Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries
Corresponding Author: Qifeng Zheng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 38
Abstract
Porous organic cages (POCs) with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior, yet their feasibility as solid-state electrolytes has never been testified in a practical battery. Herein, we design and fabricate a quasi-solid-state electrolyte (QSSE) based on a POC to enable the stable operation of Li-metal batteries (LMBs). Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC, the resulting POC-based QSSE exhibits a high Li+ transference number of 0.67 and a high ionic conductivity of 1.25 × 10−4 S cm−1 with a low activation energy of 0.17 eV. These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h. As a proof of concept, the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85% capacity retention after 1000 cycles. Therefore, our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems, such as Na and K batteries.
Highlights:
1 A porous organic cage (POC)-based quasi-solid-state electrolyte (QSSE) with cavity-induced anion-trapping effect was rationally designed to enable the stable operation of Li-metal batteries.
2 The POC-based QSSE exhibits a high Li+ transference number of 0.67 and a high ionic conductivity of 1.25×10−4 S cm−1 with a low activation energy of 0.17 eV.
3 The POC-based QSSE demonstrates a highly reversible Li plating/stripping cycling for 2000 h and superior Li||LFePO4 cycling for thousands of cycles at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, e1905517 (2020). https://doi.org/10.1002/adma.201905517
- C.Y. Wang, T. Liu, X.G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
- J. Liu, Y. Zhang, J. Zhou, Z. Wang, P. Zhu et al., Advances and prospects in improving the utilization efficiency of lithium for high energy density lithium batteries. Adv. Funct. Mater. 33, 2302055 (2023). https://doi.org/10.1002/adfm.202302055
- B. Acebedo, M.C. Morant, E. Gonzalo, I. Ruiz de Larramendi, A. Villaverde et al., Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 13, 2203744 (2023). https://doi.org/10.1002/aenm.202203744
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k
- P. Bonnick, J. Muldoon, The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci. 15, 1840–1860 (2022). https://doi.org/10.1039/d2ee00842d
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
- L. Qian, T. Or, Y. Zheng, M. Li, D. Karim et al., Critical operation strategies toward high-performance lithium metal batteries. Renewables 1, 114–141 (2023). https://doi.org/10.31635/renewables.023.202200014
- M.J. Wang, E. Kazyak, N.P. Dasgupta, J. Sakamoto, Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021). https://doi.org/10.1016/j.joule.2021.04.001
- T. Zhang, W. He, W. Zhang, T. Wang, P. Li et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 11, 8686–8707 (2020). https://doi.org/10.1039/d0sc03121f
- J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021). https://doi.org/10.1021/acs.accounts.1c00333
- C. Liao, C. Yu, S. Chen, C. Wei, Z. Wu et al., Mitigation of the instability of ultrafast li-ion conductor Li6.6Si0.6Sb0.4S5I enables high-performance all-solid-state batteries. Renewables 1, 266–276 (2023). https://doi.org/10.31635/renewables.023.202200021
- M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng., R 136, 27–46 (2019). https://doi.org/10.1016/j.mser.2018.10.004
- S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
- Z. Liu, W. Chen, F. Zhang, F. Wu, R. Chen et al., Hollow-particles quasi-solid-state electrolytes with biomimetic ion channels for high-performance lithium-metal batteries. Small 19, e2206655 (2023). https://doi.org/10.1002/smll.202206655
- Q. Zhang, B. Liu, J. Wang, Q. Li, D. Li et al., The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 5, 2919–2926 (2020). https://doi.org/10.1021/acsenergylett.0c01517
- J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019). https://doi.org/10.1016/j.ensm.2019.01.024
