Recent Advances in Fibrous Materials for Hydroelectricity Generation
Corresponding Author: Jian Fang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 29
Abstract
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development. Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis. Fibrous materials with unique flexibility, processability, multifunctionality, and practicability have been widely applied for fibrous materials-based hydroelectricity generation (FHG). In this review, the power generation mechanisms, design principles, and electricity enhancement factors of FHG are first introduced. Then, the fabrication strategies and characteristics of varied constructions including 1D fiber, 1D yarn, 2D fabric, 2D membrane, 3D fibrous framework, and 3D fibrous gel are demonstrated. Afterward, the advanced functions of FHG during water harvesting, proton dissociation, ion separation, and charge accumulation processes are analyzed in detail. Moreover, the potential applications including power supply, energy storage, electrical sensor, and information expression are also discussed. Finally, some existing challenges are considered and prospects for future development are sincerely proposed.
Highlights:
1 Fundamental principles and characteristics of fibrous materials-based hydroelectricity generation (FHG) are thoroughly reviewed.
2 Fabrication strategies and advanced functions of FHG are discussed and summarized in detail.
3 Challenges and perspectives of the next-generation development of FHG are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Xu, J. Li, C. Finnerty, Y. Song, L. Zhou et al., Going beyond efficiency for solar evaporation. Nat. Water 1, 494–501 (2023). https://doi.org/10.1038/s44221-023-00086-5
- Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro–nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
- Y. Huang, H. Zeng, L. Xie, R. Gao, S. Zhou et al., Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. J. Am. Chem. Soc. 144, 13794–13805 (2022). https://doi.org/10.1021/jacs.2c04862
- J. Xu, P. Wang, Z. Bai, H. Cheng, R. Wang et al., Sustainable moisture energy. Nat. Rev. Mater. (2024). https://doi.org/10.1038/s41578-023-00643-0
- B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang et al., Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3
- A. Awati, R. Yang, T. Shi, S. Zhou, X. Zhang et al., Interfacial super-assembly of vacancy engineered ultrathin-nanosheets toward nanochannels for smart ion transport and salinity gradient power conversion. Angew. Chem. Int. Ed. 63, e202407491 (2024). https://doi.org/10.1002/anie.202407491
- L. Ma, M. Zhou, R. Wu, A. Patil, H. Gong et al., Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14, 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
- J. Fang, H. Niu, H. Wang, X. Wang, T. Lin, Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6, 2196–2202 (2013). https://doi.org/10.1039/C3EE24230G
- X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
- L. Xie, S. Zhou, X. Li, X. Zhang, H. Zeng et al., Engineering 2D aligned nanowires assembled porous hetero-membrane for smart ion transport. Small 19, e2206878 (2023). https://doi.org/10.1002/smll.202206878
- C. Wang, K. Xu, G. Shi, D. Wei, Water skin effect and arched double-sided evaporation for boosting all-weather high salinity desalination. Adv. Energy Mater. 13, 2370086 (2023). https://doi.org/10.1002/aenm.202370086
- Z. Chen, J. Wang, H. Zhou, Z. Xie, L. Shao et al., Janus nano-micro structure-enabled coupling of photothermal conversion, heat localization and water supply for high-efficiency solar-driven interfacial evaporation. Adv. Funct. Mater. 33, 2303656 (2023). https://doi.org/10.1002/adfm.202303656
- N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
- J. Tan, X. Wang, W. Chu, S. Fang, C. Zheng et al., Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. 36, 2211165 (2024). https://doi.org/10.1002/adma.202211165
- C. Ge, D. Xu, Y. Qian, H. Du, C. Gao et al., Carbon materials for hybrid evaporation-induced electricity generation systems. Green Chem. 25, 7470–7484 (2023). https://doi.org/10.1039/d3gc02805d
- L. Li, X. Wang, W. Deng, J. Yin, X. Li et al., Hydrovoltaic energy from water droplets: device configurations, mechanisms, and applications. Droplet 2, e77 (2023). https://doi.org/10.1002/dro2.77
- J. Yin, J. Zhou, S. Fang, W. Guo, Hydrovoltaic energy on the way. Joule 4, 1852–1855 (2020). https://doi.org/10.1016/j.joule.2020.07.015
- P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017). https://doi.org/10.1039/C7EE01804E
- L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32, e2003722 (2020). https://doi.org/10.1002/adma.202003722
- J. Bai, Y. Huang, H. Cheng, L. Qu, Moist-electric generation. Nanoscale 11, 23083–23091 (2019). https://doi.org/10.1039/c9nr06113d
- H. Xia, W. Zhou, X. Qu, W. Wang, X. Wang et al., Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 19, 1316–1322 (2024). https://doi.org/10.1038/s41565-024-01691-5
- P. Wang, T. Li, Electricity generated from upstream proton diffusion. Nat. Nanotechnol. 19, 1243–1244 (2024). https://doi.org/10.1038/s41565-024-01713-2
- X. Li, Z.L. Wang, D. Wei, Scavenging energy and information through dynamically regulating the electrical double layer. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405520
- Q. Liang, Y. Huang, Y. Guo, X. Zhang, X. Hu et al., Efficient osmosis-powered production of green hydrogen. Nat. Sustain. 7, 628–639 (2024). https://doi.org/10.1038/s41893-024-01317-7
- T. Xu, X. Ding, H. Cheng, G. Han, L. Qu, Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 36, e2209661 (2024). https://doi.org/10.1002/adma.202209661
- R.F. Gouveia, F. Galembeck, Electrostatic charging of hydrophilic ps due to water adsorption. J. Am. Chem. Soc. 131, 11381–11386 (2009). https://doi.org/10.1021/ja900704f
- Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei et al., Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018). https://doi.org/10.1038/s41565-018-0228-6
- F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015). https://doi.org/10.1002/adma.201501867
- H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng et al., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 16, 811–819 (2021). https://doi.org/10.1038/s41565-021-00903-6
- Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021). https://doi.org/10.1038/s41578-021-00300-4
- J. Lü, G. Ren, Q. Hu, C. Rensing, S. Zhou, Microbial biofilm-based hydrovoltaic technology. Trends Biotechnol. 41, 1155–1167 (2023). https://doi.org/10.1016/j.tibtech.2023.03.012
- C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5, 791–818 (2023). https://doi.org/10.1007/s42765-022-00228-6
- J. Zhao, Z. Liu, S.C. Low, Z. Xu, S.H. Tan, Electrospinning technique meets solar energy: electrospun nanofiber-based evaporation systems for solar steam generation. Adv. Fiber Mater. 5, 1318–1348 (2023). https://doi.org/10.1007/s42765-023-00286-4
- K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55, 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- X. Wen, Z. Sun, X. Xie, Q. Zhou, H. Liu et al., High-performance fully stretchable moist-electric generator. Adv. Funct. Mater. 34, 2470059 (2024). https://doi.org/10.1002/adfm.202470059
- Z. Sun, X. Wen, L. Wang, J. Yu, X. Qin, Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 15, 4584–4591 (2022). https://doi.org/10.1039/d2ee02046g
- Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin et al., Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2, 32–46 (2022). https://doi.org/10.1016/j.esci.2021.12.009
- X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32, e2007012 (2020). https://doi.org/10.1002/adma.202007012
- X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018). https://doi.org/10.1039/C8EE00567B
- X. Lu, T. Yang, C. Fu, Z. Jiang, Y. Zhang et al., Hierarchically porous fiber-based nanofluidic diode as an efficient multimode hygroelectric generator. Adv. Energy Mater. 12, 2202634 (2022). https://doi.org/10.1002/aenm.202202634
- W. Yang, X. Li, X. Han, W. Zhang, Z. Wang et al., Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 71, 104610 (2020). https://doi.org/10.1016/j.nanoen.2020.104610
- L. Wang, X. Fu, J. He, X. Shi, T. Chen et al., Application challenges in fiber and textile electronics. Adv. Mater. 32, 1901971 (2020). https://doi.org/10.1002/adma.201901971
- J. Han, W. Xing, J. Yan, J. Wen, Y. Liu et al., Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv. Fiber Mater. 4, 1233–1245 (2022). https://doi.org/10.1007/s42765-022-00172-5
- S. Sun, H. Li, M. Zhang, B. Sun, Y. Xie et al., A multifunctional asymmetric fabric for sustained electricity generation from multiple sources and simultaneous solar steam generation. Small 19, e2303716 (2023). https://doi.org/10.1002/smll.202303716
