Graphene Aerogel Composites with Self-Organized Nanowires-Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
Corresponding Author: Shaoming Dong
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 47
Abstract
With vigorous developments in nanotechnology, the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers. Herein, a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity. The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires (SiCnws) grown in situ, while boron nitride (BN) interfacial structure is introduced on graphene nanoplates. The unique composite structure forces multiple scattering of incident EMWs, ensuring the combined effects of interfacial polarization, conduction networks, and magnetic-dielectric synergy. Therefore, the as-prepared composites present a minimum reflection loss value of − 37.8 dB and a wide effective absorption bandwidth (EAB) of 9.2 GHz (from 8.8 to 18.0 GHz) at 2.5 mm. Besides, relying on the intrinsic high-temperature resistance of SiCnws and BN, the EAB also remains above 5.0 GHz after annealing in air environment at 600 °C for 10 h.
Highlights:
1 A new strategy for elaborate regulation of microstructure was successfully introduced by the ice template‑assisted 3D printing and chemical vapor deposition strategy, including graphene nanoplate/silicon carbide nanowires hierarchical porous structure and graphene nanoplate/boron nitride composite heterogeneous interface.
2 The composite exhibits excellent electromagnetic wave absorption performance with an RLmin of -37.8 dB and an EABmax of 9.2 GHz (from 8.8 to 18.0 GHz) at 2.5 mm. And the high-temperature absorption stability makes it a promising absorber candidate under high temperature and oxidizing atmosphere.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
- Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019). https://doi.org/10.1002/advs.201801057
- M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- J. Lin, J. Qiao, H. Tian, L. Li, W. Liu et al., Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 6, 177 (2023). https://doi.org/10.1007/s42114-023-00762-w
- J. Qiao, Q. Song, L. Xuan, J. Liu, X. Zhang et al., Dual cross-linked magnetic mxene aerogel with high strength and durability enables multifunctionality. Adv. Funct. Mater. 34, 2401687 (2024). https://doi.org/10.1002/adfm.202401687
- X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. (2024). https://doi.org/10.1126/sciadv.adl6498
- X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408 (2017). https://doi.org/10.1039/C7NR02628E
- Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8, 34686 (2016). https://doi.org/10.1021/acsami.6b12178
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J. Mater. Chem. C 7, 1659 (2019). https://doi.org/10.1039/C8TC04984J
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950 (2017). https://doi.org/10.1021/acsami.7b07735
- T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 68, 61 (2021). https://doi.org/10.1016/j.jmst.2020.06.046
- Z. Wu, H. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
- M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503 (2019). https://doi.org/10.1016/j.jmat.2019.07.003
- Q. Zhang, X. You, L. Tian, M. Wang, X. Zhang et al., Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures. J. Mater. Sci. Technol. 155, 192 (2023). https://doi.org/10.1016/j.jmst.2022.12.056
- B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
- X. You, J. Yang, K. Huang, M. Wang, X. Zhang et al., Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon 155, 215 (2019). https://doi.org/10.1016/j.carbon.2019.08.080
- D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanops encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208
- J. Chen, H. Jia, Z. Liu, Q. Kong, Z. Hou et al., Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon 164, 59 (2020). https://doi.org/10.1016/j.carbon.2020.03.049
- J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775 (2020). https://doi.org/10.1021/acsami.9b19281
- X. You, G. Dai, R. Deng, T. Zhang, L. Song et al., Fabrication of high-performance electromagnetic wave absorbing SiC composites reinforced by 3D printed carbon-based nanonetwork with Fe3O4 nanops. Addit. Manuf. 55, 102855 (2022). https://doi.org/10.1016/j.addma.2022.102855
- R. Shu, L. Nie, Z. Zhao, X. Yang, Synthesis of nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline composite aerogel as a lightweight, broadband and efficient microwave absorber. J. Mater. Sci. Technol. 175, 115 (2024). https://doi.org/10.1016/j.jmst.2023.08.015
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- X. Lan, C. Liang, M. Wu, N. Wu, L. He et al., Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C 122, 18537 (2018). https://doi.org/10.1021/acs.jpcc.8b05339
- R. Shu, X. Yang, Z. Zhao, Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 210, 118047 (2023). https://doi.org/10.1016/j.carbon.2023.118047
- B. Liu, J. Xu, R. Shu, Synthesis of nitrogen-doped graphene aerogels modified by magnetic Fe3O4/Fe/C frameworks as excellent dual-band electromagnetic absorbers. J. Mater. Chem. C 11, 12185 (2023). https://doi.org/10.1039/D3TC02696E