- T. Hou, W. Xu, X. Pei, L. Jiang, O.M. Yaghi et al., Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 144, 13446–13450 (2022). https://doi.org/10.1021/jacs.2c03710
- T. Tozawa, J.T. Jones, S.I. Swamy, S. Jiang, D.J. Adams et al., Porous organic cages. Nat. Mater. 8, 973–978 (2009). https://doi.org/10.1038/nmat2545
- D.X. Cui, Y. Geng, J.N. Kou, G.G. Shan, C.Y. Sun et al., Chiral self-sorting and guest recognition of porous aromatic cages. Nat. Commun. 13, 4011 (2022). https://doi.org/10.1038/s41467-022-31785-4
- A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022). https://doi.org/10.1038/s41563-021-01168-z
- Q. Zhang, H. Li, S. Chen, J. Duan, W. Jin, Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J. Membr. Sci. 611, 118288 (2020). https://doi.org/10.1016/j.memsci.2020.118288
- T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng et al., Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 144, 10220–10229 (2022). https://doi.org/10.1021/jacs.2c00318
- K. Tian, S.M. Elbert, X.Y. Hu, T. Kirschbaum, W.S. Zhang et al., Highly selective adsorption of perfluorinated greenhouse gases by porous organic cages. Adv. Mater. 34, e2202290 (2022). https://doi.org/10.1002/adma.202202290
- P.E. Alexandre, W.S. Zhang, F. Rominger, S.M. Elbert, R.R. Schröder et al., A robust porous quinoline cage: transformation of a [4+6] salicylimine cage by povarov cyclization. Angew. Chem. Int. Ed. 59, 19675–19679 (2020). https://doi.org/10.1002/anie.202007048
- X. Yang, Z. Ullah, J.F. Stoddart, C.T. Yavuz, Porous organic cages. Chem. Rev. 123, 4602–4634 (2023). https://doi.org/10.1021/acs.chemrev.2c00667
- J.F. Zhang, Y.Y. Wang, X.F. Li, G.Y. Zhang, Y. Li et al., ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries. Rare Met. 43, 984–994 (2023). https://doi.org/10.1007/s12598-023-02521-8
- X. Guan, Z. Jian, X. Liao, W. Liao, Y. Huang et al., Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life. Nano Res. 17, 4171–4180 (2024). https://doi.org/10.1007/s12274-023-6354-y
- T. Hasell, A.I. Cooper, Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 1–14 (2016). https://doi.org/10.1038/natrevmats.2016.53
- R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13, 2386–2403 (2020). https://doi.org/10.1039/d0ee00153h
- G. Zhang, Y.L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa et al., Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2019). https://doi.org/10.1021/jacs.8b07670
- W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed., e202302505 (2023). https://doi.org/10.1002/anie.202302505
- Y. An, S. Tan, Y. Liu, K. Zhu, L. Hu et al., Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Mater. 41, 354–379 (2021). https://doi.org/10.1016/j.ensm.2021.06.010
- Z. Wang, Z. Wang, L. Yang, H. Wang, Y. Song et al., Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 49, 580–587 (2018). https://doi.org/10.1016/j.nanoen.2018.04.076
- C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen et al., Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 31, e1808338 (2019). https://doi.org/10.1002/adma.201808338
- M. Liu, L. Chen, S. Lewis, S.Y. Chong, M.A. Little et al., Three-dimensional protonic conductivity in porous organic cage solids. Nat. Commun. 7, 12750 (2016). https://doi.org/10.1038/ncomms12750
- A. Petronico, B.G. Nicolau, J.S. Moore, R.G. Nuzzo, A.A. Gewirth, Solid-liquid lithium electrolyte nanocomposites derived from porous molecular cages. J. Am. Chem. Soc. 140, 7504–7509 (2018). https://doi.org/10.1021/jacs.8b00886
- J. Li, J. Qi, F. Jin, F. Zhang, L. Zheng et al., Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nat. Commun. 13, 2031 (2022). https://doi.org/10.1038/s41467-022-29743-1
- M. Liu, M.A. Little, K.E. Jelfs, J.T. Jones, M. Schmidtmann et al., Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014). https://doi.org/10.1021/ja503223j
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- S. Lee, A. Yang, T.P.II. Moneypenny, J.S. Moore, Kinetically trapped tetrahedral cages via alkyne metathesis. J. Am. Chem. Soc. 138, 2182–2185 (2016). https://doi.org/10.1021/jacs.6b00468