- Z. Song, C. Ge, Y. Song, Z. Chen, B. Shao et al., Synergistic solar-driven freshwater generation and electricity output empowered by wafer-scale nanostructured silicon. Small 19, e2205265 (2023). https://doi.org/10.1002/smll.202205265
- C. Ge, D. Xu, H. Du, X. Zhang, Z. Song et al., All-In-one evaporators for efficient solar-driven simultaneous collection of water and electricity. Small Methods 7, e2300227 (2023). https://doi.org/10.1002/smtd.202300227
- V.-D. Dao, An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: the role of electrode materials. Sci. Total. Environ. 759, 143490 (2021). https://doi.org/10.1016/j.scitotenv.2020.143490
- S. Zhang, W. Chu, L. Li, W. Guo, Voltage distribution in porous carbon black films induced by water evaporation. J. Phys. Chem. C 125, 8959–8964 (2021). https://doi.org/10.1021/acs.jpcc.1c01208
- T.G. Yun, J. Bae, A. Rothschild, I.D. Kim, Transpiration driven electrokinetic power generator. ACS Nano 13, 12703–12709 (2019). https://doi.org/10.1021/acsnano.9b04375
- S. Fang, H. Lu, W. Chu, W. Guo, Mechanism of water-evaporation-induced electricity beyond streaming potential. Nano Res. Energy 3, e9120108 (2024). https://doi.org/10.26599/nre.2024.9120108
- W. Schmickler, Electronic effects in the electric double layer. Chem. Rev. 96, 3177–3200 (1996). https://doi.org/10.1021/cr940408c
- S. Chen, Y. Liu, J. Chen, Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chem. Soc. Rev. 43, 5372–5386 (2014). https://doi.org/10.1039/c4cs00087k
- X. Wang, F. Lin, X. Wang, S. Fang, J. Tan et al., Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51, 4902–4927 (2022). https://doi.org/10.1039/d1cs00778e
- M. Xue, Z. Hu, H. Qiu, C. Shen, W. Guo et al., An analog of Friedel oscillations in nanoconfined water. Natl. Sci. Rev. (2021). https://doi.org/10.1093/nsr/nwab214
- S. Jiao, Y. Li, J. Li, H. Abrha, M. Liu et al., Graphene oxide as a versatile platform for emerging hydrovoltaic technology. J. Mater. Chem. A 10, 18451–18469 (2022). https://doi.org/10.1039/D2TA04830B
- J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou et al., Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 9, 378–383 (2014). https://doi.org/10.1038/nnano.2014.56
- X. Wang, G. Yuan, H. Zhou, Y. Jiang, S. Wang et al., Composite laminar membranes for electricity generation from water evaporation. Nano Res. 17, 307–311 (2024). https://doi.org/10.1007/s12274-023-5906-5
- P. Guan, R. Zhu, G. Hu, R. Patterson, F. Chen et al., Recent development of moisture-enabled-electric nanogenerators. Small 18, e2204603 (2022). https://doi.org/10.1002/smll.202204603
- J. Bae, M.S. Kim, T. Oh, B.L. Suh, T.G. Yun et al., Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators. Energy Environ. Sci. 15, 123–135 (2022). https://doi.org/10.1039/D1EE00859E
- R. Li, C. Zhou, L. Yang, J. Li, G. Zhang et al., Multifunctional cotton with PANI-Ag NPs heterojunction for solar-driven water evaporation. J. Hazard. Mater. 424, 127367 (2022). https://doi.org/10.1016/j.jhazmat.2021.127367
- Y. Han, Z. Zhang, L. Qu, Power generation from graphene-water interactions. FlatChem 14, 100090 (2019). https://doi.org/10.1016/j.flatc.2019.100090
- T. Zhao, Y. Hu, W. Zhuang, Y. Xu, J. Feng et al., A fiber fluidic nanogenerator made from aligned carbon nanotubes composited with transition metal oxide. ACS Mater. Lett. 3, 1448–1452 (2021). https://doi.org/10.1021/acsmaterialslett.1c00392
- Y. Li, Y. Wu, B. Shao, Z. Song, Y. Wang et al., Asymmetric charged conductive porous films for electricity generation from water droplets via capillary infiltrating. ACS Appl. Mater. Interfaces 13, 17902–17909 (2021). https://doi.org/10.1021/acsami.0c21935
- Q. Wei, W. Ge, Z. Yuan, S. Wang, C. Lu et al., Moisture electricity generation: mechanisms, structures, and applications. Nano Res. 16, 7496–7510 (2023). https://doi.org/10.1007/s12274-023-5465-9
- Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Ceramic nanofiber-based water-induced electric generator. ACS Appl. Mater. Interfaces 13, 56226–56232 (2021). https://doi.org/10.1021/acsami.1c17847
- B. Shao, Y. Song, Z. Song, Y. Wang, Y. Wang et al., Electricity generation from phase transitions between liquid and gaseous water. Adv. Energy Mater. 13, 2204091 (2023). https://doi.org/10.1002/aenm.202204091
- H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang et al., Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11, 2839–2845 (2018). https://doi.org/10.1039/C8EE01502C
- J. Bai, Y. Huang, H. Wang, T. Guang, Q. Liao et al., Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 34, e2103897 (2022). https://doi.org/10.1002/adma.202103897
- Z. Mao, Y. Yao, J. Shen, J. Liu, Y. Chen et al., Passive interfacial cooling-induced sustainable electricity–water cogeneration. Nat. Water 2, 93–100 (2024). https://doi.org/10.1038/s44221-023-00190-6
- N. He, H. Wang, F. Li, B. Jiang, D. Tang et al., Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy Environ. Sci. 16, 2494–2504 (2023). https://doi.org/10.1039/D2EE03621E
- W. Xue, Z. Zhao, S. Zhang, Y. Li, X. Wang et al., Power generation from the interaction of a carbon foam and water. ACS Appl. Mater. Interfaces 16, 2825–2835 (2024). https://doi.org/10.1021/acsami.3c04726
- T. Cai, L. Lan, B. Peng, C. Zhang, S. Dai et al., Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 22, 6476–6483 (2022). https://doi.org/10.1021/acs.nanolett.2c00919
- K. Zhao, J.W. Lee, Z.G. Yu, W. Jiang, J.W. Oh et al., Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS Nano 17, 5472–5485 (2023). https://doi.org/10.1021/acsnano.2c10747
- L. Zhao, S. Liu, X. Zeng, H. Chen, D. Wang et al., A potential biogenetic membrane constructed by hydrophilic carbonized rice husk for sustaining electricity generation from hydrovoltaic conversion. Ceram. Int. 49, 30951–30957 (2023). https://doi.org/10.1016/j.ceramint.2023.05.033
- X. Ma, Z. Li, Z. Deng, D. Chen, X. Wang et al., Efficiently cogenerating drinkable water and electricity from seawater via flexible MOF nanorod arrays. J. Mater. Chem. A 9, 9048–9055 (2021). https://doi.org/10.1039/D0TA11870B
- J.S. Jang, Y. Lim, H. Shin, J. Kim, T.G. Yun, Bidirectional water-stream behavior on a multifunctional membrane for simultaneous energy generation and water purification. Adv. Mater. 35, e2209076 (2023). https://doi.org/10.1002/adma.202209076
- G. Luo, J. Xie, J. Liu, Y. Luo, M. Li et al., Highly stretchable, knittable, wearable fiberform hydrovoltaic generators driven by water transpiration for portable self-power supply and self-powered strain sensor. Small 20, e2306318 (2024). https://doi.org/10.1002/smll.202306318
- J. Liu, J.X. Gui, W.T. Zhou, X.L. Tian, Z.X. Liu et al., Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 86, 106112 (2021). https://doi.org/10.1016/j.nanoen.2021.106112
- Q. Liu, J. Liang, B. Tian, E. Xue, X. Zhang et al., A continuous gradient chemical reduction strategy of graphene oxide for highly efficient evaporation-driven electricity generation. Small Methods 7, e2300304 (2023). https://doi.org/10.1002/smtd.202300304
- Q. Ma, Q. He, P. Yin, H. Cheng, X. Cui et al., Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 32, e2003720 (2020). https://doi.org/10.1002/adma.202003720
- B.R. Bora, M. Mondal, N. Nath, K.K.R. Datta, K. Raidongia, Sustainable electricity from gravity-driven nanofluidic flow of water through modified bio-channels of coir fibers. J. Mater. Chem. A 11, 21383–21392 (2023). https://doi.org/10.1039/d3ta02105j
- X. Gao, T. Xu, C. Shao, Y. Han, B. Lu et al., Electric power generation using paper materials. J. Mater. Chem. A 7, 20574–20578 (2019). https://doi.org/10.1039/C9TA08264F
- X. Zhang, Y. Wang, X. Zhang, C.-W. Lou, J.-H. Lin et al., Preparation and study of bark-like MXene based high output power hydroelectric generator. Chem. Eng. J. 465, 142582 (2023). https://doi.org/10.1016/j.cej.2023.142582
- J. Garemark, F. Ram, L. Liu, I. Sapouna, M.F. Cortes Ruiz et al., Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering. Adv. Funct. Mater. 33, 2208933 (2023). https://doi.org/10.1002/adfm.202208933
- Y. Lv, F. Gong, H. Li, Q. Zhou, X. Wu et al., A flexible electrokinetic power generator derived from paper and ink for wearable electronics. Appl. Energy 279, 115764 (2020). https://doi.org/10.1016/j.apenergy.2020.115764
- Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao et al., Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017). https://doi.org/10.1016/j.nanoen.2016.12.062
- C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao et al., Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018). https://doi.org/10.1016/j.nanoen.2018.09.043