- K. Su, Y. Wang, K. Hu, X. Fang, J. Yao et al., Ultralight and high-strength SiCnw @SiC foam with highly efficient microwave absorption and heat insulation properties. ACS Appl. Mater. Interfaces 13, 22017 (2021). https://doi.org/10.1021/acsami.1c03543
- M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803 (2017). https://doi.org/10.1021/acsami.7b00951
- H. Ouyang, X. You, Y. Yang, M. Ren, Q. Zhang et al., Hierarchical porous SiCnws/SiC composites with one-dimensional oriented assemblies for high-temperature broadband wave absorption. J. Mater. Sci. Technol. 214, 1 (2025). https://doi.org/10.1016/j.jmst.2024.05.076
- W. Dai, J. Yu, Y. Wang, Y. Song, F.E. Alam et al., Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 3, 4884 (2015). https://doi.org/10.1039/C4TA06417H
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- R. Shu, L. Nie, X. Liu, K. Chen, Fabrication of nitrogen-doped reduced graphene oxide/tricobalt tetraoxide composite aerogels with high efficiency, broadband microwave absorption, and good compression recovery performance. J. Mater. Sci. Technol. 190, 106 (2024). https://doi.org/10.1016/j.jmst.2024.01.006
- R. Shu, J. Wu, X. Yang, Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos. Part Appl. Sci. Manuf. 173, 107677 (2023). https://doi.org/10.1016/j.compositesa.2023.107677
- Q. Zhang, X. You, H. Ouyang, Y. Yang, Z. Xing et al., Evaluation analysis of electromagnetic wave absorption for self-assembled 3D graphene skeleton-supported BN/SiC composites. J. Mater. Chem. C 12, 12794 (2024). https://doi.org/10.1039/D4TC02301C
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, Coupling hollow Fe3O4–Fe nanops with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730 (2016). https://doi.org/10.1021/acsami.5b12789
- T. Li, J. Li, Z. Xu, Y. Tian, J. Li et al., Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small 19, 2300233 (2023). https://doi.org/10.1002/smll.202300233
- W. Shen, B. Ren, S. Wu, W. Wang, X. Zhou, Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: composition control for superior broadband microwave absorption performance. Appl. Surf. Sci. 453, 464 (2018). https://doi.org/10.1016/j.apsusc.2018.05.150
- N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanops Co-decorated for efficient electromagnetic wave absorption. Compos. Part B Eng. 136, 135 (2018). https://doi.org/10.1016/j.compositesb.2017.10.029
- Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704 (2021). https://doi.org/10.1021/acsami.1c02906
- L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014). https://doi.org/10.1016/j.carbon.2014.02.054
- Y. Zhao, Y. Zhang, C. Yang, L. Cheng, Ultralight and flexible SiC nanop-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon 171, 474 (2021). https://doi.org/10.1016/j.carbon.2020.09.040
- H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776 (2015). https://doi.org/10.1021/acsami.5b01654
- B. Zhan, Y. Qu, X. Qi, J. Ding, J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
- H. Lv, J. Cui, B. Li, M. Yuan, J. Liu et al., Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315722
- X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
References
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019). https://doi.org/10.1002/advs.201801057
M. Cao, X. Wang, M. Zhang, J. Shu, W. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
J. Lin, J. Qiao, H. Tian, L. Li, W. Liu et al., Ultralight, hierarchical metal–organic framework derivative/graphene hybrid aerogel for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 6, 177 (2023). https://doi.org/10.1007/s42114-023-00762-w
J. Qiao, Q. Song, L. Xuan, J. Liu, X. Zhang et al., Dual cross-linked magnetic mxene aerogel with high strength and durability enables multifunctionality. Adv. Funct. Mater. 34, 2401687 (2024). https://doi.org/10.1002/adfm.202401687
X. Zhang, X. Tian, N. Wu, S. Zhao, Y. Qin et al., Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. (2024). https://doi.org/10.1126/sciadv.adl6498
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408 (2017). https://doi.org/10.1039/C7NR02628E
Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8, 34686 (2016). https://doi.org/10.1021/acsami.6b12178
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J. Mater. Chem. C 7, 1659 (2019). https://doi.org/10.1039/C8TC04984J
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
C. Liang, Z. Wang, L. Wu, X. Zhang, H. Wang et al., Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 9, 29950 (2017). https://doi.org/10.1021/acsami.7b07735
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 68, 61 (2021). https://doi.org/10.1016/j.jmst.2020.06.046
Z. Wu, H. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
M. Green, X. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics 5, 503 (2019). https://doi.org/10.1016/j.jmat.2019.07.003
Q. Zhang, X. You, L. Tian, M. Wang, X. Zhang et al., Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures. J. Mater. Sci. Technol. 155, 192 (2023). https://doi.org/10.1016/j.jmst.2022.12.056
B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082
X. You, J. Yang, K. Huang, M. Wang, X. Zhang et al., Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon 155, 215 (2019). https://doi.org/10.1016/j.carbon.2019.08.080
