Boosting Oxygen Evolution Reaction Performance on NiFe-Based Catalysts Through d-Orbital Hybridization
Corresponding Author: Wei. Luo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 11
Abstract
Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm−2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
Highlights:
1 The NiFeLa catalyst with 3d-5d orbital coupling exhibits remarkable oxygen evolution reaction (OER) activity and stability, enabling an anion-exchange membrane water electrolyzers device to achieve a cell voltage of only 1.58 V at 1 A cm−2 as well as long-term stability over 600 h.
2 The introduction of La disrupts the symmetry of Ni-Fe units and optimize d band center, which affects the d-p orbital hybridization between the metal sites on the surface of the catalyst and oxygen-containing intermediates during the OER process.
3 The 5d-introduced NiFeLa has enhanced adsorption strength of oxygen intermediates, which can reduce the rate-determining step energy barrier and prevent catalyst dissolution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.R. Rao, S. Corby, A. Bucci, M. García-Tecedor, C.A. Mesa et al., Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 144, 7622–7633 (2022). https://doi.org/10.1021/jacs.1c08152
- S.Z. Oener, A. Bergmann, B.R. Cuenya, Designing active oxides for a durable oxygen evolution reaction. Nat. Synth. 2, 817–827 (2023). https://doi.org/10.1038/s44160-023-00376-6
- K. Yu, H. Yang, H. Zhang, H. Huang, Z. Wang et al., Immobilization of oxyanions on the reconstructed heterostructure evolved from a bimetallic oxysulfide for the promotion of oxygen evolution reaction. Nano-Micro Lett. 15, 186 (2023). https://doi.org/10.1007/s40820-023-01164-9
- F. Zeng, C. Mebrahtu, L. Liao, A.K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 31, 301–329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
- L. Chong, G. Gao, J. Wen, H. Li, H. Xu et al., La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023). https://doi.org/10.1126/science.ade1499
- P. Wang, T. Yu, L. Hao, X. Liu, P vacancies at the crystalline-amorphous interface of NiFe(OH)x/NiPx/NF enhance the catalytic activity of the oxygen evolution reaction. J. Power. Sources 589, 233749 (2024). https://doi.org/10.1016/j.jpowsour.2023.233749
- X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12, 2202522 (2022). https://doi.org/10.1002/aenm.202202522
- D. Liu, Y. Yan, H. Li, D. Liu, Y. Yang et al., A template editing strategy to create interlayer-confined active species for efficient and durable oxygen evolution reaction. Adv. Mater. 35, e2203420 (2023). https://doi.org/10.1002/adma.202203420
- X. Ren, Y. Zhai, P. Wang, Z. Xu, S. Gao et al., Surface restructuring of zeolite-encapsulated halide perovskite to activate lattice oxygen oxidation for water electrolysis. Adv. Mater. 35, e2301166 (2023). https://doi.org/10.1002/adma.202301166
- P. Zhai, C. Wang, Y. Zhao, Y. Zhang, J. Gao et al., Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 14, 1873 (2023). https://doi.org/10.1038/s41467-023-37091-x
- L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche et al., Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 23, 252–261 (2024). https://doi.org/10.1038/s41563-023-01744-5
- M. Zhao, W. Li, J. Li, W. Hu, C.M. Li, Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 7, 2001965 (2020). https://doi.org/10.1002/advs.202001965
- Y. Zhao, W. Wan, N. Dongfang, C.A. Triana, L. Douls et al., Optimized NiFe-based coordination polymer catalysts: sulfur-tuning and operando monitoring of water oxidation. ACS Nano 16, 15318–15327 (2022). https://doi.org/10.1021/acsnano.2c06890
- C. Li, E. Lepre, M. Bi, M. Antonietti, J. Zhu et al., Oxygen-rich carbon nitrides from an eutectic template strategy stabilize Ni, Fe nanosites for electrocatalytic oxygen evolution. Adv. Sci. 10, e2300526 (2023). https://doi.org/10.1002/advs.202300526
- H. Meng, B. Wu, T. Sun, L. Wei, Y. Zhang et al., Oxidization-induced structural optimization of Ni3Fe–N–C derived from 3D covalent organic framework for high-efficiency and durable oxygen evolution reaction. Nano Res. 16, 6710–6720 (2023). https://doi.org/10.1007/s12274-023-5475-7
- Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
- M.K. Adak, L. Mallick, K. Samanta, B. Chakraborty, Slow O-H dissociation in the first-order oxygen evolution reaction kinetics on polycrystalline γ-FeO(OH). J. Phys. Chem. C 127, 154–168 (2023). https://doi.org/10.1021/acs.jpcc.2c08107
- J. Hu, Q. Xu, X. Wang, X. Huang, C. Zhou et al., Charge-transfer-regulated bimetal ferrocene-based organic frameworks for promoting electrocatalytic oxygen evolution. Carbon Energy 5, e315 (2023). https://doi.org/10.1002/cey2.315
- L. Zhao, J. Yan, H. Huang, X. Du, H. Chen et al., Regulating electronic structure of bimetallic NiFe-THQ conductive metal–organic frameworks to boost catalytic activity for oxygen evolution reaction. Adv. Funct. Mater. 34, 2310902 (2024). https://doi.org/10.1002/adfm.202310902
- Y. Zhu, X. Wang, X. Zhu, Z. Wu, D. Zhao et al., Improving the oxygen evolution activity of layered double-hydroxide via erbium-induced electronic engineering. Small 19, e2206531 (2023). https://doi.org/10.1002/smll.202206531
- Y. Zhang, W. Zhang, X. Zhang, X. Wang, J. Wang et al., Activating lattice oxygen based on energy band engineering in oxides for industrial water/saline oxidation. Energy Environ. Sci. 17, 3347–3357 (2024). https://doi.org/10.1039/d4ee00214h
- X. Zhao, Y. Sun, J. Wang, A. Nie, G. Zou et al., Regulating d-orbital hybridization of subgroup-IVB single atoms for efficient oxygen reduction reaction. Adv. Mater. 36, e2312117 (2024). https://doi.org/10.1002/adma.202312117
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- Z. Zhang, C. Liu, C. Feng, P. Gao, Y. Liu et al., Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution. Nano Lett. 19, 8774–8779 (2019). https://doi.org/10.1021/acs.nanolett.9b03523
- J.-H. Huang, Y. Si, X.-Y. Dong, Z.-Y. Wang, L.-Y. Liu et al., Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J. Am. Chem. Soc. 143, 12439–12444 (2021). https://doi.org/10.1021/jacs.1c05568
- M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co–O covalency via Ce(4f)─O(2p)─Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 35, e2302462 (2023). https://doi.org/10.1002/adma.202302462
- Q. Zhang, W. Zhang, J. Zhu, X. Zhou, G.-R. Xu et al., Tuning d–p orbital hybridization of NiMoO4@Mo15Se19/NiSe2 core-shell nanomaterials via asymmetric coordination interaction enables the water oxidation process. Adv. Energy Mater. 14, 2304546 (2024). https://doi.org/10.1002/aenm.202304546
- X. Zhong, L. Sui, M. Yang, T. Koketsu, M. Klingenhof et al., Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers. Nat. Catal. 7, 546–559 (2024). https://doi.org/10.1038/s41929-024-01136-1
- B. Zhang, L. Wang, Z. Cao, S.M. Kozlov, F.P. García de Arquer et al., High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 3, 985–992 (2020). https://doi.org/10.1038/s41929-020-00525-6
- S. Zhao, F. Hu, L. Yin, L. Li, S. Peng, Manipulating electron redistribution induced by asymmetric coordination for electrocatalytic water oxidation at a high current density. Sci. Bull. 68, 1389–1398 (2023). https://doi.org/10.1016/j.scib.2023.06.001
- S. Liu, W. Qi, J. Liu, X. Meng, S. Adimi et al., Modulating electronic structure to improve the solar to hydrogen efficiency of cobalt nitride with lattice doping. ACS Catal. 13, 2214–2222 (2023). https://doi.org/10.1021/acscatal.2c05075
- W. Tian, J. Han, L. Wan, N. Li, D. Chen et al., Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 107, 108165 (2023). https://doi.org/10.1016/j.nanoen.2023.108165
- Y.-N. Zhou, F.-T. Li, B. Dong, Y.-M. Chai, Double self-reinforced coordination modulation constructing stable Ni4+ for water oxidation. Energy Environ. Sci. 17, 1468–1481 (2024). https://doi.org/10.1039/d3ee02627b
- L. Wu, M. Ning, X. Xing, Y. Wang, F. Zhang et al., Boosting oxygen evolution reaction of (Fe, Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 35, e2306097 (2023). https://doi.org/10.1002/adma.202306097
- M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao et al., Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 35, e2209338 (2023). https://doi.org/10.1002/adma.202209338