- T. Mei, J. Chen, Q. Zhao, D. Wang, Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl. Mater. Interfaces 12, 42686–42695 (2020). https://doi.org/10.1021/acsami.0c09518
- C. Cai, Y. Chen, F. Cheng, Z. Wei, W. Zhou et al., Biomimetic dual absorption-adsorption networked MXene aerogel-pump for integrated water harvesting and power generation system. ACS Nano 18, 4376–4387 (2024). https://doi.org/10.1021/acsnano.3c10313
- H. Zheng, A. Zhou, Y. Li, X. Chen, Y. Chen et al., A sandwich-like flexible nanofiber device boosts moisture induced electricity generation for power supply and multiple sensing applications. Nano Energy 113, 108529 (2023). https://doi.org/10.1016/j.nanoen.2023.108529
- Y. Hu, W. Yang, W. Wei, Z. Sun, B. Wu et al., Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. (2024). https://doi.org/10.1126/sciadv.adk4620
- X. Liu, J. Miao, Q. Fan, W. Zhang, X. Zuo et al., Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv. Fiber Mater. 4, 361–389 (2022). https://doi.org/10.1007/s42765-021-00126-3
- H.H. Shi, Y. Pan, L. Xu, X. Feng, W. Wang et al., Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023). https://doi.org/10.1038/s41563-023-01615-z
- A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
- C. Zhu, J. Wu, J. Yan, X. Liu, Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 5, 12–35 (2023). https://doi.org/10.1007/s42765-022-00212-0
- C. Fang, B. Xu, M. Li, J. Han, Y. Yang et al., Advanced design of fibrous flexible actuators for smart wearable applications. Adv. Fiber Mater. 6, 622–657 (2024). https://doi.org/10.1007/s42765-024-00386-9
- Y. Shen, X. Han, P. Zhang, X. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv Fiber Mater. 5, 1105–1140 (2023). https://doi.org/10.1007/s42765-023-00267-7
- J. Chen, Y. Li, Y. Zhang, D. Ye, C. Lei et al., Knittable composite fiber allows constant and tremendous self-powering based on the transpiration-driven electrokinetic effect. Adv. Funct. Mater. 32, 2203666 (2022). https://doi.org/10.1002/adfm.202203666
- Z. Sun, X. Wen, S. Guo, M. Zhou, L. Wang et al., Weavable yarn-shaped moisture-induced electric generator. Nano Energy 116, 108748 (2023). https://doi.org/10.1016/j.nanoen.2023.108748
- X. Qiu, J. Zhu, Y. Li, H. Kong, Q. Wang et al., Solar-driven interfacial evaporator with a self-powered detector based on the Gr@Ti4O7: Eu3+, Yb3+ fibrous membrane. ACS Sustainable Chem. Eng. 11, 11313–11320 (2023). https://doi.org/10.1021/acssuschemeng.3c03161
- C. Ge, D. Xu, Y. Song, Y. Liu, X. Feng et al., Fibrous solar evaporator with tunable water flow for efficient, self-operating, and sustainable hydroelectricity generation. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403608
- S. Liu, W. Zhang, J. He, Y. Lu, Q. Wu et al., Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives. Adv. Fiber Mater. 6, 36–67 (2024). https://doi.org/10.1007/s42765-023-00338-9
- D. Yan, J. Ye, Y. Zhou, X. Lei, B. Deng et al., Research progress of fabrics with different geometric structures for triboelectric nanogenerators in flexible and wearable electronics. Adv. Fiber Mater. 5, 1852–1878 (2023). https://doi.org/10.1007/s42765-023-00334-z
- M. Qu, H. Wang, R. Zhang, Q. Chen, Q. Zhao et al., Poly(phthalazinone ether ketone)–poly(3, 4-ethylenedioxythiophene) fiber for thermoelectric and hydroelectric energy harvesting. Chem. Eng. J. 450, 138093 (2022). https://doi.org/10.1016/j.cej.2022.138093
- W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
- X. Ren, X. Xiang, H. Yin, Y. Tang, H. Yuan, All-yarn triboelectric nanogenerator and supercapacitor based self-charging power cloth for wearable applications. Nanotechnology 32, 315404 (2021). https://doi.org/10.1088/1361-6528/abfcfe
- D. Xu, Y. Liu, C. Ge, C. Gao, Z. Chen et al., Chemical resistant yarn with hierarchical core–shell structure for safety monitoring and tunable thermal management in high-risk environments. Engineering 32, 217–225 (2024). https://doi.org/10.1016/j.eng.2023.06.018
- Y. Yang, Y. Sui, Z. Cai, B. Xu, Low-cost and high-efficiency solar-driven vapor generation using a 3D dyed cotton towel. Glob. Chall. 3, 1900004 (2019). https://doi.org/10.1002/gch2.201900004
- W. Ma, Y. Zhang, S. Pan, Y. Cheng, Z. Shao et al., Smart fibers for energy conversion and storage. Chem. Soc. Rev. 50, 7009–7061 (2021). https://doi.org/10.1039/d0cs01603a
- Y. Wang, L. Zhang, B. Xie, Z. Zhao, X. Zhou et al., Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. Polymer 261, 125411 (2022). https://doi.org/10.1016/j.polymer.2022.125411
- Y.-B. Xue, Y.-M. Cao, P. Luo, X.-X. Dong, B.-B. Han et al., Asymmetric sandwich Janus structure for high-performance textile-based thermo–hydroelectric generators toward human health monitoring. Adv. Funct. Mater. 34, 2310485 (2024). https://doi.org/10.1002/adfm.202310485
- H. Liu, Y. Zhu, C. Zhang, Y. Zhou, D.-G. Yu, Electrospun nanofiber as building blocks for high-performance air filter: a review. Nano Today 55, 102161 (2024). https://doi.org/10.1016/j.nantod.2024.102161
- C. Ge, Y. Wang, M. Wang, Z. Zheng, S. Wang et al., Silk fibroin-regulated nanochannels for flexible hydrovoltaic ion sensing. Adv. Mater. 36, e2310260 (2024). https://doi.org/10.1002/adma.202310260
- Z. Sun, L. Feng, C. Xiong, X. He, L. Wang et al., Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 9, 7085–7093 (2021). https://doi.org/10.1039/D0TA11974A
- P. Zhu, Z. Yu, H. Sun, D. Zheng, Y. Zheng et al., 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36, e2306653 (2024). https://doi.org/10.1002/adma.202306653
- J. Zhang, Y. Hou, L. Lei, S. Hu, Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J. Membr. Sci. 662, 120962 (2022). https://doi.org/10.1016/j.memsci.2022.120962
- H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616
- L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3D-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. Part B Eng. 263, 110830 (2023). https://doi.org/10.1016/j.compositesb.2023.110830
- X. Li, K. Zhang, A. Nilghaz, G. Chen, J. Tian, A green and sustainable water evaporation-induced electricity generator with woody biochar. Nano Energy 112, 108491 (2023). https://doi.org/10.1016/j.nanoen.2023.108491
- Q. Lyu, B. Peng, Z. Xie, S. Du, L. Zhang et al., Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 12, 57373–57381 (2020). https://doi.org/10.1021/acsami.0c17931
- J. Liu, X. Chen, H. Yang, J. Tang, R. Miao et al., Gel-emulsion templated polymeric aerogels for solar-driven interfacial evaporation and electricity generation. Mater. Chem. Front. 5, 1953–1961 (2021). https://doi.org/10.1039/D0QM00793E
- Y. Cao, B. Xu, Z. Li, H. Fu, Advanced design of high-performance moist-electric generators. Adv. Funct. Mater. 33, 2301420 (2023). https://doi.org/10.1002/adfm.202301420
- W. Yang, L. Lv, X. Li, X. Han, M. Li et al., Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 14, 10600–10607 (2020). https://doi.org/10.1021/acsnano.0c04686
- B. Tulachan, S.K. Meena, R.K. Rai, C. Mallick, T.S. Kusurkar et al., Electricity from the silk cocoon membrane. Sci. Rep. 4, 5434 (2014). https://doi.org/10.1038/srep05434
- J. Yang, C. Yang, J. Cheng, A. Dai, T. Liu et al., Fiber-shaped fluidic nanogenerator with high power density for self-powered integrated electronics. Cell Rep. Phys. Sci. 1, 100175 (2020). https://doi.org/10.1016/j.xcrp.2020.100175
- Y.-M. Cao, Y. Su, M. Zheng, P. Luo, Y.-B. Xue et al., Vertical phase-engineering MoS2 nanosheet-enhanced textiles for efficient moisture-based energy generation. ACS Nano 18, 492–505 (2024). https://doi.org/10.1021/acsnano.3c08132
- J. Youm, S.-H. Lee, I. Cho, D.-W. Jeong, J. Bang et al., Highly increased hydrovoltaic power generation via surfactant optimization of carbon black solution for cellulose microfiber cylindrical generator. Surf. Interfaces 38, 102853 (2023). https://doi.org/10.1016/j.surfin.2023.102853
- Y.J. Yun, O.J. Yoon, D.I. Son, Y. Jun, Metal/bacteria cellulose nanofiber bilayer membranes for high-performance hydrovoltaic electric power generation. Nano Energy 118, 108934 (2023). https://doi.org/10.1016/j.nanoen.2023.108934
- Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 8, 2303–2309 (2021). https://doi.org/10.1039/d1mh00565k
- T. Tabrizizadeh, J. Wang, R. Kumar, S. Chaurasia, K. Stamplecoskie et al., Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats. ACS Appl. Mater. Interfaces 13, 50900–50910 (2021). https://doi.org/10.1021/acsami.1c13487
- C. Wang, S. Tang, B. Li, J. Fan, J. Zhou, Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional Evaporation-driven electrical generation. Chem. Eng. J. 455, 140568 (2023). https://doi.org/10.1016/j.cej.2022.140568