D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
X. Zhang, X. Zhang, H. Yuan, K. Li, Q. Ouyang et al., CoNi nanops encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208
J. Chen, H. Jia, Z. Liu, Q. Kong, Z. Hou et al., Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon 164, 59 (2020). https://doi.org/10.1016/j.carbon.2020.03.049
J. Xu, L. Xia, J. Luo, S. Lu, X. Huang et al., High-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 12, 20775 (2020). https://doi.org/10.1021/acsami.9b19281
X. You, G. Dai, R. Deng, T. Zhang, L. Song et al., Fabrication of high-performance electromagnetic wave absorbing SiC composites reinforced by 3D printed carbon-based nanonetwork with Fe3O4 nanops. Addit. Manuf. 55, 102855 (2022). https://doi.org/10.1016/j.addma.2022.102855
R. Shu, L. Nie, Z. Zhao, X. Yang, Synthesis of nitrogen-doped reduced graphene oxide/magnesium ferrite/polyaniline composite aerogel as a lightweight, broadband and efficient microwave absorber. J. Mater. Sci. Technol. 175, 115 (2024). https://doi.org/10.1016/j.jmst.2023.08.015
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020). https://doi.org/10.1002/adfm.202000475
X. Lan, C. Liang, M. Wu, N. Wu, L. He et al., Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C 122, 18537 (2018). https://doi.org/10.1021/acs.jpcc.8b05339
R. Shu, X. Yang, Z. Zhao, Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 210, 118047 (2023). https://doi.org/10.1016/j.carbon.2023.118047
B. Liu, J. Xu, R. Shu, Synthesis of nitrogen-doped graphene aerogels modified by magnetic Fe3O4/Fe/C frameworks as excellent dual-band electromagnetic absorbers. J. Mater. Chem. C 11, 12185 (2023). https://doi.org/10.1039/D3TC02696E
K. Su, Y. Wang, K. Hu, X. Fang, J. Yao et al., Ultralight and high-strength SiCnw @SiC foam with highly efficient microwave absorption and heat insulation properties. ACS Appl. Mater. Interfaces 13, 22017 (2021). https://doi.org/10.1021/acsami.1c03543
M. Han, X. Yin, Z. Hou, C. Song, X. Li et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803 (2017). https://doi.org/10.1021/acsami.7b00951
H. Ouyang, X. You, Y. Yang, M. Ren, Q. Zhang et al., Hierarchical porous SiCnws/SiC composites with one-dimensional oriented assemblies for high-temperature broadband wave absorption. J. Mater. Sci. Technol. 214, 1 (2025). https://doi.org/10.1016/j.jmst.2024.05.076
W. Dai, J. Yu, Y. Wang, Y. Song, F.E. Alam et al., Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 3, 4884 (2015). https://doi.org/10.1039/C4TA06417H
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
R. Shu, L. Nie, X. Liu, K. Chen, Fabrication of nitrogen-doped reduced graphene oxide/tricobalt tetraoxide composite aerogels with high efficiency, broadband microwave absorption, and good compression recovery performance. J. Mater. Sci. Technol. 190, 106 (2024). https://doi.org/10.1016/j.jmst.2024.01.006
R. Shu, J. Wu, X. Yang, Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos. Part Appl. Sci. Manuf. 173, 107677 (2023). https://doi.org/10.1016/j.compositesa.2023.107677
Q. Zhang, X. You, H. Ouyang, Y. Yang, Z. Xing et al., Evaluation analysis of electromagnetic wave absorption for self-assembled 3D graphene skeleton-supported BN/SiC composites. J. Mater. Chem. C 12, 12794 (2024). https://doi.org/10.1039/D4TC02301C
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285 (2019). https://doi.org/10.1016/j.cej.2019.02.193
B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, Coupling hollow Fe3O4–Fe nanops with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730 (2016). https://doi.org/10.1021/acsami.5b12789
T. Li, J. Li, Z. Xu, Y. Tian, J. Li et al., Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small 19, 2300233 (2023). https://doi.org/10.1002/smll.202300233
W. Shen, B. Ren, S. Wu, W. Wang, X. Zhou, Facile synthesis of rGO/SmFe5O12/CoFe2O4 ternary nanocomposites: composition control for superior broadband microwave absorption performance. Appl. Surf. Sci. 453, 464 (2018). https://doi.org/10.1016/j.apsusc.2018.05.150
N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanops Co-decorated for efficient electromagnetic wave absorption. Compos. Part B Eng. 136, 135 (2018). https://doi.org/10.1016/j.compositesb.2017.10.029
Z. Cai, L. Su, H. Wang, M. Niu, L. Tao et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000 °C. ACS Appl. Mater. Interfaces 13, 16704 (2021). https://doi.org/10.1021/acsami.1c02906
L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014). https://doi.org/10.1016/j.carbon.2014.02.054
Y. Zhao, Y. Zhang, C. Yang, L. Cheng, Ultralight and flexible SiC nanop-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon 171, 474 (2021). https://doi.org/10.1016/j.carbon.2020.09.040
H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776 (2015). https://doi.org/10.1021/acsami.5b01654
B. Zhan, Y. Qu, X. Qi, J. Ding, J. Shao et al., Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 16, 221 (2024). https://doi.org/10.1007/s40820-024-01447-9
H. Lv, J. Cui, B. Li, M. Yuan, J. Liu et al., Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315722
X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3