- J. Zhang, D. Wong, Q. Zhang, N. Zhang, C. Schulz et al., Reducing Co/O band overlap through spin state modulation for stabilized high capability of 4.6 V LiCoO2. J. Am. Chem. Soc. 145, 10208–10219 (2023). https://doi.org/10.1021/jacs.3c01128
- H. Li, P. Shi, L. Wang, T. Yan, T. Guo et al., Cooperative catalysis of polysulfides in lithium-sulfur batteries through adsorption competition by tuning cationic geometric configuration of dual-active sites in spinel oxides. Angew. Chem. Int. Ed. 62, 2216286 (2023). https://doi.org/10.1002/anie.202216286
- L. Deng, S.-F. Hung, Z.-Y. Lin, Y. Zhang, C. Zhang et al., Valence oscillation of Ru active sites for efficient and robust acidic water oxidation. Adv. Mater. 35, e2305939 (2023). https://doi.org/10.1002/adma.202305939
- S. Zhou, H. He, J. Li, Z. Ye, Z. Liu et al., Regulating the band structure of Ni active sites in few-layered NiFe-LDH by in situ adsorbed borate for ampere-level oxygen evolution. Adv. Funct. Mater. 34, 2313770 (2024). https://doi.org/10.1002/adfm.202313770
- S. Zuo, Z.-P. Wu, H. Zhang, X.W. Lou, Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 12, 2103383 (2022). https://doi.org/10.1002/aenm.202103383
- S. Lee, Y.-C. Chu, L. Bai, H.M. Chen, X. Hu, Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide. Chem Catal. 3, 100475 (2023). https://doi.org/10.1016/j.checat.2022.11.014
- Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han et al., Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. Int. Ed. 57, 5076–5080 (2018). https://doi.org/10.1002/anie.201801834
- Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li−O2 batteries. Angew. Chem. Int. Ed. 61, e202201416 (2022). https://doi.org/10.1002/anie.202201416
- J.K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental concepts in heterogeneous catalysis (John Wiley & Sons, NJ, 2014)
- L. Zhuang, Y. Jia, H. Liu, X. Wang, R.K. Hocking et al., Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater. 31, e1805581 (2019). https://doi.org/10.1002/adma.201805581
- H. Wang, T. Zhai, Y. Wu, T. Zhou, B. Zhou et al., High-valence oxides for high performance oxygen evolution electrocatalysis. Adv. Sci. 10, 2301706 (2023). https://doi.org/10.1002/advs.202301706
- H. Chen, L. Shi, K. Sun, K. Zhang, Q. Liu et al., Protonated iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal. 12, 8658–8666 (2022). https://doi.org/10.1021/acscatal.2c01241
- L. Zhang, H. Jang, H. Liu, M.G. Kim, D. Yang et al., Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed. 60, 18821–18829 (2021). https://doi.org/10.1002/anie.202106631
References
R.R. Rao, S. Corby, A. Bucci, M. García-Tecedor, C.A. Mesa et al., Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 144, 7622–7633 (2022). https://doi.org/10.1021/jacs.1c08152
S.Z. Oener, A. Bergmann, B.R. Cuenya, Designing active oxides for a durable oxygen evolution reaction. Nat. Synth. 2, 817–827 (2023). https://doi.org/10.1038/s44160-023-00376-6
K. Yu, H. Yang, H. Zhang, H. Huang, Z. Wang et al., Immobilization of oxyanions on the reconstructed heterostructure evolved from a bimetallic oxysulfide for the promotion of oxygen evolution reaction. Nano-Micro Lett. 15, 186 (2023). https://doi.org/10.1007/s40820-023-01164-9
F. Zeng, C. Mebrahtu, L. Liao, A.K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: a review. J. Energy Chem. 31, 301–329 (2022). https://doi.org/10.1016/j.jechem.2022.01.025
L. Chong, G. Gao, J. Wen, H. Li, H. Xu et al., La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023). https://doi.org/10.1126/science.ade1499
P. Wang, T. Yu, L. Hao, X. Liu, P vacancies at the crystalline-amorphous interface of NiFe(OH)x/NiPx/NF enhance the catalytic activity of the oxygen evolution reaction. J. Power. Sources 589, 233749 (2024). https://doi.org/10.1016/j.jpowsour.2023.233749
X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12, 2202522 (2022). https://doi.org/10.1002/aenm.202202522
D. Liu, Y. Yan, H. Li, D. Liu, Y. Yang et al., A template editing strategy to create interlayer-confined active species for efficient and durable oxygen evolution reaction. Adv. Mater. 35, e2203420 (2023). https://doi.org/10.1002/adma.202203420