- Z. Zhang, Y. Zheng, N. Jiang, W. Hong, T. Liu et al., Electricity generation from water evaporation through highly conductive carbonized wood with abundant hydroxyls. Sustain. Energy Fuels 6, 2249–2255 (2022). https://doi.org/10.1039/D2SE00309K
- M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019). https://doi.org/10.1002/adfm.201901798
- Y. Xu, S. Dong, Y. Sheng, C. Liu, F. Xing et al., Highly efficient solar driven cogeneration of freshwater and electricity. J. Mater. Chem. A 11, 1866–1876 (2023). https://doi.org/10.1039/D2TA08590A
- J. Eun, S. Jeon, Janus membrane-based hydrovoltaic power generation with enhanced performance under suppressed evaporation conditions. ACS Appl. Mater. Interfaces 15, 50126–50133 (2023). https://doi.org/10.1021/acsami.3c08618
- Y. Wang, T. Yokota, T. Someya, Electrospun nanofiber-based soft electronics. npg Asia Mater. 13, 22 (2021). https://doi.org/10.1038/s41427-020-00267-8
- T. Yan, Z. Wang, Z.-J. Pan, A highly sensitive strain sensor based on a carbonized polyacrylonitrile nanofiber woven fabric. J. Mater. Sci. 53, 11917–11931 (2018). https://doi.org/10.1007/s10853-018-2432-z
- C. Wei, X. Zhang, S. Ma, C. Zhang, Y. Li et al., Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification. Chem. Eng. J. 425, 130118 (2021). https://doi.org/10.1016/j.cej.2021.130118
- T. Li, Q. Fang, X. Xi, Y. Chen, F. Liu, Ultra-robust carbon fibers for multi-media purification via solar-evaporation. J. Mater. Chem. A 7, 586–593 (2019). https://doi.org/10.1039/c8ta08829b
- Q. Qi, W. Wang, Y. Wang, D. Yu, Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane. Sep. Purif. Technol. 239, 116595 (2020). https://doi.org/10.1016/j.seppur.2020.116595
- S. Wang, L. Zhu, D. Yu, X. Han, L. Zhong et al., Bioinspired robust helical-groove spindle-knot microfibers for large-scale water collection. Adv. Funct. Mater. 33, 2305244 (2023). https://doi.org/10.1002/adfm.202305244
- X. Zhang, H. Lin, H. Shang, J. Xu, J. Zhu et al., Recent advances in functional fiber electronics. SusMat 1, 105–126 (2021). https://doi.org/10.1002/sus2.1
- S. Wu, T. Dong, Y. Li, M. Sun, Y. Qi et al., State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 27, 101473 (2022). https://doi.org/10.1016/j.apmt.2022.101473
- D. Xu, C. Ge, C. Gao, Y. Liu, Z. Su et al., Novel composite yarn with a wavy-network structure produced by various delivery speed ratios and untwisting factors. Text. Res. J. 92, 4551–4562 (2022). https://doi.org/10.1177/00405175221107163
- D. Xu, Z. Chen, Y. Liu, C. Ge, C. Gao et al., Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 33, 2212626 (2023). https://doi.org/10.1002/adfm.202212626
- S. Mandal, S. Roy, A. Mandal, T. Ghoshal, G. Das et al., Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors. ACS Appl. Electron. Mater. 2, 780–789 (2020). https://doi.org/10.1021/acsaelm.9b00842
- Y. Xu, Z. Bai, G. Xu, H. Shen, Constructing a versatile hybrid harvester for efficient power generation, detection and clean water collection. Nano Energy 94, 106932 (2022). https://doi.org/10.1016/j.nanoen.2022.106932
- T.-T. Li, X.-X. Fan, X. Zhang, X. Zhang, C.-W. Lou et al., Photothermoelectric synergistic hydrovoltaic effect: a flexible photothermoelectric yarn panel for multiple renewable-energy harvesting. ACS Appl. Mater. Interfaces 15, 57219–57229 (2023). https://doi.org/10.1021/acsami.3c14033
- K. Yang, T. Pan, N. Ferhat, A.I. Felix, R.E. Waller et al., A solar-driven atmospheric water extractor for off-grid freshwater generation and irrigation. Nat. Commun. 15, 6260 (2024). https://doi.org/10.1038/s41467-024-50715-0
- Z. Li, J. Wang, L. Dai, X. Sun, M. An et al., Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces 12, 55205–55214 (2020). https://doi.org/10.1021/acsami.0c17970
- X. Han, W. Zhang, X. Che, L. Long, M. Li et al., Synergetic and persistent harvesting of electricity and potable water from ambient moisture with biohybrid fibrils. J. Mater. Chem. A 10, 8356–8363 (2022). https://doi.org/10.1039/D1TA10865D
- F. Cheng, C.E. Brewer, Conversion of protein-rich lignocellulosic wastes to bio-energy: review and recommendations for hydrolysis plus fermentation and anaerobic digestion. Renew. Sust. Energ. Rev. 146, 111167 (2021). https://doi.org/10.1016/j.rser.2021.111167
- Z. Wang, M. Han, F. He, S. Peng, S.B. Darling et al., Versatile coating with multifunctional performance for solar steam generation. Nano Energy 74, 104886 (2020). https://doi.org/10.1016/j.nanoen.2020.104886
- J. Xie, Y. Wang, S. Chen, Textile-based asymmetric hierarchical systems for constant hydrovoltaic electricity generation. Chem. Eng. J. 431, 133236 (2022). https://doi.org/10.1016/j.cej.2021.133236
- J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 13, 527–534 (2020). https://doi.org/10.1039/C9EE02616A
- M. Wu, Z. Liang, M. Peng, B. Zhao, D. Li et al., High evaporation rate and electrical conductivity synergistically boosting porous rGO/CNT Film for water evaporation-driven electricity generation. Nano Energy 116, 108771 (2023). https://doi.org/10.1016/j.nanoen.2023.108771
- S.S. Das, S. Kar, T. Anwar, P. Saha, S. Chakraborty, Hydroelectric power plant on a paper strip. Lab Chip 18, 1560–1568 (2018). https://doi.org/10.1039/c7lc01350g
- S. Lal, S.K. Batabyal, Ambient evaporation-induced electricity generation in activated carbon-water interfaced three-dimensional hydrovoltaic device. J. Power. Sources 568, 232951 (2023). https://doi.org/10.1016/j.jpowsour.2023.232951
- X. Zhao, C. Liu, Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation. Desalination 482, 114385 (2020). https://doi.org/10.1016/j.desal.2020.114385
- Y.A. Younes, D.A. Kospa, R.S. Salama, A.I. Ahmed, A.A. Ibrahim, Hydrophilic candle wastes microcapsules as a thermal energy storage material for all-day steam and electricity cogeneration. Desalination 550, 116377 (2023). https://doi.org/10.1016/j.desal.2023.116377
- X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu et al., Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, 2313090 (2024). https://doi.org/10.1002/adma.202313090
- Y. Song, Z. Song, C. Jiang, C. Xing, X. Zeng et al., Ferroelectric layer-assisted asymmetric heterojunction boosts power output in silicon hydrovoltaic device. Adv. Energy Mater. 13, 2302765 (2023). https://doi.org/10.1002/aenm.202302765
- H. Yoon, J.Y. Cheong, T.G. Yun, B. Hwang, Cellulose fiber-based, yarn-based, and textile-based hydroelectric nanogenerators: a mini-review. Cellulose 30, 4071–4095 (2023). https://doi.org/10.1007/s10570-023-05157-0
- Y. Wu, B. Shao, Z. Song, Y. Li, Y. Zou et al., A hygroscopic Janus heterojunction for continuous moisture-triggered electricity generators. ACS Appl. Mater. Interfaces 14, 19569–19578 (2022). https://doi.org/10.1021/acsami.2c02878
- S. Fang, W. Chu, J. Tan, W. Guo, The mechanism for solar irradiation enhanced evaporation and electricity generation. Nano Energy 101, 107605 (2022). https://doi.org/10.1016/j.nanoen.2022.107605
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
- W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
- J. Lin, Z. Zhang, X. Lin, X. Cai, S. Fu et al., All wood-based water evaporation-induced electricity generator. Adv. Funct. Mater. 34, 2314231 (2024). https://doi.org/10.1002/adfm.202314231
- F. Wang, Y. Zhang, J. Shi, L. Sun, A. Ullah et al., Bioinspired and biodegradable functionalized graphene oxide/deacetylated cellulose acetate composite Janus membranes for water evaporation-induced electricity generation. ACS Sustainable Chem. Eng. 11, 9792–9803 (2023). https://doi.org/10.1021/acssuschemeng.3c01952
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- L. Li, Z. Zheng, C. Ge, Y. Wang, H. Dai et al., A flexible tough hydrovoltaic coating for wearable sensing electronics. Adv. Mater. 35, e2304099 (2023). https://doi.org/10.1002/adma.202304099
- R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020). https://doi.org/10.1002/aenm.201903921
- Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12, 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
- W. Zhang, H. Guan, T. Zhong, T. Zhao, L. Xing et al., Wearable battery-free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays. Nano-Micro Lett. 12, 105 (2020). https://doi.org/10.1007/s40820-020-00441-1
- S. He, Y. Zhang, L. Qiu, L. Zhang, Y. Xie et al., Chemical-to-electricity carbon: water device. Adv. Mater. 30, 1707635 (2018). https://doi.org/10.1002/adma.201707635
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- K. Kanahashi, J. Pu, T. Takenobu, 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 10, 1902842 (2020). https://doi.org/10.1002/aenm.201902842
