
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32, e2003134 (2020). https://doi.org/10.1002/adma.202003134
X. Kong, J. Xu, Z. Ju, C. Chen, Durable Ru nanocrystal with HfO2 modification for acidic overall water splitting. Nano-Micro Lett. 16, 185 (2024). https://doi.org/10.1007/s40820-024-01384-7
B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat. Commun. 10, 5599 (2019). https://doi.org/10.1038/s41467-019-13415-8
H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou et al., Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 6, 12441 (2023). https://doi.org/10.1002/eem2.12441
Z. Wu, G. Yang, Q. Zhang, Z. Liu, F. Peng, Deciphering the high overpotential of the oxygen reduction reaction via comprehensively elucidating the open circuit potential. Energy Environ. Sci. 17, 3338–3346 (2024). https://doi.org/10.1039/D3EE04368A
J. Li, W. Tian, Q. Li, S. Zhao, Acidic oxygen evolution reaction: fundamental understanding and electrocatalysts design. ChemSusChem 17, e202400239 (2024). https://doi.org/10.1002/cssc.202400239
M.N. Lakhan, A. Hanan, A. Hussain, I. Ali Soomro, Y. Wang et al., Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem. Commun. 60, 5104–5135 (2024). https://doi.org/10.1039/d3cc06015b
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
Y. Li, Y. Li, H. Sun, L. Gao, X. Jin et al., Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nano-Micro Lett. 16, 139 (2024). https://doi.org/10.1007/s40820-024-01347-y
P. Zhang, M. Gan, Y. Song, P. Liu, H. Liang et al., Bifunctional Pt dual atoms for overall water splitting. Appl. Catal. B Environ. Energy 355, 124214 (2024). https://doi.org/10.1016/j.apcatb.2024.124214
J.-X. Wu, W.-X. Chen, C.-T. He, K. Zheng, L.-L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 (2023). https://doi.org/10.1007/s40820-023-01080-y
Z. Jiang, W. Zhou, C. Hu, X. Luo, W. Zeng et al., Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv. Mater. 35, e2300505 (2023). https://doi.org/10.1002/adma.202300505
J. Guo, Y. Zheng, Z. Hu, C. Zheng, J. Mao et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023). https://doi.org/10.1038/s41560-023-01195-x
H. Li, J. Wang, M. Cui, R. Huang, W. Qi et al., Dynamic dual-atom synergistic catalysis boosted by liquid metal for direct seawater electroreduction. J. Mater. Chem. A 12, 13466–13473 (2024). https://doi.org/10.1039/d4ta01464b