X. Ren, Y. Zhai, P. Wang, Z. Xu, S. Gao et al., Surface restructuring of zeolite-encapsulated halide perovskite to activate lattice oxygen oxidation for water electrolysis. Adv. Mater. 35, e2301166 (2023). https://doi.org/10.1002/adma.202301166
P. Zhai, C. Wang, Y. Zhao, Y. Zhang, J. Gao et al., Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 14, 1873 (2023). https://doi.org/10.1038/s41467-023-37091-x
L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche et al., Fe–Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 23, 252–261 (2024). https://doi.org/10.1038/s41563-023-01744-5
M. Zhao, W. Li, J. Li, W. Hu, C.M. Li, Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 7, 2001965 (2020). https://doi.org/10.1002/advs.202001965
Y. Zhao, W. Wan, N. Dongfang, C.A. Triana, L. Douls et al., Optimized NiFe-based coordination polymer catalysts: sulfur-tuning and operando monitoring of water oxidation. ACS Nano 16, 15318–15327 (2022). https://doi.org/10.1021/acsnano.2c06890
C. Li, E. Lepre, M. Bi, M. Antonietti, J. Zhu et al., Oxygen-rich carbon nitrides from an eutectic template strategy stabilize Ni, Fe nanosites for electrocatalytic oxygen evolution. Adv. Sci. 10, e2300526 (2023). https://doi.org/10.1002/advs.202300526
H. Meng, B. Wu, T. Sun, L. Wei, Y. Zhang et al., Oxidization-induced structural optimization of Ni3Fe–N–C derived from 3D covalent organic framework for high-efficiency and durable oxygen evolution reaction. Nano Res. 16, 6710–6720 (2023). https://doi.org/10.1007/s12274-023-5475-7
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15, 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
M.K. Adak, L. Mallick, K. Samanta, B. Chakraborty, Slow O-H dissociation in the first-order oxygen evolution reaction kinetics on polycrystalline γ-FeO(OH). J. Phys. Chem. C 127, 154–168 (2023). https://doi.org/10.1021/acs.jpcc.2c08107
J. Hu, Q. Xu, X. Wang, X. Huang, C. Zhou et al., Charge-transfer-regulated bimetal ferrocene-based organic frameworks for promoting electrocatalytic oxygen evolution. Carbon Energy 5, e315 (2023). https://doi.org/10.1002/cey2.315
L. Zhao, J. Yan, H. Huang, X. Du, H. Chen et al., Regulating electronic structure of bimetallic NiFe-THQ conductive metal–organic frameworks to boost catalytic activity for oxygen evolution reaction. Adv. Funct. Mater. 34, 2310902 (2024). https://doi.org/10.1002/adfm.202310902
Y. Zhu, X. Wang, X. Zhu, Z. Wu, D. Zhao et al., Improving the oxygen evolution activity of layered double-hydroxide via erbium-induced electronic engineering. Small 19, e2206531 (2023). https://doi.org/10.1002/smll.202206531
Y. Zhang, W. Zhang, X. Zhang, X. Wang, J. Wang et al., Activating lattice oxygen based on energy band engineering in oxides for industrial water/saline oxidation. Energy Environ. Sci. 17, 3347–3357 (2024). https://doi.org/10.1039/d4ee00214h
X. Zhao, Y. Sun, J. Wang, A. Nie, G. Zou et al., Regulating d-orbital hybridization of subgroup-IVB single atoms for efficient oxygen reduction reaction. Adv. Mater. 36, e2312117 (2024). https://doi.org/10.1002/adma.202312117
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
Z. Zhang, C. Liu, C. Feng, P. Gao, Y. Liu et al., Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution. Nano Lett. 19, 8774–8779 (2019). https://doi.org/10.1021/acs.nanolett.9b03523
J.-H. Huang, Y. Si, X.-Y. Dong, Z.-Y. Wang, L.-Y. Liu et al., Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J. Am. Chem. Soc. 143, 12439–12444 (2021). https://doi.org/10.1021/jacs.1c05568
M. Li, X. Wang, K. Liu, H. Sun, D. Sun et al., Reinforcing Co–O covalency via Ce(4f)─O(2p)─Co(3d) gradient orbital coupling for high-efficiency oxygen evolution. Adv. Mater. 35, e2302462 (2023). https://doi.org/10.1002/adma.202302462
Q. Zhang, W. Zhang, J. Zhu, X. Zhou, G.-R. Xu et al., Tuning d–p orbital hybridization of NiMoO4@Mo15Se19/NiSe2 core-shell nanomaterials via asymmetric coordination interaction enables the water oxidation process. Adv. Energy Mater. 14, 2304546 (2024). https://doi.org/10.1002/aenm.202304546
X. Zhong, L. Sui, M. Yang, T. Koketsu, M. Klingenhof et al., Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers. Nat. Catal. 7, 546–559 (2024). https://doi.org/10.1038/s41929-024-01136-1