- J.H. Kim, B. Kim, S.W. Kim, H.W. Kang, M.C. Park et al., High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag. Nanotechnology 32, 145401 (2021). https://doi.org/10.1088/1361-6528/abd57e
- L. Zhang, M.Y. Leung, S. Boriskina, X. Tao, Advancing life cycle sustainability of textiles through technological innovations. Nat. Sustain. 6, 243–253 (2022). https://doi.org/10.1038/s41893-022-01004-5
References
N. Xu, J. Li, C. Finnerty, Y. Song, L. Zhou et al., Going beyond efficiency for solar evaporation. Nat. Water 1, 494–501 (2023). https://doi.org/10.1038/s44221-023-00086-5
Z. Yu, Y. Su, R. Gu, W. Wu, Y. Li et al., Micro–nano water film enabled high-performance interfacial solar evaporation. Nano-Micro Lett. 15, 214 (2023). https://doi.org/10.1007/s40820-023-01191-6
Y. Huang, H. Zeng, L. Xie, R. Gao, S. Zhou et al., Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. J. Am. Chem. Soc. 144, 13794–13805 (2022). https://doi.org/10.1021/jacs.2c04862
J. Xu, P. Wang, Z. Bai, H. Cheng, R. Wang et al., Sustainable moisture energy. Nat. Rev. Mater. (2024). https://doi.org/10.1038/s41578-023-00643-0
B. Yang, Z. Zhang, P. Liu, X. Fu, J. Wang et al., Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023). https://doi.org/10.1038/s41586-023-06509-3
A. Awati, R. Yang, T. Shi, S. Zhou, X. Zhang et al., Interfacial super-assembly of vacancy engineered ultrathin-nanosheets toward nanochannels for smart ion transport and salinity gradient power conversion. Angew. Chem. Int. Ed. 63, e202407491 (2024). https://doi.org/10.1002/anie.202407491
L. Ma, M. Zhou, R. Wu, A. Patil, H. Gong et al., Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 14, 4716–4726 (2020). https://doi.org/10.1021/acsnano.0c00524
J. Fang, H. Niu, H. Wang, X. Wang, T. Lin, Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6, 2196–2202 (2013). https://doi.org/10.1039/C3EE24230G
X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
L. Xie, S. Zhou, X. Li, X. Zhang, H. Zeng et al., Engineering 2D aligned nanowires assembled porous hetero-membrane for smart ion transport. Small 19, e2206878 (2023). https://doi.org/10.1002/smll.202206878
C. Wang, K. Xu, G. Shi, D. Wei, Water skin effect and arched double-sided evaporation for boosting all-weather high salinity desalination. Adv. Energy Mater. 13, 2370086 (2023). https://doi.org/10.1002/aenm.202370086
Z. Chen, J. Wang, H. Zhou, Z. Xie, L. Shao et al., Janus nano-micro structure-enabled coupling of photothermal conversion, heat localization and water supply for high-efficiency solar-driven interfacial evaporation. Adv. Funct. Mater. 33, 2303656 (2023). https://doi.org/10.1002/adfm.202303656
N. He, H. Wang, H. Zhang, B. Jiang, D. Tang et al., Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nano-Micro Lett. 16, 8 (2023). https://doi.org/10.1007/s40820-023-01215-1
J. Tan, X. Wang, W. Chu, S. Fang, C. Zheng et al., Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. 36, 2211165 (2024). https://doi.org/10.1002/adma.202211165
C. Ge, D. Xu, Y. Qian, H. Du, C. Gao et al., Carbon materials for hybrid evaporation-induced electricity generation systems. Green Chem. 25, 7470–7484 (2023). https://doi.org/10.1039/d3gc02805d
L. Li, X. Wang, W. Deng, J. Yin, X. Li et al., Hydrovoltaic energy from water droplets: device configurations, mechanisms, and applications. Droplet 2, e77 (2023). https://doi.org/10.1002/dro2.77
J. Yin, J. Zhou, S. Fang, W. Guo, Hydrovoltaic energy on the way. Joule 4, 1852–1855 (2020). https://doi.org/10.1016/j.joule.2020.07.015
P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017). https://doi.org/10.1039/C7EE01804E
L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
D. Shen, W.W. Duley, P. Peng, M. Xiao, J. Feng et al., Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32, e2003722 (2020). https://doi.org/10.1002/adma.202003722
J. Bai, Y. Huang, H. Cheng, L. Qu, Moist-electric generation. Nanoscale 11, 23083–23091 (2019). https://doi.org/10.1039/c9nr06113d
H. Xia, W. Zhou, X. Qu, W. Wang, X. Wang et al., Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 19, 1316–1322 (2024). https://doi.org/10.1038/s41565-024-01691-5
P. Wang, T. Li, Electricity generated from upstream proton diffusion. Nat. Nanotechnol. 19, 1243–1244 (2024). https://doi.org/10.1038/s41565-024-01713-2
X. Li, Z.L. Wang, D. Wei, Scavenging energy and information through dynamically regulating the electrical double layer. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405520
Q. Liang, Y. Huang, Y. Guo, X. Zhang, X. Hu et al., Efficient osmosis-powered production of green hydrogen. Nat. Sustain. 7, 628–639 (2024). https://doi.org/10.1038/s41893-024-01317-7
T. Xu, X. Ding, H. Cheng, G. Han, L. Qu, Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 36, e2209661 (2024). https://doi.org/10.1002/adma.202209661
R.F. Gouveia, F. Galembeck, Electrostatic charging of hydrophilic ps due to water adsorption. J. Am. Chem. Soc. 131, 11381–11386 (2009). https://doi.org/10.1021/ja900704f
Z. Zhang, X. Li, J. Yin, Y. Xu, W. Fei et al., Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018). https://doi.org/10.1038/s41565-018-0228-6
F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015). https://doi.org/10.1002/adma.201501867
H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng et al., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 16, 811–819 (2021). https://doi.org/10.1038/s41565-021-00903-6
Z. Zhang, L. Wen, L. Jiang, Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021). https://doi.org/10.1038/s41578-021-00300-4
J. Lü, G. Ren, Q. Hu, C. Rensing, S. Zhou, Microbial biofilm-based hydrovoltaic technology. Trends Biotechnol. 41, 1155–1167 (2023). https://doi.org/10.1016/j.tibtech.2023.03.012
C. Ge, D. Xu, H. Du, Z. Chen, J. Chen et al., Recent advances in fibrous materials for interfacial solar steam generation. Adv. Fiber Mater. 5, 791–818 (2023). https://doi.org/10.1007/s42765-022-00228-6
J. Zhao, Z. Liu, S.C. Low, Z. Xu, S.H. Tan, Electrospinning technique meets solar energy: electrospun nanofiber-based evaporation systems for solar steam generation. Adv. Fiber Mater. 5, 1318–1348 (2023). https://doi.org/10.1007/s42765-023-00286-4
K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55, 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
X. Wen, Z. Sun, X. Xie, Q. Zhou, H. Liu et al., High-performance fully stretchable moist-electric generator. Adv. Funct. Mater. 34, 2470059 (2024). https://doi.org/10.1002/adfm.202470059
Z. Sun, X. Wen, L. Wang, J. Yu, X. Qin, Capacitor-inspired high-performance and durable moist-electric generator. Energy Environ. Sci. 15, 4584–4591 (2022). https://doi.org/10.1039/d2ee02046g
Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin et al., Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2, 32–46 (2022). https://doi.org/10.1016/j.esci.2021.12.009
X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32, e2007012 (2020). https://doi.org/10.1002/adma.202007012
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018). https://doi.org/10.1039/C8EE00567B
X. Lu, T. Yang, C. Fu, Z. Jiang, Y. Zhang et al., Hierarchically porous fiber-based nanofluidic diode as an efficient multimode hygroelectric generator. Adv. Energy Mater. 12, 2202634 (2022). https://doi.org/10.1002/aenm.202202634
W. Yang, X. Li, X. Han, W. Zhang, Z. Wang et al., Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 71, 104610 (2020). https://doi.org/10.1016/j.nanoen.2020.104610
L. Wang, X. Fu, J. He, X. Shi, T. Chen et al., Application challenges in fiber and textile electronics. Adv. Mater. 32, 1901971 (2020). https://doi.org/10.1002/adma.201901971
J. Han, W. Xing, J. Yan, J. Wen, Y. Liu et al., Stretchable and superhydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination. Adv. Fiber Mater. 4, 1233–1245 (2022). https://doi.org/10.1007/s42765-022-00172-5
S. Sun, H. Li, M. Zhang, B. Sun, Y. Xie et al., A multifunctional asymmetric fabric for sustained electricity generation from multiple sources and simultaneous solar steam generation. Small 19, e2303716 (2023). https://doi.org/10.1002/smll.202303716
Z. Song, C. Ge, Y. Song, Z. Chen, B. Shao et al., Synergistic solar-driven freshwater generation and electricity output empowered by wafer-scale nanostructured silicon. Small 19, e2205265 (2023). https://doi.org/10.1002/smll.202205265
C. Ge, D. Xu, H. Du, X. Zhang, Z. Song et al., All-In-one evaporators for efficient solar-driven simultaneous collection of water and electricity. Small Methods 7, e2300227 (2023). https://doi.org/10.1002/smtd.202300227
V.-D. Dao, An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: the role of electrode materials. Sci. Total. Environ. 759, 143490 (2021). https://doi.org/10.1016/j.scitotenv.2020.143490