- H. Wang, S. Fang, G. Wu, Y. Lei, Q. Chen et al., Constraining homo- and heteroanion dimers in ultraclose proximity within a self-assembled hexacationic cage. J. Am. Chem. Soc. 142, 20182–20190 (2020). https://doi.org/10.1021/jacs.0c10253
- K. Li, L.Y. Zhang, C. Yan, S.C. Wei, M. Pan et al., Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal-organic cages via metalloligand strategy for guest trapping and protection. J. Am. Chem. Soc. 136, 4456–4459 (2014). https://doi.org/10.1021/ja410044r
- Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022). https://doi.org/10.1038/s41467-022-29118-6
- Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572–15581 (2021). https://doi.org/10.1002/anie.202104124
References
A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, e1905517 (2020). https://doi.org/10.1002/adma.201905517
C.Y. Wang, T. Liu, X.G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022). https://doi.org/10.1038/s41586-022-05281-0
J. Liu, Y. Zhang, J. Zhou, Z. Wang, P. Zhu et al., Advances and prospects in improving the utilization efficiency of lithium for high energy density lithium batteries. Adv. Funct. Mater. 33, 2302055 (2023). https://doi.org/10.1002/adfm.202302055
B. Acebedo, M.C. Morant, E. Gonzalo, I. Ruiz de Larramendi, A. Villaverde et al., Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 13, 2203744 (2023). https://doi.org/10.1002/aenm.202203744
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/c3ee40795k
P. Bonnick, J. Muldoon, The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci. 15, 1840–1860 (2022). https://doi.org/10.1039/d2ee00842d
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
L. Qian, T. Or, Y. Zheng, M. Li, D. Karim et al., Critical operation strategies toward high-performance lithium metal batteries. Renewables 1, 114–141 (2023). https://doi.org/10.31635/renewables.023.202200014
M.J. Wang, E. Kazyak, N.P. Dasgupta, J. Sakamoto, Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021). https://doi.org/10.1016/j.joule.2021.04.001
T. Zhang, W. He, W. Zhang, T. Wang, P. Li et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 11, 8686–8707 (2020). https://doi.org/10.1039/d0sc03121f
J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021). https://doi.org/10.1021/acs.accounts.1c00333
C. Liao, C. Yu, S. Chen, C. Wei, Z. Wu et al., Mitigation of the instability of ultrafast li-ion conductor Li6.6Si0.6Sb0.4S5I enables high-performance all-solid-state batteries. Renewables 1, 266–276 (2023). https://doi.org/10.31635/renewables.023.202200021
M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng., R 136, 27–46 (2019). https://doi.org/10.1016/j.mser.2018.10.004
S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019). https://doi.org/10.1016/j.chempr.2018.11.013
Z. Liu, W. Chen, F. Zhang, F. Wu, R. Chen et al., Hollow-particles quasi-solid-state electrolytes with biomimetic ion channels for high-performance lithium-metal batteries. Small 19, e2206655 (2023). https://doi.org/10.1002/smll.202206655
Q. Zhang, B. Liu, J. Wang, Q. Li, D. Li et al., The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 5, 2919–2926 (2020). https://doi.org/10.1021/acsenergylett.0c01517
J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019). https://doi.org/10.1016/j.ensm.2019.01.024
T. Hou, W. Xu, X. Pei, L. Jiang, O.M. Yaghi et al., Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 144, 13446–13450 (2022). https://doi.org/10.1021/jacs.2c03710
T. Tozawa, J.T. Jones, S.I. Swamy, S. Jiang, D.J. Adams et al., Porous organic cages. Nat. Mater. 8, 973–978 (2009). https://doi.org/10.1038/nmat2545
D.X. Cui, Y. Geng, J.N. Kou, G.G. Shan, C.Y. Sun et al., Chiral self-sorting and guest recognition of porous aromatic cages. Nat. Commun. 13, 4011 (2022). https://doi.org/10.1038/s41467-022-31785-4
A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022). https://doi.org/10.1038/s41563-021-01168-z
Q. Zhang, H. Li, S. Chen, J. Duan, W. Jin, Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J. Membr. Sci. 611, 118288 (2020). https://doi.org/10.1016/j.memsci.2020.118288