B. Zhang, L. Wang, Z. Cao, S.M. Kozlov, F.P. García de Arquer et al., High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 3, 985–992 (2020). https://doi.org/10.1038/s41929-020-00525-6
S. Zhao, F. Hu, L. Yin, L. Li, S. Peng, Manipulating electron redistribution induced by asymmetric coordination for electrocatalytic water oxidation at a high current density. Sci. Bull. 68, 1389–1398 (2023). https://doi.org/10.1016/j.scib.2023.06.001
S. Liu, W. Qi, J. Liu, X. Meng, S. Adimi et al., Modulating electronic structure to improve the solar to hydrogen efficiency of cobalt nitride with lattice doping. ACS Catal. 13, 2214–2222 (2023). https://doi.org/10.1021/acscatal.2c05075
W. Tian, J. Han, L. Wan, N. Li, D. Chen et al., Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 107, 108165 (2023). https://doi.org/10.1016/j.nanoen.2023.108165
Y.-N. Zhou, F.-T. Li, B. Dong, Y.-M. Chai, Double self-reinforced coordination modulation constructing stable Ni4+ for water oxidation. Energy Environ. Sci. 17, 1468–1481 (2024). https://doi.org/10.1039/d3ee02627b
L. Wu, M. Ning, X. Xing, Y. Wang, F. Zhang et al., Boosting oxygen evolution reaction of (Fe, Ni)OOH via defect engineering for anion exchange membrane water electrolysis under industrial conditions. Adv. Mater. 35, e2306097 (2023). https://doi.org/10.1002/adma.202306097
M. Cai, Q. Zhu, X. Wang, Z. Shao, L. Yao et al., Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions. Adv. Mater. 35, e2209338 (2023). https://doi.org/10.1002/adma.202209338
J. Zhang, D. Wong, Q. Zhang, N. Zhang, C. Schulz et al., Reducing Co/O band overlap through spin state modulation for stabilized high capability of 4.6 V LiCoO2. J. Am. Chem. Soc. 145, 10208–10219 (2023). https://doi.org/10.1021/jacs.3c01128
H. Li, P. Shi, L. Wang, T. Yan, T. Guo et al., Cooperative catalysis of polysulfides in lithium-sulfur batteries through adsorption competition by tuning cationic geometric configuration of dual-active sites in spinel oxides. Angew. Chem. Int. Ed. 62, 2216286 (2023). https://doi.org/10.1002/anie.202216286
L. Deng, S.-F. Hung, Z.-Y. Lin, Y. Zhang, C. Zhang et al., Valence oscillation of Ru active sites for efficient and robust acidic water oxidation. Adv. Mater. 35, e2305939 (2023). https://doi.org/10.1002/adma.202305939
S. Zhou, H. He, J. Li, Z. Ye, Z. Liu et al., Regulating the band structure of Ni active sites in few-layered NiFe-LDH by in situ adsorbed borate for ampere-level oxygen evolution. Adv. Funct. Mater. 34, 2313770 (2024). https://doi.org/10.1002/adfm.202313770
S. Zuo, Z.-P. Wu, H. Zhang, X.W. Lou, Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 12, 2103383 (2022). https://doi.org/10.1002/aenm.202103383
S. Lee, Y.-C. Chu, L. Bai, H.M. Chen, X. Hu, Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide. Chem Catal. 3, 100475 (2023). https://doi.org/10.1016/j.checat.2022.11.014
Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han et al., Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem. Int. Ed. 57, 5076–5080 (2018). https://doi.org/10.1002/anie.201801834
Y. Zhou, Q. Gu, K. Yin, Y. Li, L. Tao et al., Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li−O2 batteries. Angew. Chem. Int. Ed. 61, e202201416 (2022). https://doi.org/10.1002/anie.202201416
J.K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental concepts in heterogeneous catalysis (John Wiley & Sons, NJ, 2014)
L. Zhuang, Y. Jia, H. Liu, X. Wang, R.K. Hocking et al., Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater. 31, e1805581 (2019). https://doi.org/10.1002/adma.201805581
H. Wang, T. Zhai, Y. Wu, T. Zhou, B. Zhou et al., High-valence oxides for high performance oxygen evolution electrocatalysis. Adv. Sci. 10, 2301706 (2023). https://doi.org/10.1002/advs.202301706
H. Chen, L. Shi, K. Sun, K. Zhang, Q. Liu et al., Protonated iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal. 12, 8658–8666 (2022). https://doi.org/10.1021/acscatal.2c01241
L. Zhang, H. Jang, H. Liu, M.G. Kim, D. Yang et al., Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed. 60, 18821–18829 (2021). https://doi.org/10.1002/anie.202106631