S. Zhang, W. Chu, L. Li, W. Guo, Voltage distribution in porous carbon black films induced by water evaporation. J. Phys. Chem. C 125, 8959–8964 (2021). https://doi.org/10.1021/acs.jpcc.1c01208
T.G. Yun, J. Bae, A. Rothschild, I.D. Kim, Transpiration driven electrokinetic power generator. ACS Nano 13, 12703–12709 (2019). https://doi.org/10.1021/acsnano.9b04375
S. Fang, H. Lu, W. Chu, W. Guo, Mechanism of water-evaporation-induced electricity beyond streaming potential. Nano Res. Energy 3, e9120108 (2024). https://doi.org/10.26599/nre.2024.9120108
W. Schmickler, Electronic effects in the electric double layer. Chem. Rev. 96, 3177–3200 (1996). https://doi.org/10.1021/cr940408c
S. Chen, Y. Liu, J. Chen, Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers. Chem. Soc. Rev. 43, 5372–5386 (2014). https://doi.org/10.1039/c4cs00087k
X. Wang, F. Lin, X. Wang, S. Fang, J. Tan et al., Hydrovoltaic technology: from mechanism to applications. Chem. Soc. Rev. 51, 4902–4927 (2022). https://doi.org/10.1039/d1cs00778e
M. Xue, Z. Hu, H. Qiu, C. Shen, W. Guo et al., An analog of Friedel oscillations in nanoconfined water. Natl. Sci. Rev. (2021). https://doi.org/10.1093/nsr/nwab214
S. Jiao, Y. Li, J. Li, H. Abrha, M. Liu et al., Graphene oxide as a versatile platform for emerging hydrovoltaic technology. J. Mater. Chem. A 10, 18451–18469 (2022). https://doi.org/10.1039/D2TA04830B
J. Yin, X. Li, J. Yu, Z. Zhang, J. Zhou et al., Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 9, 378–383 (2014). https://doi.org/10.1038/nnano.2014.56
X. Wang, G. Yuan, H. Zhou, Y. Jiang, S. Wang et al., Composite laminar membranes for electricity generation from water evaporation. Nano Res. 17, 307–311 (2024). https://doi.org/10.1007/s12274-023-5906-5
P. Guan, R. Zhu, G. Hu, R. Patterson, F. Chen et al., Recent development of moisture-enabled-electric nanogenerators. Small 18, e2204603 (2022). https://doi.org/10.1002/smll.202204603
J. Bae, M.S. Kim, T. Oh, B.L. Suh, T.G. Yun et al., Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators. Energy Environ. Sci. 15, 123–135 (2022). https://doi.org/10.1039/D1EE00859E
R. Li, C. Zhou, L. Yang, J. Li, G. Zhang et al., Multifunctional cotton with PANI-Ag NPs heterojunction for solar-driven water evaporation. J. Hazard. Mater. 424, 127367 (2022). https://doi.org/10.1016/j.jhazmat.2021.127367
Y. Han, Z. Zhang, L. Qu, Power generation from graphene-water interactions. FlatChem 14, 100090 (2019). https://doi.org/10.1016/j.flatc.2019.100090
T. Zhao, Y. Hu, W. Zhuang, Y. Xu, J. Feng et al., A fiber fluidic nanogenerator made from aligned carbon nanotubes composited with transition metal oxide. ACS Mater. Lett. 3, 1448–1452 (2021). https://doi.org/10.1021/acsmaterialslett.1c00392
Y. Li, Y. Wu, B. Shao, Z. Song, Y. Wang et al., Asymmetric charged conductive porous films for electricity generation from water droplets via capillary infiltrating. ACS Appl. Mater. Interfaces 13, 17902–17909 (2021). https://doi.org/10.1021/acsami.0c21935
Q. Wei, W. Ge, Z. Yuan, S. Wang, C. Lu et al., Moisture electricity generation: mechanisms, structures, and applications. Nano Res. 16, 7496–7510 (2023). https://doi.org/10.1007/s12274-023-5465-9
Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Ceramic nanofiber-based water-induced electric generator. ACS Appl. Mater. Interfaces 13, 56226–56232 (2021). https://doi.org/10.1021/acsami.1c17847
B. Shao, Y. Song, Z. Song, Y. Wang, Y. Wang et al., Electricity generation from phase transitions between liquid and gaseous water. Adv. Energy Mater. 13, 2204091 (2023). https://doi.org/10.1002/aenm.202204091
H. Cheng, Y. Huang, F. Zhao, C. Yang, P. Zhang et al., Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11, 2839–2845 (2018). https://doi.org/10.1039/C8EE01502C
J. Bai, Y. Huang, H. Wang, T. Guang, Q. Liao et al., Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 34, e2103897 (2022). https://doi.org/10.1002/adma.202103897
Z. Mao, Y. Yao, J. Shen, J. Liu, Y. Chen et al., Passive interfacial cooling-induced sustainable electricity–water cogeneration. Nat. Water 2, 93–100 (2024). https://doi.org/10.1038/s44221-023-00190-6
N. He, H. Wang, F. Li, B. Jiang, D. Tang et al., Ion engines in hydrogels boosting hydrovoltaic electricity generation. Energy Environ. Sci. 16, 2494–2504 (2023). https://doi.org/10.1039/D2EE03621E
W. Xue, Z. Zhao, S. Zhang, Y. Li, X. Wang et al., Power generation from the interaction of a carbon foam and water. ACS Appl. Mater. Interfaces 16, 2825–2835 (2024). https://doi.org/10.1021/acsami.3c04726
T. Cai, L. Lan, B. Peng, C. Zhang, S. Dai et al., Bilayer wood membrane with aligned ion nanochannels for spontaneous moist-electric generation. Nano Lett. 22, 6476–6483 (2022). https://doi.org/10.1021/acs.nanolett.2c00919
K. Zhao, J.W. Lee, Z.G. Yu, W. Jiang, J.W. Oh et al., Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS Nano 17, 5472–5485 (2023). https://doi.org/10.1021/acsnano.2c10747
L. Zhao, S. Liu, X. Zeng, H. Chen, D. Wang et al., A potential biogenetic membrane constructed by hydrophilic carbonized rice husk for sustaining electricity generation from hydrovoltaic conversion. Ceram. Int. 49, 30951–30957 (2023). https://doi.org/10.1016/j.ceramint.2023.05.033
X. Ma, Z. Li, Z. Deng, D. Chen, X. Wang et al., Efficiently cogenerating drinkable water and electricity from seawater via flexible MOF nanorod arrays. J. Mater. Chem. A 9, 9048–9055 (2021). https://doi.org/10.1039/D0TA11870B
J.S. Jang, Y. Lim, H. Shin, J. Kim, T.G. Yun, Bidirectional water-stream behavior on a multifunctional membrane for simultaneous energy generation and water purification. Adv. Mater. 35, e2209076 (2023). https://doi.org/10.1002/adma.202209076
G. Luo, J. Xie, J. Liu, Y. Luo, M. Li et al., Highly stretchable, knittable, wearable fiberform hydrovoltaic generators driven by water transpiration for portable self-power supply and self-powered strain sensor. Small 20, e2306318 (2024). https://doi.org/10.1002/smll.202306318
J. Liu, J.X. Gui, W.T. Zhou, X.L. Tian, Z.X. Liu et al., Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 86, 106112 (2021). https://doi.org/10.1016/j.nanoen.2021.106112
Q. Liu, J. Liang, B. Tian, E. Xue, X. Zhang et al., A continuous gradient chemical reduction strategy of graphene oxide for highly efficient evaporation-driven electricity generation. Small Methods 7, e2300304 (2023). https://doi.org/10.1002/smtd.202300304
Q. Ma, Q. He, P. Yin, H. Cheng, X. Cui et al., Rational design of MOF-based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv. Mater. 32, e2003720 (2020). https://doi.org/10.1002/adma.202003720
B.R. Bora, M. Mondal, N. Nath, K.K.R. Datta, K. Raidongia, Sustainable electricity from gravity-driven nanofluidic flow of water through modified bio-channels of coir fibers. J. Mater. Chem. A 11, 21383–21392 (2023). https://doi.org/10.1039/d3ta02105j
X. Gao, T. Xu, C. Shao, Y. Han, B. Lu et al., Electric power generation using paper materials. J. Mater. Chem. A 7, 20574–20578 (2019). https://doi.org/10.1039/C9TA08264F
X. Zhang, Y. Wang, X. Zhang, C.-W. Lou, J.-H. Lin et al., Preparation and study of bark-like MXene based high output power hydroelectric generator. Chem. Eng. J. 465, 142582 (2023). https://doi.org/10.1016/j.cej.2023.142582
J. Garemark, F. Ram, L. Liu, I. Sapouna, M.F. Cortes Ruiz et al., Advancing hydrovoltaic energy harvesting from wood through cell wall nanoengineering. Adv. Funct. Mater. 33, 2208933 (2023). https://doi.org/10.1002/adfm.202208933
Y. Lv, F. Gong, H. Li, Q. Zhou, X. Wu et al., A flexible electrokinetic power generator derived from paper and ink for wearable electronics. Appl. Energy 279, 115764 (2020). https://doi.org/10.1016/j.apenergy.2020.115764
Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao et al., Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017). https://doi.org/10.1016/j.nanoen.2016.12.062
C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao et al., Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018). https://doi.org/10.1016/j.nanoen.2018.09.043
T. Mei, J. Chen, Q. Zhao, D. Wang, Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl. Mater. Interfaces 12, 42686–42695 (2020). https://doi.org/10.1021/acsami.0c09518
C. Cai, Y. Chen, F. Cheng, Z. Wei, W. Zhou et al., Biomimetic dual absorption-adsorption networked MXene aerogel-pump for integrated water harvesting and power generation system. ACS Nano 18, 4376–4387 (2024). https://doi.org/10.1021/acsnano.3c10313
H. Zheng, A. Zhou, Y. Li, X. Chen, Y. Chen et al., A sandwich-like flexible nanofiber device boosts moisture induced electricity generation for power supply and multiple sensing applications. Nano Energy 113, 108529 (2023). https://doi.org/10.1016/j.nanoen.2023.108529