T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng et al., Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 144, 10220–10229 (2022). https://doi.org/10.1021/jacs.2c00318
K. Tian, S.M. Elbert, X.Y. Hu, T. Kirschbaum, W.S. Zhang et al., Highly selective adsorption of perfluorinated greenhouse gases by porous organic cages. Adv. Mater. 34, e2202290 (2022). https://doi.org/10.1002/adma.202202290
P.E. Alexandre, W.S. Zhang, F. Rominger, S.M. Elbert, R.R. Schröder et al., A robust porous quinoline cage: transformation of a [4+6] salicylimine cage by povarov cyclization. Angew. Chem. Int. Ed. 59, 19675–19679 (2020). https://doi.org/10.1002/anie.202007048
X. Yang, Z. Ullah, J.F. Stoddart, C.T. Yavuz, Porous organic cages. Chem. Rev. 123, 4602–4634 (2023). https://doi.org/10.1021/acs.chemrev.2c00667
J.F. Zhang, Y.Y. Wang, X.F. Li, G.Y. Zhang, Y. Li et al., ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries. Rare Met. 43, 984–994 (2023). https://doi.org/10.1007/s12598-023-02521-8
X. Guan, Z. Jian, X. Liao, W. Liao, Y. Huang et al., Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life. Nano Res. 17, 4171–4180 (2024). https://doi.org/10.1007/s12274-023-6354-y
T. Hasell, A.I. Cooper, Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 1–14 (2016). https://doi.org/10.1038/natrevmats.2016.53
R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13, 2386–2403 (2020). https://doi.org/10.1039/d0ee00153h
G. Zhang, Y.L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa et al., Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2019). https://doi.org/10.1021/jacs.8b07670
W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed., e202302505 (2023). https://doi.org/10.1002/anie.202302505
Y. An, S. Tan, Y. Liu, K. Zhu, L. Hu et al., Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Mater. 41, 354–379 (2021). https://doi.org/10.1016/j.ensm.2021.06.010
Z. Wang, Z. Wang, L. Yang, H. Wang, Y. Song et al., Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 49, 580–587 (2018). https://doi.org/10.1016/j.nanoen.2018.04.076
C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen et al., Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 31, e1808338 (2019). https://doi.org/10.1002/adma.201808338
M. Liu, L. Chen, S. Lewis, S.Y. Chong, M.A. Little et al., Three-dimensional protonic conductivity in porous organic cage solids. Nat. Commun. 7, 12750 (2016). https://doi.org/10.1038/ncomms12750
A. Petronico, B.G. Nicolau, J.S. Moore, R.G. Nuzzo, A.A. Gewirth, Solid-liquid lithium electrolyte nanocomposites derived from porous molecular cages. J. Am. Chem. Soc. 140, 7504–7509 (2018). https://doi.org/10.1021/jacs.8b00886
J. Li, J. Qi, F. Jin, F. Zhang, L. Zheng et al., Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nat. Commun. 13, 2031 (2022). https://doi.org/10.1038/s41467-022-29743-1
M. Liu, M.A. Little, K.E. Jelfs, J.T. Jones, M. Schmidtmann et al., Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014). https://doi.org/10.1021/ja503223j
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
S. Lee, A. Yang, T.P.II. Moneypenny, J.S. Moore, Kinetically trapped tetrahedral cages via alkyne metathesis. J. Am. Chem. Soc. 138, 2182–2185 (2016). https://doi.org/10.1021/jacs.6b00468
H. Wang, S. Fang, G. Wu, Y. Lei, Q. Chen et al., Constraining homo- and heteroanion dimers in ultraclose proximity within a self-assembled hexacationic cage. J. Am. Chem. Soc. 142, 20182–20190 (2020). https://doi.org/10.1021/jacs.0c10253
K. Li, L.Y. Zhang, C. Yan, S.C. Wei, M. Pan et al., Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal-organic cages via metalloligand strategy for guest trapping and protection. J. Am. Chem. Soc. 136, 4456–4459 (2014). https://doi.org/10.1021/ja410044r
Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022). https://doi.org/10.1038/s41467-022-29118-6
Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572–15581 (2021). https://doi.org/10.1002/anie.202104124