Y. Hu, W. Yang, W. Wei, Z. Sun, B. Wu et al., Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. (2024). https://doi.org/10.1126/sciadv.adk4620
X. Liu, J. Miao, Q. Fan, W. Zhang, X. Zuo et al., Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv. Fiber Mater. 4, 361–389 (2022). https://doi.org/10.1007/s42765-021-00126-3
H.H. Shi, Y. Pan, L. Xu, X. Feng, W. Wang et al., Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023). https://doi.org/10.1038/s41563-023-01615-z
A. Rafique, I. Ferreira, G. Abbas, A.C. Baptista, Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15, 40 (2023). https://doi.org/10.1007/s40820-022-01008-y
C. Zhu, J. Wu, J. Yan, X. Liu, Advanced fiber materials for wearable electronics. Adv. Fiber Mater. 5, 12–35 (2023). https://doi.org/10.1007/s42765-022-00212-0
C. Fang, B. Xu, M. Li, J. Han, Y. Yang et al., Advanced design of fibrous flexible actuators for smart wearable applications. Adv. Fiber Mater. 6, 622–657 (2024). https://doi.org/10.1007/s42765-024-00386-9
Y. Shen, X. Han, P. Zhang, X. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv Fiber Mater. 5, 1105–1140 (2023). https://doi.org/10.1007/s42765-023-00267-7
J. Chen, Y. Li, Y. Zhang, D. Ye, C. Lei et al., Knittable composite fiber allows constant and tremendous self-powering based on the transpiration-driven electrokinetic effect. Adv. Funct. Mater. 32, 2203666 (2022). https://doi.org/10.1002/adfm.202203666
Z. Sun, X. Wen, S. Guo, M. Zhou, L. Wang et al., Weavable yarn-shaped moisture-induced electric generator. Nano Energy 116, 108748 (2023). https://doi.org/10.1016/j.nanoen.2023.108748
X. Qiu, J. Zhu, Y. Li, H. Kong, Q. Wang et al., Solar-driven interfacial evaporator with a self-powered detector based on the Gr@Ti4O7: Eu3+, Yb3+ fibrous membrane. ACS Sustainable Chem. Eng. 11, 11313–11320 (2023). https://doi.org/10.1021/acssuschemeng.3c03161
C. Ge, D. Xu, Y. Song, Y. Liu, X. Feng et al., Fibrous solar evaporator with tunable water flow for efficient, self-operating, and sustainable hydroelectricity generation. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403608
S. Liu, W. Zhang, J. He, Y. Lu, Q. Wu et al., Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1D and 2D perspectives. Adv. Fiber Mater. 6, 36–67 (2024). https://doi.org/10.1007/s42765-023-00338-9
D. Yan, J. Ye, Y. Zhou, X. Lei, B. Deng et al., Research progress of fabrics with different geometric structures for triboelectric nanogenerators in flexible and wearable electronics. Adv. Fiber Mater. 5, 1852–1878 (2023). https://doi.org/10.1007/s42765-023-00334-z
M. Qu, H. Wang, R. Zhang, Q. Chen, Q. Zhao et al., Poly(phthalazinone ether ketone)–poly(3, 4-ethylenedioxythiophene) fiber for thermoelectric and hydroelectric energy harvesting. Chem. Eng. J. 450, 138093 (2022). https://doi.org/10.1016/j.cej.2022.138093
W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee et al., Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020). https://doi.org/10.1038/s41467-020-16671-1
X. Ren, X. Xiang, H. Yin, Y. Tang, H. Yuan, All-yarn triboelectric nanogenerator and supercapacitor based self-charging power cloth for wearable applications. Nanotechnology 32, 315404 (2021). https://doi.org/10.1088/1361-6528/abfcfe
D. Xu, Y. Liu, C. Ge, C. Gao, Z. Chen et al., Chemical resistant yarn with hierarchical core–shell structure for safety monitoring and tunable thermal management in high-risk environments. Engineering 32, 217–225 (2024). https://doi.org/10.1016/j.eng.2023.06.018
Y. Yang, Y. Sui, Z. Cai, B. Xu, Low-cost and high-efficiency solar-driven vapor generation using a 3D dyed cotton towel. Glob. Chall. 3, 1900004 (2019). https://doi.org/10.1002/gch2.201900004
W. Ma, Y. Zhang, S. Pan, Y. Cheng, Z. Shao et al., Smart fibers for energy conversion and storage. Chem. Soc. Rev. 50, 7009–7061 (2021). https://doi.org/10.1039/d0cs01603a
Y. Wang, L. Zhang, B. Xie, Z. Zhao, X. Zhou et al., Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. Polymer 261, 125411 (2022). https://doi.org/10.1016/j.polymer.2022.125411
Y.-B. Xue, Y.-M. Cao, P. Luo, X.-X. Dong, B.-B. Han et al., Asymmetric sandwich Janus structure for high-performance textile-based thermo–hydroelectric generators toward human health monitoring. Adv. Funct. Mater. 34, 2310485 (2024). https://doi.org/10.1002/adfm.202310485
H. Liu, Y. Zhu, C. Zhang, Y. Zhou, D.-G. Yu, Electrospun nanofiber as building blocks for high-performance air filter: a review. Nano Today 55, 102161 (2024). https://doi.org/10.1016/j.nantod.2024.102161
C. Ge, Y. Wang, M. Wang, Z. Zheng, S. Wang et al., Silk fibroin-regulated nanochannels for flexible hydrovoltaic ion sensing. Adv. Mater. 36, e2310260 (2024). https://doi.org/10.1002/adma.202310260
Z. Sun, L. Feng, C. Xiong, X. He, L. Wang et al., Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 9, 7085–7093 (2021). https://doi.org/10.1039/D0TA11974A
P. Zhu, Z. Yu, H. Sun, D. Zheng, Y. Zheng et al., 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36, e2306653 (2024). https://doi.org/10.1002/adma.202306653
J. Zhang, Y. Hou, L. Lei, S. Hu, Moist-electric generators based on electrospun cellulose acetate nanofiber membranes with tree-like structure. J. Membr. Sci. 662, 120962 (2022). https://doi.org/10.1016/j.memsci.2022.120962
H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616
L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3D-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. Part B Eng. 263, 110830 (2023). https://doi.org/10.1016/j.compositesb.2023.110830
X. Li, K. Zhang, A. Nilghaz, G. Chen, J. Tian, A green and sustainable water evaporation-induced electricity generator with woody biochar. Nano Energy 112, 108491 (2023). https://doi.org/10.1016/j.nanoen.2023.108491
Q. Lyu, B. Peng, Z. Xie, S. Du, L. Zhang et al., Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 12, 57373–57381 (2020). https://doi.org/10.1021/acsami.0c17931
J. Liu, X. Chen, H. Yang, J. Tang, R. Miao et al., Gel-emulsion templated polymeric aerogels for solar-driven interfacial evaporation and electricity generation. Mater. Chem. Front. 5, 1953–1961 (2021). https://doi.org/10.1039/D0QM00793E
Y. Cao, B. Xu, Z. Li, H. Fu, Advanced design of high-performance moist-electric generators. Adv. Funct. Mater. 33, 2301420 (2023). https://doi.org/10.1002/adfm.202301420
W. Yang, L. Lv, X. Li, X. Han, M. Li et al., Quaternized silk nanofibrils for electricity generation from moisture and ion rectification. ACS Nano 14, 10600–10607 (2020). https://doi.org/10.1021/acsnano.0c04686
B. Tulachan, S.K. Meena, R.K. Rai, C. Mallick, T.S. Kusurkar et al., Electricity from the silk cocoon membrane. Sci. Rep. 4, 5434 (2014). https://doi.org/10.1038/srep05434
J. Yang, C. Yang, J. Cheng, A. Dai, T. Liu et al., Fiber-shaped fluidic nanogenerator with high power density for self-powered integrated electronics. Cell Rep. Phys. Sci. 1, 100175 (2020). https://doi.org/10.1016/j.xcrp.2020.100175
Y.-M. Cao, Y. Su, M. Zheng, P. Luo, Y.-B. Xue et al., Vertical phase-engineering MoS2 nanosheet-enhanced textiles for efficient moisture-based energy generation. ACS Nano 18, 492–505 (2024). https://doi.org/10.1021/acsnano.3c08132
J. Youm, S.-H. Lee, I. Cho, D.-W. Jeong, J. Bang et al., Highly increased hydrovoltaic power generation via surfactant optimization of carbon black solution for cellulose microfiber cylindrical generator. Surf. Interfaces 38, 102853 (2023). https://doi.org/10.1016/j.surfin.2023.102853
Y.J. Yun, O.J. Yoon, D.I. Son, Y. Jun, Metal/bacteria cellulose nanofiber bilayer membranes for high-performance hydrovoltaic electric power generation. Nano Energy 118, 108934 (2023). https://doi.org/10.1016/j.nanoen.2023.108934
Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 8, 2303–2309 (2021). https://doi.org/10.1039/d1mh00565k
T. Tabrizizadeh, J. Wang, R. Kumar, S. Chaurasia, K. Stamplecoskie et al., Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats. ACS Appl. Mater. Interfaces 13, 50900–50910 (2021). https://doi.org/10.1021/acsami.1c13487
C. Wang, S. Tang, B. Li, J. Fan, J. Zhou, Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional Evaporation-driven electrical generation. Chem. Eng. J. 455, 140568 (2023). https://doi.org/10.1016/j.cej.2022.140568
Z. Zhang, Y. Zheng, N. Jiang, W. Hong, T. Liu et al., Electricity generation from water evaporation through highly conductive carbonized wood with abundant hydroxyls. Sustain. Energy Fuels 6, 2249–2255 (2022). https://doi.org/10.1039/D2SE00309K
M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019). https://doi.org/10.1002/adfm.201901798
Y. Xu, S. Dong, Y. Sheng, C. Liu, F. Xing et al., Highly efficient solar driven cogeneration of freshwater and electricity. J. Mater. Chem. A 11, 1866–1876 (2023). https://doi.org/10.1039/D2TA08590A
J. Eun, S. Jeon, Janus membrane-based hydrovoltaic power generation with enhanced performance under suppressed evaporation conditions. ACS Appl. Mater. Interfaces 15, 50126–50133 (2023). https://doi.org/10.1021/acsami.3c08618
Y. Wang, T. Yokota, T. Someya, Electrospun nanofiber-based soft electronics. npg Asia Mater. 13, 22 (2021). https://doi.org/10.1038/s41427-020-00267-8
T. Yan, Z. Wang, Z.-J. Pan, A highly sensitive strain sensor based on a carbonized polyacrylonitrile nanofiber woven fabric. J. Mater. Sci. 53, 11917–11931 (2018). https://doi.org/10.1007/s10853-018-2432-z
C. Wei, X. Zhang, S. Ma, C. Zhang, Y. Li et al., Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification. Chem. Eng. J. 425, 130118 (2021). https://doi.org/10.1016/j.cej.2021.130118
T. Li, Q. Fang, X. Xi, Y. Chen, F. Liu, Ultra-robust carbon fibers for multi-media purification via solar-evaporation. J. Mater. Chem. A 7, 586–593 (2019). https://doi.org/10.1039/c8ta08829b
Q. Qi, W. Wang, Y. Wang, D. Yu, Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane. Sep. Purif. Technol. 239, 116595 (2020). https://doi.org/10.1016/j.seppur.2020.116595
S. Wang, L. Zhu, D. Yu, X. Han, L. Zhong et al., Bioinspired robust helical-groove spindle-knot microfibers for large-scale water collection. Adv. Funct. Mater. 33, 2305244 (2023). https://doi.org/10.1002/adfm.202305244
X. Zhang, H. Lin, H. Shang, J. Xu, J. Zhu et al., Recent advances in functional fiber electronics. SusMat 1, 105–126 (2021). https://doi.org/10.1002/sus2.1
S. Wu, T. Dong, Y. Li, M. Sun, Y. Qi et al., State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 27, 101473 (2022). https://doi.org/10.1016/j.apmt.2022.101473
D. Xu, C. Ge, C. Gao, Y. Liu, Z. Su et al., Novel composite yarn with a wavy-network structure produced by various delivery speed ratios and untwisting factors. Text. Res. J. 92, 4551–4562 (2022). https://doi.org/10.1177/00405175221107163
D. Xu, Z. Chen, Y. Liu, C. Ge, C. Gao et al., Hump-inspired hierarchical fabric for personal thermal protection and thermal comfort management. Adv. Funct. Mater. 33, 2212626 (2023). https://doi.org/10.1002/adfm.202212626
S. Mandal, S. Roy, A. Mandal, T. Ghoshal, G. Das et al., Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors. ACS Appl. Electron. Mater. 2, 780–789 (2020). https://doi.org/10.1021/acsaelm.9b00842
Y. Xu, Z. Bai, G. Xu, H. Shen, Constructing a versatile hybrid harvester for efficient power generation, detection and clean water collection. Nano Energy 94, 106932 (2022). https://doi.org/10.1016/j.nanoen.2022.106932
T.-T. Li, X.-X. Fan, X. Zhang, X. Zhang, C.-W. Lou et al., Photothermoelectric synergistic hydrovoltaic effect: a flexible photothermoelectric yarn panel for multiple renewable-energy harvesting. ACS Appl. Mater. Interfaces 15, 57219–57229 (2023). https://doi.org/10.1021/acsami.3c14033
K. Yang, T. Pan, N. Ferhat, A.I. Felix, R.E. Waller et al., A solar-driven atmospheric water extractor for off-grid freshwater generation and irrigation. Nat. Commun. 15, 6260 (2024). https://doi.org/10.1038/s41467-024-50715-0
Z. Li, J. Wang, L. Dai, X. Sun, M. An et al., Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces 12, 55205–55214 (2020). https://doi.org/10.1021/acsami.0c17970
X. Han, W. Zhang, X. Che, L. Long, M. Li et al., Synergetic and persistent harvesting of electricity and potable water from ambient moisture with biohybrid fibrils. J. Mater. Chem. A 10, 8356–8363 (2022). https://doi.org/10.1039/D1TA10865D
F. Cheng, C.E. Brewer, Conversion of protein-rich lignocellulosic wastes to bio-energy: review and recommendations for hydrolysis plus fermentation and anaerobic digestion. Renew. Sust. Energ. Rev. 146, 111167 (2021). https://doi.org/10.1016/j.rser.2021.111167
Z. Wang, M. Han, F. He, S. Peng, S.B. Darling et al., Versatile coating with multifunctional performance for solar steam generation. Nano Energy 74, 104886 (2020). https://doi.org/10.1016/j.nanoen.2020.104886
J. Xie, Y. Wang, S. Chen, Textile-based asymmetric hierarchical systems for constant hydrovoltaic electricity generation. Chem. Eng. J. 431, 133236 (2022). https://doi.org/10.1016/j.cej.2021.133236
J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 13, 527–534 (2020). https://doi.org/10.1039/C9EE02616A
M. Wu, Z. Liang, M. Peng, B. Zhao, D. Li et al., High evaporation rate and electrical conductivity synergistically boosting porous rGO/CNT Film for water evaporation-driven electricity generation. Nano Energy 116, 108771 (2023). https://doi.org/10.1016/j.nanoen.2023.108771
S.S. Das, S. Kar, T. Anwar, P. Saha, S. Chakraborty, Hydroelectric power plant on a paper strip. Lab Chip 18, 1560–1568 (2018). https://doi.org/10.1039/c7lc01350g
S. Lal, S.K. Batabyal, Ambient evaporation-induced electricity generation in activated carbon-water interfaced three-dimensional hydrovoltaic device. J. Power. Sources 568, 232951 (2023). https://doi.org/10.1016/j.jpowsour.2023.232951
X. Zhao, C. Liu, Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation. Desalination 482, 114385 (2020). https://doi.org/10.1016/j.desal.2020.114385
Y.A. Younes, D.A. Kospa, R.S. Salama, A.I. Ahmed, A.A. Ibrahim, Hydrophilic candle wastes microcapsules as a thermal energy storage material for all-day steam and electricity cogeneration. Desalination 550, 116377 (2023). https://doi.org/10.1016/j.desal.2023.116377
X. Wu, Y. Lu, X. Ren, P. Wu, D. Chu et al., Interfacial solar evaporation: from fundamental research to applications. Adv. Mater. 36, 2313090 (2024). https://doi.org/10.1002/adma.202313090
Y. Song, Z. Song, C. Jiang, C. Xing, X. Zeng et al., Ferroelectric layer-assisted asymmetric heterojunction boosts power output in silicon hydrovoltaic device. Adv. Energy Mater. 13, 2302765 (2023). https://doi.org/10.1002/aenm.202302765
H. Yoon, J.Y. Cheong, T.G. Yun, B. Hwang, Cellulose fiber-based, yarn-based, and textile-based hydroelectric nanogenerators: a mini-review. Cellulose 30, 4071–4095 (2023). https://doi.org/10.1007/s10570-023-05157-0
Y. Wu, B. Shao, Z. Song, Y. Li, Y. Zou et al., A hygroscopic Janus heterojunction for continuous moisture-triggered electricity generators. ACS Appl. Mater. Interfaces 14, 19569–19578 (2022). https://doi.org/10.1021/acsami.2c02878
S. Fang, W. Chu, J. Tan, W. Guo, The mechanism for solar irradiation enhanced evaporation and electricity generation. Nano Energy 101, 107605 (2022). https://doi.org/10.1016/j.nanoen.2022.107605
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
W. Fan, Q. Wang, K. Rong, Y. Shi, W. Peng et al., MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. 16, 36 (2023). https://doi.org/10.1007/s40820-023-01226-y
J. Lin, Z. Zhang, X. Lin, X. Cai, S. Fu et al., All wood-based water evaporation-induced electricity generator. Adv. Funct. Mater. 34, 2314231 (2024). https://doi.org/10.1002/adfm.202314231
F. Wang, Y. Zhang, J. Shi, L. Sun, A. Ullah et al., Bioinspired and biodegradable functionalized graphene oxide/deacetylated cellulose acetate composite Janus membranes for water evaporation-induced electricity generation. ACS Sustainable Chem. Eng. 11, 9792–9803 (2023). https://doi.org/10.1021/acssuschemeng.3c01952
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
L. Li, Z. Zheng, C. Ge, Y. Wang, H. Dai et al., A flexible tough hydrovoltaic coating for wearable sensing electronics. Adv. Mater. 35, e2304099 (2023). https://doi.org/10.1002/adma.202304099
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020). https://doi.org/10.1002/aenm.201903921
Y. Peng, W. Li, B. Liu, W. Jin, J. Schaadt et al., Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 12, 6122 (2021). https://doi.org/10.1038/s41467-021-26384-8
W. Zhang, H. Guan, T. Zhong, T. Zhao, L. Xing et al., Wearable battery-free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays. Nano-Micro Lett. 12, 105 (2020). https://doi.org/10.1007/s40820-020-00441-1
S. He, Y. Zhang, L. Qiu, L. Zhang, Y. Xie et al., Chemical-to-electricity carbon: water device. Adv. Mater. 30, 1707635 (2018). https://doi.org/10.1002/adma.201707635
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
K. Kanahashi, J. Pu, T. Takenobu, 2D materials for large-area flexible thermoelectric devices. Adv. Energy Mater. 10, 1902842 (2020). https://doi.org/10.1002/aenm.201902842
J.H. Kim, B. Kim, S.W. Kim, H.W. Kang, M.C. Park et al., High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag. Nanotechnology 32, 145401 (2021). https://doi.org/10.1088/1361-6528/abd57e
L. Zhang, M.Y. Leung, S. Boriskina, X. Tao, Advancing life cycle sustainability of textiles through technological innovations. Nat. Sustain. 6, 243–253 (2022). https://doi.org/10.1038/s41893-022-01004-5